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ABSTRACT With the advent of new technologies and the fast pace of human life, patients today require

a sophisticated and advanced smart healthcare framework that is tailored to suit their individual health

requirements. Along with 5G and state-of-the-art smart Internet of Things (IoT) sensors, edge computing

provides intelligent, real-time healthcare solutions that satisfy energy consumption and latency criteria.

Earlier surveys on smart healthcare systems were centered on cloud and fog computing architectures,

security, and authentication, and the types of sensors and devices used in edge computing frameworks. They

did not focus on the healthcare IoT applications deployed within edge computing architectures. The first

purpose of this study is to analyze the existing and evolving edge computing architectures and techniques for

smart healthcare and recognize the demands and challenges of different application scenarios. We examine

edge intelligence that targets health data classification with the tracking and identification of vital signs

using state-of-the-art deep learning techniques. This study also presents a comprehensive analysis of the

use of cutting-edge artificial intelligence-based classification and prediction techniques employed for edge

intelligence. Even with its many advantages, edge intelligence poses challenges related to computational

complexity and security. To offer a higher quality of life to patients, potential research recommendations for

improving edge computing services for healthcare are identified in this study. This study also offers a brief

overview of the general usage of IoT solutions in edge platforms for medical treatment and healthcare.

INDEX TERMS Internet of Things, smart healthcare, artificial intelligence, edge computing, fog computing.

I. INTRODUCTION

Healthcare currently uses IT to provide smart systems that

speed up health diagnosis and provide accurate and effec-

tive treatment. Intelligent health surveillance frameworks and

automated medical diagnosis systems provide services in

various environments and scenarios, which include hospitals,

workplaces, and homes, and transportation support to dra-

matically cut the cost of doctor visits as well as to increase

the overall quality of patient care [1]. Smart healthcare IoT

sensors and applications for general healthcare have dramat-

ically altered the approach to healthcare, as the number of

healthcare IoT devices used globally is estimated to be more

than 162 billion as of 2020 [1].

Wearable and embedded smart IoT sensors can collect real-

time data, including data relating to user habits, mobility, and

The associate editor coordinating the review of this manuscript and
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device usage. These data are collected and processed using

machine learning (ML) or deep learning (DL) techniques

to reveal hidden patterns in the data and to track users to

diagnose and warn about critical conditions. Cloud-based

frameworks, which often employ big data analysis tech-

niques, can achieve reliable and accurate results for general

IoT applications that require a rapid response [2]–[4]. How-

ever, for critical medical IoT-based applications that require

higher accuracy, real-time responses, and robust behavior,

cloud-based architectures can have a significantly adverse

impact in cases of network failure or bandwidth delay, and

this may result in medical emergencies or even the loss of

life [5].

Recently there has been growing interest in sophisticated

cloud architectures that employ edge intelligence and fog

computing. The key objective of this amalgam is to exploit

the maximum benefits from edge and fog computing capa-

bilities for data collection, interpretation, processing, and
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analysis [6]. Such architectures provide promising solutions

for increasing reliability and responsiveness in the case of dis-

tributed applications involving healthcare, because intelligent

device and sensor mapping as well as resource management

are key issues for smart healthcare IoT systems [5]. Hence,

this study aims to highlight the advantages of edge computing

for intelligent solutions for the distributed processing and

analysis of smart IoT healthcare sensors.

Edge intelligence can be used on smart devices that have

sensors attached to them, and on devices that are available at

gateways near the smart sensors: wearable smart devices with

sensors, like smart phones or smart watches, and gateway

devices like microcontrollers can serve as edge nodes. Fog

computing can be implemented on local area networks and

can integrate powerful, larger devices like personal computers

or servers that are installed at a greater distance from the

smart sensor devices. Both edge and fog computing architec-

tures are widely used together to take advantage of sensors

within the users’ proximity to deliver healthcare services with

greater availability, lower latency, and location awareness [7].

Recently, many researchers have proposed methods based

on hierarchical computing to leverage techniques like DL

and ML for the distribution and allotment of inference-based

tasks among edge and fog nodes, which could tremendously

improve the computing power and computational capabilities

of edge devices [8], [10]–[16].

In the smart healthcare domain, mobile cloud architec-

tures that incur high cost for data transmission and cover

a limited area are gradually being transformed to mobile

edge computing architectures that employ edge ML, have

the characteristics of lower latency and higher coverage, and

are more reliable than cloud-based models [17]. In this arti-

cle, we provide a review of the edge-based IoT healthcare

frameworks that focus on health surveillance. This study

discusses the trends in the advancement of edge IoT-based

smart healthcare frameworks, including systems that employ

edge computing for functional processes to the more recently

proposed edge architectures that also exploit fog computing

and ML techniques.

Edge computing can be used with multiple edge devices

and local servers for the collaborative and efficient process-

ing of healthcare sensor data. By employing AI techniques,

edge intelligence is moving toward smart healthcare frame-

works that have human-like intelligence and even cognitive

intelligence. Edge intelligent architectures can be totally or

partially trained at the edge level, while further processing

can be distributed among edge and fog nodes, or cloud pro-

cessing can be done for computationally intensive applica-

tions. The surge in smart sensors and IoT devices has now

made the Internet of Everything (IoE) [18] achievable. Edge

intelligence also works with platforms for Industry 4.0, and

Healthcare 4.0, thus making IoT architectures smarter and

more resilient [19]. Edge intelligence is being used in smart

cities for ambient-assisted living (AAL) [20]. It is also being

employed to build cognitive intelligence systems for ECG and

EEG data monitoring and classification [21].

TABLE 1. List of abbreviations.

Hence, we are witnessing a convergence of various types

of AI, ML, and DL-based technologies for the automation

of complex decision-making tasks, which results in multi-

purpose intelligent inference architectures. In fact, edge intel-

ligence cannot be restricted to ML or DL-based techniques

only [22], but it is now being researched for every domain

of smart healthcare involving IR 4.0, Healthcare 4.0, 5G, and

tactile internet.

Figure 1 shows the taxonomy as a pictorial view of the

sections and subsections discussed in this study. The rest of

this study is organized in the following manner. Section II

provides a brief comparison of related surveys. The basic

architecture of edge IoT healthcare systems is described in

Section III. Section IV provides a review of state-of-the-art

IoT healthcare systems based on different areas of applica-

tion. The application of ML, edge intelligence, blockchain,

and big data for IoT healthcare frameworks is explored in

Sections V to VII. Section VIII discusses trends in the field

of intelligent edge applications for IoT healthcare, and the

conclusion is given in Section IX.
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FIGURE 1. Taxonomy.

II. COMPARISON WITH OTHER SURVEYS

From a review of the literature and surveys of the state-

of-the-art architectures, the essential aspects and applica-

tions of IoT healthcare systems were identified. Employing

ML and DL techniques is an integral part of smart health-

care IoT systems. ML/DL models can be applied in the

device, data processing, or communication layers [3], [23].

In this study we discuss in detail the application of ML

and DL models at the various layers and nodes of IoT

healthcare architectures, which has not been addressed by

other surveys. Study [24] presents a good evaluation and

discussion of fog-based architectures, but the authors do

not discuss the architectures from an application point of

view. We also discuss the application of blockchain in IoT

healthcare systems, something else that is not covered by

many studies. A survey in [25] provides a detailed discus-

sion of many ICT-based architectures, but it is quite dated

and does not include more recent advancements. Another

detailed survey in [26] available focuses on the application

aspects of IoT healthcare but not on emerging technologies.

This study focuses on evolving and revolutionary techniques

for IoT healthcare systems. Table 2 presents a compari-

son between the content of previous study on IoT health-

care systems [17], [27]–[36], [100] and that of the present

study.

III. EDGE IoT SMART HEALTHCARE ARCHITECTURE

Edge-based IoT healthcare frameworks generally involve

remote monitoring systems that exploit different types of

smart sensors for the implementation of healthcare systems

that are diagnostic, sensitive, and preventive [1], [37]–[39].

In most recent studies, fog computing nodes work as local

servers: they gather, analyze, and process health IoT sensor

data and give rapid-response services [40]. For many years,

healthcare researchers have been exploring solutions for the

remote monitoring of patients and for the transmission of

health reports to provide clinicians with patient data in real

time. Previous researchers like Liu et al. [41] primarily sug-

gested simple computers and microcontroller-based monitor-

ing systems for patients, such as using ECG and heartbeat

sensors to warn about high heart rate or for the prediction

and filtering of vital situations. These physiological data are

then collected from smart ECG sensors for further analysis

and processing [42], [43].

Recent advances in IoT technology have opened a door for

intelligent solutions that take advantage of software platforms

and system architectures. These solutions, such as for mon-

itoring chronic illness, epidemic surveillance and control,

elderly and pediatric care, and management of health and

fitness [44]–[50], are intended to resolve healthcare issues at

various levels.
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TABLE 2. Comparison of state-of-the-art for IoT-based healthcare.

In this work, we focus primarily on the challenges for

health surveillance systems. These issues can be divided

into two parts, static and dynamic patient monitoring. Static

patient monitoring can be done in a home, office, or hospital,

and dynamic patient monitoring would track the patient in an

outside environment.

A general edge/fog computing-based approach uses an

architecture with multiple levels [51], which is illustrated

in Fig 2. The three basic levels are:

• Level for edge nodes, where data are collected from

IoT body sensors. Low-level processing takes place in

hand-held or portable devices like smart watches, smart-

phones, tablets, or embedded devices or local gateway

devices.

• Level for fog nodes, where data are collected from IoT

field sensors or edge devices. Storage and local process-

ing are performed here using servers or PCs.

• Level for cloud processing, where all the data are gath-

ered and stored. High-level processing takes place here,

including the application of sophisticated algorithms and

data analysis.

It is not necessary that all three levels of edge archi-

tecture are contained simultaneously in the same archi-

tecture. In non-dynamic solutions, fog nodes can be used

to collect data directly from sensors, and they may be

assisted by cloud service providers. Similarly, edge devices

explicitly interact with cloud providers in certain com-

plex dyn1mic situations where a fog level cannot be

enforced.

IV. REVIEW OF EDGE BASED IOT HEALTHCARE

MONITORING SYSTEMS

Several research studies have proposed IoT-based smart

health monitoring frameworks during the last few years.

In this study, we review a variety of such research studies

to demonstrate the advances in IoT-based healthcare sys-

tems that employ edge intelligence, as shown in Table 3.

This study discusses the trends in the advancement of edge
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FIGURE 2. Simple three-tier architecture for IoT-based healthcare systems.

IoT smart healthcare frameworks, including systems that

employed edge computing for functional processes, to the

recently proposed edge architectures that also exploit fog

computing and ML techniques.

The research studies reviewed here include various fields

of IoT smart healthcare applications for the monitoring of

physiological health data including skin, voice, posture, and

movement. The studies are grouped according to the applica-

tion area.

Figure 3 shows the application of edge intelligence in

combination with ML for IoT smart sensor based scenario.

The data that is collected from the IoT smart sensors are

collected and preprocessed by edge devices. These devices

also apply AI techniques for preprocessing and initial data

analysis, but for intensive processing and classification tasks

it is sent to the ML backend core where advanced deep

learning algorithms are employed for in-depth analysis and

decision making.

A. PHYSIOLOGICAL HEALTH DATA ANALYSIS

Recently, many research studies have proposed IoT-based

healthcare systems that focus on physiological health data for

accessing and diagnose critical health situations.

In [101], a wireless body sensor network is employed

for movement and heart data monitoring for individuals

inside living places. The edge layer enables members of

patient’s family or healthcare experts to receive health alerts

on their smartphones. Sudden changes in sensor values

are calculated, which help to detect falls or critical health

conditions early. Likewise, another IoT smart healthcare

system [102] was proposed for the home monitoring of

critical heart conditions of patients using ECG sensor data.

The proposed method performed system interaction through

the use of a TV interface.

In [35], the researchers explored the cloud-based Bluemix

technology for collecting and storing physiological infor-

mation. They employed IBM Watson IoT platforms to

make it possible for health experts to remotely access and

analyze analytical findings using health data. In another

study [54], researchers proposed an embedded system for

fever diagnosis that monitors patient temperature in real

time. An ECG telemetry system [55] based on the IoT

is proposed, where health assessment can be carried out

on a smartphone in real time. Various physical activities

have been evaluated on the proposed system, illustrating its

usefulness.

Field sensors can be used for collecting static moni-

toring physiological data, and can be employed in mul-

timodal activity detection. In one study [104] for this

researchers used a smartphone, smartwatch sensors, and

a camera to gather audio, video, and motion information.

In fact, the cloud architecture was used for fog comput-

ing, where activity recognition, data preprocessing, and

localization were done using a local gateway, and cloud

processing was employed for remotely accessible data

storage.

Similar studies [68], [11] have proposed activity recog-

nition using fog-based frameworks. In [11], twelve human

activities were detected by employing wearable body sensors.

These studies used an LSTM based RNN model that was

implemented on the fog nodes of local servers, whereas [68]

proposed other types of movement monitoring sensors and

used SVM and random forests for activity classification.

Edge-based ML models (Edge ML) have been explored in
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TABLE 3. Overview of IoT-based healthcare.
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TABLE 3. (Continued.) Overview of IoT-based healthcare.

recent studies, and involved the analysis of physiological

health data using wearable sensors. The research in [24]

discussed the issue of anomaly detection by proposing an

architecture based on edge stream computing. They used a
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distributed HTM algorithm [72], which was implemented on

edge nodes for classification. Another study [67] suggested a

model for fall detection using an LSTM-based RNN imple-

mented on edge nodes.

A recent study [8] proposed an EEG classification

approach based on multi-access edge architecture. In order to

satisfy the necessary requirements, like robust feature detec-

tion and classification, data reduction, and fast processing, the

authors implemented key modules on edge nodes. In order to

evaluate the performance, they also compared the results with

methods like k-nearest neighbors, naive Bayes, and random

forests.

Another research study proposed a new architecture based

on hierarchical computing [5] to categorize anomalies in ECG

signals. In order to dispense these computations in the cloud,

fog, and edge layers, the authors used a version of MAPE-K

architecture by IBM.

The architecture consists of four key processing modules.

A monitoring module is used to link the sensors and the edge,

in which all the preprocessing, data collection, and storage is

carried out. Then, an analyzer module is created that performs

the main computing and processing tasks like the training

of the model, and is implemented in the cloud. The third

one is the planning module, which is implemented at the

edge level and is controlled by the analyzer module. This

module runs the trained model and is responsible for making

decisions. The model was tested on two approaches, SVM [5]

and DL [5].

B. EDGE BASED IOT SYSTEMS FOR REHABILITATION

There are many recent studies for post-operative cases in

which researchers proposed edge-based rehabilitation sys-

tems [1] for monitoring health complications or infections

after treatment. One such study [56] proposes a system for

monitoring the health of an orthotic for an amputated limb

by tracking patient’s gait and temperature. They employed

edge nodes in the form of smartphones to collect and transfer

health data to fog nodes, where ML-based techniques were

implemented for feature extraction classification. Another

similar study [74] proposed IoT -based arm kinematics using

accelerometers.

Several research studies have proposed speech synthesis

and voice pathology IoT-based smart systems. Voice-related

ailments and diseases were studied in [57] and [58] using

smartphones and wearable sensors that recorded data and

send it to a cloud-based module where an extreme learning

machine was employed for feature extraction classification

tasks. Dubey et al. [59] employed fog computing to provide

Parkinson’s patients with teletherapy. They collected audio

data using smartwatch sensors, which was then transferred to

fog nodes for acoustic feature identification and then to the

cloud for further classification.

C. SKIN DISEASE DETECTION AND DIET MONITORING

Recently, advanced deep models have been built for mobile

platforms, smartphones and other industrial applications

[75], [105]. Many new research studies have offered phenom-

enal solutions for mobile IoT-based smart healthcare. One

study [66] proposed a skin cancer diagnosis system based

on a pretrained, lightweight CNN model implemented for a

standalone mobile platform that classified skin cancers.

Another researcher [65] proposed food classification and

recognition for dietary evaluation. They performed prepro-

cessing on a mobile device and implemented a CNN model

using cloud processing.

D. EPIDEMIC PREVENTION SYSTEMS

In the field of diagnostics and treatment, IoT smart healthcare

systems have provided many feasible solutions for infectious

disease management. Such systems have made real-time pro-

cessing, location detection, motion information, and several

types of data fusion a possibility. With the help of biosensors,

and location and environmental sensors, epidemic disease

detection and diagnostic systems have become state-of-the-

art. The importance of such systems is all the more evident

in cases where viral infectious diseases must be detected in

the early stages so that timely treatment can be provided

to patients. One study [62] proposed a system for Chikun-

gunya diagnosis using fog computing for the analysis of

disease-related symptoms, including environmental condi-

tion data. The system also alerted users to disease-prone

areas using Google Map information. Another study [63]

provided a solution to diagnose and prevent the Zika virus

from spreading using a mobile cloud computing architecture.

Fog nodes were used to carry out preprocessing, and the cloud

layer was used for processing, storage, and results analysis.

The present COVID-19 conditions have dramatically

changed the global scene, hence smart healthcare systems

are the need of the hour. Many IoT-based smart architectures

have been proposed for accurate screening, maintaining a

1-meter social distance, and the diagnosis of symptoms like

fever, cough, and body pain. For example, in study [64],

an auto triage method was proposed based on real-time DL

techniques implemented in the edge layer. DL has been

used to detect the forehead area and to measure tempera-

ture using an infrared camera. In other studies [76]–[79],

a multimodal DL-based system was proposed that employed

smartphone sensors to determine user location and to warn

about risk-prone areas.

E. DIABETES TREATMENT

Many research studies have focused on prevalent diseases like

diabetes and high blood sugar, and have proposed IoT-based

smart healthcare systems for diagnosis and treatment. Addi-

tionally, many wearable body sensors have been produced for

managing diabetes, like real-time blood glucose sensors and

insulin pens. In such systems, devices like smartphones can

act as edge devices, providing analysis and diagnosis services

without using the cloud [36]. In one study [69], researchers

proposed a system to predict the early symptoms of Type-

2 diabetes. In another study [70], decision trees were used for

the classification of diabetes risk level, and the smartphone
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FIGURE 3. An Intelligent edge architecture with smart devices.

was used as an edge device. Another DL-based system was

proposed in [71] to predict stress, hypertension, and diabetes

using wearable body sensors, and it was implemented using

the fog layer.

V. BIG DATA AND BLOCKCHAIN IN IOT-BASED

HEALTHCARE FRAMEWORKS

An enormous amount of data is being generated at every

moment, especially in an IoT network. Hence, the process-

ing such a large amount of data needs intensive process-

ing capabilities. Many big data analytics techniques have

been suggested in the literature for real-time IoT frame-

works [80], [81], however; the need for QoS has not been

properly addressed. Machine and DL techniques combine

with IoT architecture to boost big data processing ability, and

advanced DL models in particular are extremely powerful for

managing such data [82]. DL has been applied by researchers

for various types of medical big data, including data from

wearable body sensors and HER data [83].

Figure 4 shows some of the applications of big data in IoT

healthcare. Big data analytics applications in IoT healthcare

systems have revolutionized statistical analysis and real-time

tracking of health data. Wearables sensor data is continuously

tracked like sleep, exercise, walk, heart rate data, etc. New

types of IoT smart sensors can also track blood pressure, glu-

cose, pulse, etc. Big health data analytics helped patients out

of healthcare facilities and provided diagnosis and improved

healthcare facilities at home. Big data has also helped IoT

healthcare systems to reduce overall treatment costs by reduc-

ing staff and travel. It has also enabled healthcare profession-

als to find high-risk patients and administer special care. It has

also lowered errors due to human factors bringing in more

confidence in artificial intelligence. Advanced AI tools like

IBM’s Watson can predict diseases in seconds by searching

through huge amounts of medical data. Hence, big data and

AI and IoT can help the smart healthcare industry progress

rapidly.

In order to solve the issues related to big data, IoT health

systems can implement blockchain to maintain data privacy

and safeguard patient’s interests. Blockchain has helped in

the deployment of critical services in IoT healthcare archi-

tecture, but challenges like scalability, storage, and combined

operation are a major concern [84]–[87]. The main healthcare

application of blockchain is providing access and storage con-

trol for privatemedical information [85]. However, the advan-

tages of blockchain have not been realized to the full for IoT

healthcare (HealthIoT) systems [9].

As shown in figure 5, the blockchain for IoT healthcare

can be designed in a way that blocks are created to store

unique identifiers for each patient. Hence, all the health

transactions consist of this secure identifier, and each health

record is encrypted along with the timestamp for the health

transaction. The blockchain consists of complete medical

history, including wearable sensors and smartphone health

data. This huge amount of data is stored in data lakeswhere all

types of health data can be abundantly stored. Data lakes can

be accessed by edge based intelligent algorithms like deep

learning, and it supports all types of data queries. The data

stored in the data lake is also encrypted and authenticated.

Whenever data is saved in the data lake, a pointer is cre-

ated using the patient’s unique identifier and added to the

blockchain. The patients receive this information every time

any related data is added. The edge devices like smartphones

and body sensors help the patient add his authenticated

health information to the data lakes in a secure fashion using

blockchain.

VI. EDGE INTELLIGENCE IN IOT HEALTHCARE

FRAMEWORKS

While edge computing strives to combine various types of

edge devices and servers that can collaborate for the efficient

processing of locally generated data, edge intelligence strives

to embed AI and cognitive intelligence related to human

behavior into edge architectures.
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FIGURE 4. Big Data applications in IoT healthcare.

FIGURE 5. Blockchain use case in IoT healthcare scenario.

Using intelligent AI-based edge in IoT architectures does

not necessarily mean that the AI techniques are totally trained

and analyzed at the edge layer; they may also involve a col-

laboration of cloud, fog, and edge computing. The innovation

and advancement in IoT devices have made it possible to

achieve the Internet of Everything (IoE) [18]. Huge cloud data

centers are distributed worldwide, hence edge intelligence is

all the more necessary for processing so much information.
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AI techniques can be implemented with edge computing

using many new platforms and scenarios, such as Industry

4.0, tactile internet, Healthcare 2.0, advanced DL, and terri-

torial control, which could be embedded in IoT healthcare

platforms to connect them with humans, which makes infor-

mation more relevant and intelligible [88].

Similarly, for smart city healthcare applications like

AAL [20], edge intelligence is proposed to offer healthcare

systems based on intelligent agents. These agents canmanage

the environment according to the situation, provide contex-

tual support to users, adapt to user’s preferences, and monitor

and control the environment automatically.

Intelligent edge platforms are also used in proposals for

smart telemedicine systems [88], and for providing treat-

ment, disease prevention and detection, and medical support

to patients using advanced wearable sensors for real-time

patient monitoring. Fog-based data analytics [89] was also

proposed in a recent study for a smart healthcare framework.

One study even proposed a cloud-to-fog architecture [90] for

healthcare where intelligent edge nodes were placed in smart

hospitals and homes, which made remote interaction easy.

Another study used edge intelligence to build a real-time

health data gathering and analysis system [91], for which it

proposed a three-layer patient-driven healthcare architecture

for real-time data collection, processing, and transmission.

This system provides insight into the application of fog nodes

and servers in a Healthcare 4.0 environment. An ECG-based

intelligent edge cognitive framework [92] was also proposed

for real-time health monitoring. Cognitive intelligence makes

the proposed edge computing system smarter, and allows for

optimized resource allocation.

Hence edge intelligence is now an element of state-of-

the-art IOT healthcare architectures that aim to work with

more intelligence, reliability, privacy, and efficiency.

VII. MACHINE LEARNING AND IOT IN HEALTHCARE

FRAMEWORKS

ML has been applied for multiple applications and domains

by a number of researchers all over the world. The use of ML

in the healthcare IoT domain has seen huge interests from

researchers recently. ML helps in remote and real-time mon-

itoring, and treatment of diseases in the H-IoT framework.

ML has also been used in Assistive Systems to rehabilitate

patients after accidents. ML has been very popular in diagno-

sis and prediction of cardiac arrest in heart patients, using IoT

based smart sensors [68]. In heart patients the ECG signal is

monitored continuously and after noise filtering it is sent to

ML algorithms for feature extraction [68].

In the field of Ambient Assisted Living (AAL), there

are many applications of machine learning for IoT based

healthcare scenarios. ML has been used for fall detection

of patients employing edge and cloud computing archi-

tecture [67]. In AAL domain ML has also been used by

researchers for patient’s sleep pattern monitoring. For analyz-

ing sleep patterns, a multi-modal data is employed consisting

of EEG, ECG, or EOG.

With the development and advancements in the field of

prosthetics, now ML is being used for aiding and rehabili-

tation after accidents or trauma. Deep learning has revolu-

tionized the way Brain-Computer Interfacing (BCI) systems

are being developed to improve quality of human life and for

providing smart cognitive healthcare as shown in Figure 6.

Deep learning is being used to interpret brain patterns by

analyzing EEG signals and convert the thought processes to

speech [55]. It is also being used for emotion recognition

and classification thereby making machines aware of human

emotions [73]. It has enabled humans to control robots using

their brains without doing any action. Hence ML based IoT

healthcare systems are being used to help patients with severe

disabilities to lead a normal life [56].

VIII. DISCUSSION AND TRENDS

In this study, we reviewed many important IoT-based smart

healthcare systems using edge, fog, and cloud computing.

The studies we discussed employed various types of artificial

intelligence, and ML and DL techniques for disease diag-

nosis, anomaly identification, symptoms detection, disease

classification, and prediction. In most of the studies, the main

analysis and processing tasks were implemented in the cloud

layer, as the edge devices had limited power, capability, and

resources. However, many recent studies have started to com-

bine edge, fog, and cloud layers to improve resource manage-

ment and reduce latency. Recent studies have implemented

ML and DL models for applications like fall prevention and

detection, multimodal activity recognition, disease diagnosis,

and treatment on local edge nodes, which are close to the data

gathering devices. This helped to reduce data transfer time

and consumption of resources, and increased the capability

of real-time execution.

For non-dynamic monitoring scenarios, fog-based frame-

works provided the best solution, where local servers added

GPUs to cater to the demands of intenseML processing tasks.

However, for dynamic tasks where resource optimization and

saving power comes into the picture, limited-power edge

devices were used.

Stream computing has been applied at the edge level

to render the inference process among various edge nodes

parallel, and ML techniques implemented with lightweight

architectures have been adopted to optimize processing and

resource management for embedded sensor devices [93].

Hence, advanced mobile DL architectures have been modi-

fied for limited resource utilization and low power edge nodes

without compromising performance [94]. However, there are

certain issues that these systems suffer from at the edge level:

• Training data overfitting: because processing is per-

formed at local edge nodes, devices that use wireless

body sensors usually collect data from the same set

of users, which results in data redundancy. When DL

models are retrained or updated using such data, they

are usually poorly fitted or overfitted.

• Limited computational power: as the DL-based mod-

els need to be retrained and updated frequently,
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FIGURE 6. Cognitive edge intelligence for EEG classification.

the computation overhead can be high in terms of cost,

even if lightweight models are implanted. Hence, such

intensive processing is often offloaded to the cloud.

To solve such issues, many researchers have proposed new

IoT architectures and concepts [95]. Based on the distributed

DL concepts proposed in some studies [96], many researchers

have employed such distributed networks to build point-to-

point architectures. In [97], the authors propose a distributed

deep network implemented on local edge nodes. They used

a simple neural network at each edge node and exchanged

weights with other nodes to train the nodes in a distributed

fashion.

In another study that may offer a viable solution to such

problems, the researchers proposed distributed training for

DL models and ML algorithms that collaborate at the edge

layer to process classification tasks in a decentralized man-

ner [98]. In addition to the issues discussed here, such

architectures also promise to alleviate data distribution issues

over time, as these issues may adversely affect IoT-based

healthcare systems. As in the case of covariate shift, dis-

tributed edge-based DL models can easily cope with this

issue using segmentation at the edge nodes [99]. Through

the findings of this review, we expect edge-based smart IoT

healthcare systems to alleviate these issues by implementing

the solutions proposed in the literature. We also need further

investigation to amicably solve such issues, so that edge intel-

ligence can be used with all its advantages and computational

capabilities.

IX. CONCLUSION

IoT-based smart healthcare frameworks are advancing from

simple models used for data collection, preprocessing,

transmission, and analysis to sophisticated and intelligent

systems that can do intensive processing and remote data

analytics, and make smart decisions. These advanced models

require DLmethods to be wisely implemented and to increase

computational ability without increasing resource overhead.

Sometimes, such models can only be implemented in the

cloud layer due to the enormous amount of data being pro-

duced by real-time smart sensors. However, such approaches

present many drawbacks, as we discussed in this study, such

as issues with data availability, data quality, and real-time

processing in an environment where prevention and the

timely detection of symptoms are the main requirements.

Data security and storage is also a major concern in health-

care systems, as personal and confidential information is

used in such systems. However, local storage and informa-

tion processing management has still not been addressed in
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edge-based solutions, especially those that involve a dynamic

health environment. Some researchers have also proposed

models for distributed DL that employed edge and fog nodes,

which enabled them to reduce training and processing time.

Local decision-making responsibility was relegated to the

edge nodes, while model training was allocated to the cloud

layer. The increased importance of the edge nodes wasmainly

because the GPU devices were embedded at the edge level.

These GPU-powered nodes were also employed at the fog

level to increase the computational power and data processing

capabilities of the model. In smart healthcare systems where

training DL-based models at the fog and edge level is still

not feasible, the distribution of workload and partitioned deep

network approaches are a viable solution.
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