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ABSTRACT The use of IoT has become pervasive and IoT devices are common in many domains.

Industrial IoT (IIoT) utilises IoT devices and sensors to monitor machines and environments to ensure

optimal performance of equipment and processes. PredictiveMaintenance (PM)whichmonitors the health of

machines to determine the probable failure of components is one IIoT technique which is receiving attention

lately. To achieve effective PM, massive amounts of data are collected, processed and ultimately analysed

by Machine Learning (ML) algorithms. Traditionally IoT sensors transmit their data readings to the cloud

for processing and modelling. Handling and transmitting massive amounts of data between IoT devices and

infrastructure has a cost. Edge Computing (EC) in which both sensors and intermediate nodes can process

data provides opportunities to reduce data transmission costs and increase processing speed. This article

examines IIoT for PM and discusses how and where data can be processed and analysed. Initially, this article

presents sampling and data reduction techniques. These techniques allow for a reduction in the amount of

data transmitted to the cloud for processing but there are potential accuracy trade-offs when ML algorithms

utilise reduced datasets. An alternative approach is to move ML algorithms closer to the data to reduce

data transmission. There are three main techniques that utilise the EC paradigm to perform ML and data

processing on intermediary nodes. These techniques are categorized according to where data processing

occurs: Device and Edge, Edge and Cloud and Device and Cloud (Federated Learning). In addition to

exploring traditional approaches, these three state-of-the-art techniques are examined in this article and their

benefits and weaknesses are presented. A novel architecture to demonstrate how EC can be utilized both for

data reduction and PM in IIoT is also proposed.

INDEX TERMS Data reduction & analysis at the edge, machine learning for IoT, predictive maintenance

in IIoT, edge computing.

I. INTRODUCTION

The Internet of Things (IoT) is envisioned to make our lives

easier. Since its inception, almost every sector has somehow

exploited it. For example, it is common to find the use of IoT

for smart healthcare [1], [2], agriculture [3], smart homes [4],

smart grid [5], [6] and smart industry [7]. Smart industry, also

referred to as industry 4.0, makes use of information and com-

munication technologies for efficient productivity [8]. In the

context of industry, IoT is known as Industrial IoT (IIoT) and

it has gained significant research attention recently [9], [10].

In IIoT, different sensors are employed to monitor the

performance of equipment or even a complete produc-

tion processes [20]. In IIoT, one technique called Predic-

tive Maintenance (PM) has recently gained attention. The

basic concept of PM is to monitor machine health with the

The associate editor coordinating the review of this manuscript and
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help of sensing data to determine probable future degra-

dation or failure of the machine. PM employs Machine

Learning (ML) on the collected data to make predictions.

Indeed, the accuracy of theMLmodels dependsmainly on the

collected data.

In IIoT, a traditional approach to collect data is to stream

it from sensing devices to the cloud where it is processed

and modelled. Sensing devices generate enormous amounts

of data, continuously or periodically, often in a very short time

frame. For example, within a second, thousands of records

can be generated by a machine [16]. According to the Cisco

cloud index (2013-2018), an automated facility can generate

a terabyte of data every hour. To this end, approaches such as

sampling, compression, filtering are used to reduce the data

size. These techniques allow for a reduction in the amount

of data forwarded to the cloud. However, there are potential

accuracy trade-offs for the ML models which utilize reduced

datasets.
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TABLE 1. A comparison of existing state-of-the-art surveys and this article differs.

In the face of cost and other challenges (latency, band-

width and energy consumption) incurred by the traditional

approach, a new computing paradigm called Edge Computing

(EC) [31] has recently emerged. EC provides computation

and processing nearer to the data source to reduce the data

sent to the cloud for processing [19]. In EC, both sensors

and intermediate nodes can process data and provide oppor-

tunities to reduce data transmission costs. In this respect,

developers have options when wishing to reduce the data and

associated costs and latency. They can use the limited pro-

cessing of EC devices (e.g. sensors) to reduce the data being

sent to the cloud using various sampling techniques or per-

form ML for PM on the EC device or even use a hybrid

approach in which ML/PM is carried out using EC and the

cloud. Another approach, proposed recently by Google is

Federated Learning (FL) which seeks to train Deep Learn-

ing (DL) models on an edge device with the cloud serving as

a global model aggregator [32]. All of the approaches have

various trade-offs in terms of data size, transmission cost and

accuracy of the ML/PM, which this article explores.

Literature shows that EC can help in meeting the real-time

requirements for IIoT [33]. Authors in [34] have provided a

range of applications for a smart factory where EC can play

a role. There is interest in the research community to propose

an optimum solution and so surveys on EC, PM, IIoT or ML

have been conducted. However, they typically consider the

technological [8], architecture [35], security [36], [37] and

systems perspective [13] or focus on the analytics aspect [18]

in the IIoT context. This article focuses more on the data and

in particular, discusses the location within an IoT network

where data can be processed (data reduction or analysis). The

article presents the state-of-the-art by

• Reviewing traditional approaches which help in reduc-

ing data in IoT. This includes sampling, compression

and fusion. These techniques help in reducing the data

where generated and result in not only consuming fewer

communication resources (e.g. network bandwidth)

but also require less cloud resources for storage and

computation.

• Presenting the research contributions which have been

proposed to push ML closer to the data source. In this,

ML training takes place in the cloud and only the model

is pushed to the edge nodes. Such approaches can greatly

benefit from powerful cloud resources for training com-

plex ML models such as DL.

• Discussing the recently proposed techniques which

exploit EC to implement ML for data processing and

the PM in IIoT. In this, hybrid approaches in which

frameworks use the sensing device and the Edge, are

presented. Techniques based on such an architecture can

help in meeting stringent latency requirements in some

application domains.

• Reviewing the FL paradigm, recently proposed by

Google, in which rather than aggregating raw data from

devices, the cloud aggregates DL models trained locally

on the edge. It is particularly beneficial in meeting pri-

vacy requirements when data are confidential that can

not be shared with cloud providers in raw form.

• While some observations are presented at the end of

each section, some future directions are proposed using

reduced data for training ML models and where to

implement what part of the PM framework in IIoT.

We also propose an Edge-Cloud based architecture

that utilises data reduction at the edge informed by

network-level information (e.g. congestion) and PM

analytics constraints from the cloud (e.g. accuracy) to

reduce the data required for analysis tasks.

Figure 1 shows how the literature is categorized while

Table 2 summaries the acronyms used in this article. The

remainder of this article is organized as follows. Section II

presents related surveys published since 2018. We build on

the review of the literature from 1993 to 2018 presented

in [18]. However, we also discuss PM in conjunction with

EC which has emerged recently. In section III, data reduction

approaches, which do not employ ML for IoT are discussed.

We discuss sampling, compression and fusion techniques.

Section IV focuses on the role of ML both for data reduction

and PM analytics within EC. In particular, we review tech-

niques that rely on Device-Edge interconnection in subsec-

tion IV-A, Edge-Cloud interconnection in subsection in IV-B

and FL for IIoT in subsection IV-C. This unfolds where

ML can be implemented in the overall architecture of IIoT

systems. Section V presents some research challenges and

provides future directions to address the need for data reduc-

tion and continuous retraining of ML models. Finally, a con-

clusion is given in section VI.
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FIGURE 1. The structure and organisation of the literature in this article.

II. RELATED WORK

Since [18] provides a comprehensive review from 1993 to

2018 for PM, this article builds on that and provides a review

of the PM primarily since 2018.

EC is a fundamental pillar of modern IIoT systems and has

been discussed in many surveys [8], [12]–[14], [17], [19].

Research shows EC can assist in deploying ML models,

analytics and data handling, however, existing surveys lack

the discussion which realizes EC for these tasks. Table 1

depicts the focus of recent surveys.

Some recent surveys have discussed how ML can be

deployed on Edge [13], [14], [17], [38]. [14] discussed

the hardware and software frameworks for employing ML

at the edge. Likewise, [17] discussed the ML and Artifi-

cial Intelligence(AI) implementation in the form of agents.

The approach proposed in [13] also covered ML. However,

PM analytics in IIoT systems are not considered. Authors

of [38] have discussed the role of ML in offloading tasks to

the edge. Table 1 summarises the various aspects of the IIoT

paradigm that have been reviewed to date.

The importance of PM is seen in recent works [12], [15],

[16], [18], however, these works do not consider the ben-

efits or use of EC. In [12] authors focused on discussing

the building blocks (such as the equipment, their integra-

tion in the system and analytics) of an IoT based smart

factory. The articles in [15] explore techniques of PM ana-

lytics in IIoT. This includes knowledge-based approaches

(ontology, rule-based etc.), techniques using MLmodels, and

approaches involving DLmodels which help in inference and

PM analytics. A comprehensive survey of the PM field is

given in [18]. The authors selectively covered the literature

from 1993 to 2018 in the field of PM. However, like other

analytics, PM also involves data. Meeting real-time latency

requirements depends on how data are being collected and

processed.

Authors in [13] discussed the role of data. However, data

reduction mechanisms are not considered. By searching the

data reduction mechanism specifically for IIoT systems,

it is clear there are few significant contributions. Therefore,

we extended our literature review to consider data reduction

techniques within EC in IoT and analytics within the EC

paradigm in IIoT systems. Therefore, this article builds on

the existing body of knowledge and reviews research efforts

made using emerging technologies such as EC and ML to

reduce the data as well as performing PM analytics in IIoT

systems.

What differentiates this article from related surveys is that

1) it puts forward the available data reduction mechanisms

which are very important for future IoT systems, especially

in the case of redundant sensing. 2) Unlike related surveys

which cover ML literature implementation from the what

perspective in EC, this article instead focuses on the where

perspective. It is important to unfold the location in the

IoT network where a particular ML framework could be
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TABLE 2. A table of acronyms used in this article.

employed. For instance, if the application demands imple-

mentation of ML on a sensor node, the ML algorithm would

need to be designed for low power devices.

In the next section, the focus is on data reduction

approaches that do not employML. The techniques discussed

are either implemented on a sensor node or an edge node.

III. TRADITIONAL APPROACHES

Since IIoT is new, not much attention has been given yet to

data reduction mechanisms. Therefore, the search criterion

for recent papers is expended from IIoT to the more general

IoT domain. However, as compared to general IoT, IIoT

applications have a variety of sensors andmay pushmore data

with higher velocity. In this section, traditional data reduction

approaches are discussed. The term traditional, in this article,

refers to those techniques which do not utilize ML for data

reduction, nor are tested for complex IoT analytics such

as PM. They are either implemented on a sensing device or the

next immediate node which could be a gateway node. Their

main purpose is to reduce the size of data that are forwarded

to the cloud for analysis. Table 3 provides a summary of the

reviewed approaches.

A. SAMPLING

Sampling refers to how frequently data points are taken

from the incoming data. For instance, it describes the fre-

quency sensed value(s) are being forwarded; every second,

every minute or even every hour. This is generally used

in applications having frequent redundant values. Constant

temperature monitoring is an example of this. In this case,

deduction or decision making can be done with a reduced

number of samples. In this subsection, a few recent sampling

techniques are reviewed.

ApproxIoT proposed in [40] works by applying reservoir

and random sampling on the data stream and associates

weights which indicate the significance of the data values at

an aggregator. The problem with such an approach is that the

multiplication of the weight with the data point eventually

changes the values. This aspect makes it unsuitable for appli-

cations that demand actual values or values in a particular

range. Unlike this approach, the technique proposed in [41],

does not alter the values. It is based on two subsets, maximum

and minimum values and the aggregating node uses those

subsets to obtain an approximated stream. Such an approach

maywork well for basic queries but has nomechanism to deal

with duplicate values which makes it unsuitable for some IoT

applications.

The above approaches are designed and tested on basic

queries such as average, sum, etc. However, the field of

analytics is now matured and advanced analytics are required

by today’s IoT systems. Particularly in IIoT, advanced ana-

lytics include PM in which failure or maintenance of some

equipment is detected/predicted ahead of time. Considering

such a complex case, the authors in [23] have proposed an

Adaptive moving average Window Based Sampling (AWBS)

algorithm to reduce the data. The window size varies based

on variation in the incoming data. When more variation,

window size is reduced to forward more values to the cloud

and vice versa. Using their proposed algorithm, they reduced

one of NASA’s datasets [42] to just 6.91% and passed it to

an unsupervised Anomaly Detection (AD) algorithm, Local

Outlier Factor (LOF) [21]. Results show that the reduced data

have almost similar AD performance as compared to a case

when the complete dataset is used or data are reduced using

the approach of [40], [41] to 28.95% and 20%, respectively.

B. DATA COMPRESSION

Data compression is an important data reduction approach

in which data are compressed before transmitting to the

cloud for further processing/analysis. The authors in [43]

proposed a compression approach that uses the edge stor-

age concept. It exploits existing compressed data points and

saves data either at an edge device or in the cloud without

inter-device communication at the edge. Similarly, another
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TABLE 3. A summary of data reduction methods used for different data types in an IoT architecture.

compression approach called Sensing-data Reconstruction

Algorithm under Intelligent-migration Strategy (RdS-ImS)

to handle the data streams considering the whole network

is proposed in [28]. The authors used the correlation of

time-series from different nodes and compressed the data

before forwarding. To achieve reliability, a re-transmission

mechanism from sensors to edge server is employed. In case

communication between an edge node and a sensor is not

possible, an edge server estimates the value with the help of

a predictive model and sends it to the cloud.

In [44], the authors proposed an energy-efficient approach

for compressing multivariate time-series data for IoT

devices. The approach tweaks the SZ compression algo-

rithm [22], originally proposed for compressing data of

high-performance computing applications. The sensor nodes

compress the data using SZ and forward to the edge node

which reconstructs the data. As the use case, they used the

data set from [45], to determine the stress level of the driver

given features such as electrocardiogram signals, respira-

tion and heart rate, to mention a few. Results show that a

DL model could effectively predict using compressed data

without compromising accuracy. Moreover, the results also

show the approach is efficient in terms of computation time

and energy consumption of a smart device. However, this

approach only works for floating-point values and is tested

on labelled data which are not always available in general IoT

applications [46].

However, given the heterogeneity of IoT data, compression

designed for one case often performs poorly in the other.

An adaptive approach for compression is proposed in [47].

The authors have proposed to equip an edge server with

several compression approaches and adapt the compression

according to the dataset. To determine which one to adopt,

they proposed to take a sample of the data and apply com-

pression approaches and select the one which offers a better

compression ratio and rate. However, how to select the sample

for comparing the approaches is not provided.Moreover, how

accurately it compressed the data needs to be evaluated.

C. DATA FUSION

Apart from compressing an individual data stream [28], there

is a technique called fusion in which data from various

streams are fused to decrease data redundancy, increase data

quality, improve reliability, handle missing data and more

coverage of the area being monitored [48].

In the research proposed in [49] data are first reduced

on the sensor node with the help of Lagrange Polyno-

mials and then sent to the edge server. In the second

stage, the edge server reconstructs the data and performs a

Kolmogorov–Smirnov test to reduce the data aggregated from

several neighbouring nodes and forwards to the cloud. Sim-

ilarly, in-networking data reduction using two-layer archi-

tecture on the edge is proposed in [50]. In the first layer,

the data are filtered based on the deviation between the actual

value and estimated value, removing the redundancy. For

estimating the value, Kalman filtering [51] is employed. This

layer passes the data to a Fusion layer which is responsible

for gathering data from several sensors, removing redun-

dancy, filling the missing data and improving reliability. The

quality of the data is still one of the challenges which data
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heterogeneity presents in IoT systems [52]. The importance

of data quality increases when the goal is to use reduced data

in ML models.

D. OBSERVATIONS ON TRADITIONAL SENSOR-CLOUD

ARCHITECTURE

Based on the reviewed research, there are some fundamental

observations on traditional Sensor-Cloud architecture which

are briefly described in this subsection.

Although Sensor-Cloud architecture reduces the data

being sent, stored and processed in the cloud [53], tradi-

tional approaches such as sampling, compression and fusion

are implemented mostly on the device (sensor) itself and

analytics are performed in the cloud. However, they are not

evaluated or tested for complex analytics such as PM. Even

performance of the AWBS [23] is tested only for detecting

abnormality of the data points. Therefore, data reduction at

the edge needs further exploration. The limited resources

of sensor nodes impact the implementation of sophisti-

cated reduction algorithms on them. For example, perceptual

importance point-based algorithms have complexity that a

sensor can barely handle [50]. The situation becomes more

severe with evolving applications of IoT which involve rich

data types such as images. Furthermore, developing real-time

analytics in the cloud is almost impossible to achieve.

Different IoT applications demand local analytics. For

instance, in the IIoT context, based on local analytics,

the decision to turn some equipment ON/OFF quickly in a

production environment can avoid a catastrophic situation.

Analytics depend on ML algorithms which are computa-

tionally expensive for some tiny sensors. Also, the energy

consumption of tiny sensors has been one of the important

concerns even before ML emerged in IoT. Thus, meeting a

real-time goal with sensor-cloud architecture seems ambi-

tious. This calls for EC which provides computation power

near the data source (sensors), eliminating the latency issues

of sensor-cloud architecture. Bringing EC into the architec-

ture creates further possibilities of hybrid architectures that

have been adopted in several research works recently. The

following section examine recent efforts to increase intelli-

gence at the edge through the use of ML. This can be done by

using ML to produce intelligent data sampling or conducting

ML/analytics on edge devices.

IV. EDGE COMPUTING BASED & MACHINE LEARNING

ENABLED APPROACHES

AI and ML are now fundamental pillars of modern IoT

applications. Recently, many efforts have been devoted to this

research area. Given the different training time complexity

of various ML models, the research community has explored

which ML models work best for different IoT applications

and contexts. However, not much attention is given to inves-

tigate the location where ML is most suitably implemented,

which is of paramount importance for a few reasons. Firstly,

training is a computationally expensive task for which the

cloud can offer resources. Secondly, moving massive data

volume to cloud storing the data and eventually training ML

models using that consumes a lot of resources. Thirdly, where

to deploy the prediction model is not consistent in every

application. For instance, in a hazardous production facility,

prediction on the device or the edge is more important than

in the cloud [66] to combat any latency issues.

Unfortunately, deploying ML in an IoT system faces chal-

lenges due to constraints of the IoT system. For exam-

ple, if ML is implemented in the cloud, real-time local

decision-making [67] is almost impossible to achieve due to

underlying limited bandwidth connectivity between sensing

nodes and the cloud. To address the problem, ML can be

deployed on the device. However, the limited computing

capacity of the sensing nodes is a major challenge. Therefore,

a hybrid architecture to implement computation intensive

tasks such as training on the cloud and deploying models for

prediction on the sensing node has emerged. However, this

approach also presents challenges in the case when models

require retraining based on new data. In this case, again all of

the new data need to be moved to the cloud, incurring costs

in terms of latency, energy consumption, and also the use of

network resources [68].

Recently, EC which offers computation by residing

between sensing nodes and the cloud has emerged. Some

of the techniques presented in section IIIutilize EC for data

reduction. However, research shows that EC which offers

more computation ability than sensing nodes can be exploited

to implement ML. Numerous research efforts have been pro-

posed using EC for different IoT applications including PM.

Therefore, this section reviews state-of-the-art of deploying

ML for data processing and PM analytics in an IoT and IIoT

network.

ML offers several advantages including accurate pre-

dictions, speed, automation and scalability [69]. Research

shows that ML can greatly help with monitoring systems in

IIoT [70]. Where on one hand complex DL models are being

developed, on the other hand, research on EC is accelerating

to providemore computing resources toDLmodels to support

more applications [71]. Various ready-to-useML frameworks

with EC are presented by the authors in [14]. Before ML

was used in IIoT, cognitive ability (to learn the environment)

of the machines was merely predefined heuristics. However,

sophisticated ML algorithms have enhanced cognitive ability

by finding patterns in the data and making predictions [30].

This section will unfold the benefits and drawbacks of

deploying ML models at different locations (device, cloud,

edge or a hybrid) in an IoT network. Table 4 shows a summary

of ML-based approaches. In particular, it reveals different

aspects of particular approaches. Most importantly, it high-

lights the locations where specific parts of the implementa-

tion are performed such as pre-processing (also includes data

reduction mechanisms, if used), training of the model and

where the final analytics are performed. Figure 2 depicts the

three-layer standard architecture of an IIoT employing EC.

It shows that the edge layer which lies between the device and

the cloud is a suitable location for deploying ML, therefore
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FIGURE 2. An architecture based on [39], having three layers namely device, edge and cloud for PM in IIoT.

provides opportunities to implement the frameworks using

hybrid architectures.

A. TECHNIQUES USING DEVICE-EDGE ARCHITECTURE

In this section, techniques that rely on sensing nodes and edge

nodes are reviewed.

In [80], authors considered the latency requirements in a

proposed hybrid architecture. Their proposed hybrid archi-

tecture consists of an edge server and sensing device. Similar

to [26] and [66], they also utilise image processing as a use

case. Image data can also be converted to time-series text data

with the help of EC. For instance, in [88], the edge server

first performs pre-processing on the fetched image data and

transforms it into text-based time-series data. Once the data

are ready, they are passed to the Long Short-Term Memory

(LSTM). The second component, as well as the novelty of

the approach, is the parameter tuning of the LSTM through

Particle Swarm Optimization (PSO).

Sometimes rather than using one model, several models

are ensembled to achieve more accuracy. The authors in [83]

proposed to deploy a lightweight ML algorithm, Light Gra-

dient Boosting Machine (GBM), on the edge nodes, how-

ever, DL is deployed on the master nodes which are edge

routers. One of the benefits of the proposed approach is that

raw data are not pushed to the master nodes. Instead, Light

GBM learns the features from the raw data and passes the

learned features to the master node which further increases

the accuracy with more computations (using DL). However,

the architecture assumes that an edge router can be used to

deploy computationally expensive DL models. To implement

such an approach, reduced data can help in retraining DL

models on the edge node without connecting to the cloud.

Overall, ensemble approaches consume more resources as

several models are trained.

An alternative approach to ensemble models is online

training in which a single model is trained iteratively. Based

on this idea, a big data cleaning technique, called Mobile

Data Cleaning Model (MDCM) which utilises EC, is pro-

posed in [24]. On the edge server, multidimensional data

are cleaned with the help of first employing Angle Based

Outlier Detection (ABOD) [25] and then training the ML

model. However, MDCM outperformed the compared tra-

ditional cleaning model and ABOD, which are the baseline

techniques. MDCM has used ML, so it needs to be compared

with techniques that also useML at the edge. Such techniques

reduce data at the edge node, however, local transmissions

from sensor nodes to edge nodes are not reduced.

To reduce the volume of data transmitted from sensor

nodes to the edge server, in [87] authors have proposed to

implement ML on the sensor node. The basic idea is to train

the ML model on the computationally powerful device (in

experiments they used the edge but argued that the cloud can

be used too) and push the model to a sensor node. When

a new value is sensed, it is passed to the ML model which

predicts its label, which is only forwarded to the edge node if

it has not been forwarded before. Comparison of differentML

algorithm including Linear Discriminant Analysis (LDA),

Quadratic Discriminant Analysis (QDA), Gaussian Naive
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Bayes (GNB), Support Vector Machines (SVM), Decision

Tree (DT) and Random Forest (RF). Results showed that

SVM outperformed all of mentioned in reducing the data.

Such an approach may work well when a single value makes

a difference. However, similar to RdS-ImS [28], it does not

support the use cases when rather than an individual value,

a sequence of values (also called a pattern) is more important,

such as IIoT data [72].

Another approach with the same goal as [87], has been

proposed in [74]. The authors used the importance of the

data as a measure to limit the transmission from sensors

to the edge server. Two feature selection methods, namely

Impurity and Perturb, gauge the importance of the block of

data. The already trained ML model, deployed on the edge

server, predicts the spatial information (from which sensor

to collect) for the next slot of the time based on already

aggregated data. The sensor node actively communicates with

the edge server to determine if the next block is worth for-

warding. However, this approach works on a distributed level

i.e., data from which particular sensor are more important

in the next time slot. More specifically it does not reduce

the data at the stream level (being pushed by one sensor

constantly).

In [73], the authors presented two case studies of novelty

detection on the edge of IIoT. In the first case, the condition

of an electric motor placed on a kitchen hood (fan extractor

to clean the air) is monitored. A microphone detects the

vibrational signals and sends them to an IoT gateway where

an ML classifier is deployed. Each classifier (or resulting

label) has a novelty detection algorithm that is executed,

and a novelty score is calculated. The second use case is

fault detection of a water filtration plant. LOF [21] is used

as an AD algorithm. These algorithms are trained on large

datasets before detecting possible anomalous behaviour. The

performance of these algorithms needs to be explored when

reduced datasets are used.

Based on the discussion, sensor nodes are still part of

most frameworks implementation. However, since they have

reduced computation resources, they have not been used for

computationally expensive tasks such as training. Although

they have been used for analytics in some cases, they are

mostly used for pre-processing tasks or compressing the data

as depicted in Table 3.

1) OBSERVATIONS ON DEVICE-EDGE ARCHITECTURE

Frameworks designed on this architecture have several ben-

efits. First, the architecture requires fewer communication

resources as well as less burden on cloud resources. Second,

if designed to work independently from the cloud, techniques

can even work when there is no connection at all [66].

Third, the edge offers more context awareness as compared

to cloud-based systems [19]. Fourth, with this architecture,

meeting real-time requirement is possible. In the IIoT con-

text, for example, real-time AD is very important to avoid a

catastrophic situation. Fifth, it alsomeets security and privacy

concerns as edge locally processes data.

While using a Device-Edge architecture decreases depen-

dency on the cloud, it raises a few concerns which need

to be considered if adopting this architecture for designing

frameworks. Firstly, inherited from traditional sensor-cloud

architecture, it also uses resources of sensor nodes for

implementation. Secondly, even though the edge server is

there and sensor nodes can offload computationally expen-

sive tasks, offloading is still not matured and is being

explored [90]–[92]. Thirdly, even when a reduction and ana-

lytics framework can be implemented using Device-Edge

architecture, some of the data still need to be sent to the cloud.

This becomes more important for IIoT where an organization

can have production facilities in different locations and data

from all facilities are required to have a broad picture of

services.

To handle highly distributed scenarios in which sensing

devices are located at different locations, generally, fusion is

used. Research shows that the fusion of data from sensors

deployed at different locations can impact the accuracy of

further analysis or predictions [48] because fusion reduces

data. Authors in [93] proposed a three-level architecture for

the healthcare industry. The amount of processing of data

at the bottom layer where data are being sensed is less than

the middle layer where communication nodes are processing

data. Similarly, a global aggregator in the cloud which has

more computation power is processing more data than the

middle layer from different locations.

Finally, even though an edge node has more resources

than a sensor node, it still provides far less resources than

the cloud. Research to deploy computationally expensive DL

models on edge nodes is still being conducted [94]–[96].

This calls for another potential architecture that involves the

edge and the cloud for implementation. The Edge-Cloud

architecture is reviewed in the next section.

B. TECHNIQUES USING EDGE-CLOUD ARCHITECTURE

This section reviews research efforts in which edge devices

serve the role of middle-ware. More specifically, on one side,

an edge device is connected to sensor nodes that collect data.

On the other side, the edge device is connected to the cloud.

Figure 2 depicts the location of the Edge as a middle entity.

This section reviews the approaches that have deployed ML

partially on the cloud and the edge server.

Authors in [66] proposed to monitor the real-time data

from sensors deployed on equipment in oil/petroleum wells.

The goal is to use ML to monitor the equipment performance

especially in cases where there is no connectivity available

between the site and the back-end cloud, thereby solely

depending on the edge. The edge gateway first retrieves sen-

sor data, runs analytics, reports abnormal behaviour and peri-

odically (subject to connectivity) connects with the back-end

cloud to update the ML model. The approach uses an ensem-

bler that contains different techniques such as Convolutional

Neural Network (CNN), Siamese Neural Network (SNN),

Autoendcoder Neural Network (ANN) and Histogram of Ori-

ented Gradients (HOG). Once all models are trained in the
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cloud, only one model is pushed to the edge gateway-to save

its resources. Furthermore, the approach uses the cloud to

pre-process the data which are then used to train ML models

in the cloud. Thus, the initial data need to be pushed to the

back-end to train the model.

When computing servers are deployed on the edge for

real-time data processing, accuracy is also of paramount

importance. Based on this concept, the authors in [26] pro-

posed Accuracy Maximization offloading with Latency Con-

straints (AMLC) as an intelligent edge-cloud approach and a

new metric called service accuracy. The overall computation

offloading, and service involves the following three steps.

First, IoT devices estimate the accuracy that edge servers can

provide based on ML models deployed on them. The edge

server having more accuracy of the ML model is prioritized.

The second step involves the estimation of the delay which is

involved in offloading the computation task. Then in the final

step, when a mobile/sensor device is aware of the delays and

accuracy of all the servers (edge + cloud), it sorts the servers

in descending order based on accuracy and selects the first

one. Similar to [66], it also works on image-based data.

For sensory time-series data, two techniques with the same

use case (packaging industry) are proposed in [30] and [81].

In the former, the authors proposed cognitive ability and DL

for better knowledge discovery and decision making in IIoT.

Their framework is called Deep Reinforcement Learning

Dynamic Adaptive Planning (DRL-DAP) has three layers

including perception, transmission, and application. In the

perception layer, data are collected from the devices using

a RESTful application programming interface at the edge

nodes. The transmission layer is responsible for using given

technologies such as cellular, long-range wide area network

and long-term evolution to transmit the data. The cognitive

ability which helps in eradicating data ambiguity and building

data semantics are also part of this layer. In the last layer,

ML optimization models are deployed which help to take the

intelligent decision of the production setting beingmonitored.

In [81], the authors proposed Edge-AI which is implemented

in a microcontroller as an edge device. Their purpose is to

classify vibrational data of sensors placed on a power-train,

used in the packaging industry. In both techniques, the ML

model was trained on a massive amount of data collected and

stored in the cloud earlier. However, in both techniques, EC is

used for pre-processing and data analytics.

Techniques to monitor electric equipment have also been

proposed. A distributed architecture to monitor an IIoT pro-

cess is proposed in [82]. Temperature sensors are deployed

at different locations of the transformer for measuring

time-series temperature values and inferring the level of oil

present in the transformer. An agent application gets the data

from the IoT devices and makes decisions with the given

knowledge. An agent also has a local data repository where

results during the computation are saved. However, data are

also forwarded to a back-end where an ML model is trained

and updated. Similarly, in [84], the health of an electric

induction motor is monitored by employing an accelerometer

to collect vibrational data. The edge node first pre-processes

the data by taking the temporal and spectral features and

then passed to a CNN model which is also deployed on

the edge node itself to classify if the object is working

normally or faulty. The authors proposed to integrate pre-

diction at the edge node to a marine vessel alarm system

in case fault is predicted. Likewise, a solution to monitor

the bearing health within a machine is proposed in [97] by

using a traditional cloud-edge architecture. Different sensors

such as temperature, rotation speed, vibration and humidity

monitor the relevant parameters. The edge serves the purpose

of initial data processing and forwards to the cloud where an

ML algorithm predicts the future values and thus the possible

equipment failure. However, the solution does not disclose

how the edge server performs processing on data streams.

To this end, in [98] a framework called SERENA is

proposed for PM using a hybrid cloud-edge computing

approach. The sensor nodes send data to an edge gateway

where statistical features of the raw data such as average,

maximum, and minimum are calculated. Such data are called

smart data. The model building module, based on historical

smart data, generates the model. This AI/ML model is then

used to predict the incoming new data which eventually helps

in detecting the abnormal data and thus possible failures. It is

worth noting that the ML model building and training take

place in the cloud and then the model is pushed to the edge

gateway.

The techniques described so far considered a fixed edge

device. However, the authors in [27] proposed Supervised

Learning of Genetic Tracking (SLGT) in an edge architec-

ture(fixed + mobile) for an industrial park where resources

are moved from the production phase to the next using

trolleys. The architecture has three parts, namely front-end,

near-end and far-end. As the name suggests, the front-end

deals with the actuators and sensors deployed on the equip-

ment such as trolleys moving logistics. EC is deployed in the

near-end part in a divided way. To be specific, a fixed edge

gateway passively receives the signal transmitted using Blue-

tooth low energy technology and performs pre-processing

and forwards data to the back-end cloud. In addition to the

fixed edge gateway, there is a mobile edge gateway that

actively listens to the transmitted signal. A K-Nearest Neigh-

bors (KNN) algorithm estimates the location zone where a

trolley may be at any given time.

Support from network devices has also been investigated.

Authors in [85] proposed condition monitoring of an indus-

trial motor. They proposed to take the electric current and

vibrational data from sensors, pre-process at the edge and

send only the frequency spectra to the cloud. They assumed

that network devices support storing of the raw data, which is

not possible in many cases.

Based on the discussion and the summary given in Table 4,

it is clear that DL algorithms are often used within IIoT. This

comes from the fact that DL models are generally trained

on the bulk of data and provide high accuracy. A review on

deploying DL models on the edge is given in [71]. However,
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TABLE 4. A summary of EC frameworks and associated ML algorithms for prediction use cases.

using reduced data to train these models requires further

exploration. If they do not provide high accuracy, other mod-

els need to be considered or designed. Furthermore, it is also

clear that for data reduction, the edge or the device is mostly

exploited. However, given the fact that initial training requires

much computation, the cloud is still being used in most of the

proposed techniques for training the models. In cases where

a dedicated edge node is not available, network devices can

be exploited too. For instance, authors in [78] describe an

architecture calledUrbanEdge. They proposed to use network

devices such as routers to serve as edge nodes that pre-process

the data and forward them to the back-end cloud where DL is

used for PM analytics.

The techniques reviewed so far do not learn from posi-

tive or negative changes in the environment in which they

operate. Fortunately, advances in ML have made it possible

to adapt learning based on the environment. The type of ML

which fits in such a scenario is Reinforcement Learning (RL).

In RL, a learning agent takes an action in a given environment.

The environment assigns a reward to the agent based on the

outcome of actions. Agent repetitively acts to maximize the

reward, which in other terms means the agent has learned

the environment well and knows what action is correct to

be taken in the next step. Authors in [70] have proposed

to gather IIoT data using an edge node (called a gateway

node) which forwards to the cloud where a well-known RL

algorithm, called Q-Learning(QL), is used to detect failures.

The RL algorithm is responsible for detecting the safety of the

equipment in the factory. It generates a detection policy with

high accuracy to ensure the safety of the equipment. Another

approach based on RL is proposed in [89] for a grid sorter

in IIoT. A grid sorter is a device that can move an object

49364 VOLUME 9, 2021



T. Hafeez et al.: Edge Intelligence for Data Handling and PM in IIOT

in four directions e.g., left, right, up and down. The local

edge node forwards sensor values to the cloud which trains

a global model and returns the model to the edge in a factory.

Each edge node in every factory then retrains an adaptive

model based on local factory policy.When a grid sortermoves

objects, the agent keeps learning in which direction a grid

sorter can accurately move the objects.

RL has also helped in managing network resources in IIoT.

Authors in [99] leveraged RL to assign actions to networking

and control systems in a combined manner under a dynamic

IIoT environment. More specifically, based on the data for-

warded from sensing nodes about the system, an extended

Kalman filter estimates a system’s state which is forwarded to

an RL based agent which decides commands for the network-

ing and control. For the networking, it adjusts the modulation

type, and for control systems, it tunes the sampling rate of

the sensors (frequency of observations). Similarly in [100],

the authors leveraged RL in combination with blockchain

to manage resources of a distributed Software-Defined Net-

work(SDN) framework for IIoT. In this, RL helps in optimiz-

ing computation resources which are shared by cryptography

tasks of a blockchain-based distributed SDN network, and

non-cryptography tasks. To manage the IoT network of smart

energy management, RL is used in combination with EC is

in [86]. A Deep Neural Network(DNN) model is trained in

the cloud and QL is employed on the edge node. Devices

from smart building send scheduling tasks to an RL agent at

the edge server which makes decisions locally and if further

training is required, forwards to the DNNmodel in the cloud.

Authors in [101] provide a comprehensive review of how RL

can be used in blockchain-based IIoT.

1) OBSERVATIONS ON EDGE-CLOUD ARCHITECTURE

Most of the frameworks reviewed in this article followed the

Edge-Cloud architecture. This is also evident from Table 4.

Frameworks proposed using this architecture have their

advantages. First, they can reap the benefits of both edge and

cloud resources. This means that they can support more rich

data types such as images. They can also train computation-

ally expensive models such as DL, thanks to the abundance of

cloud resources. Second, in this case, no burden on tiny sensor

nodes is required as all the computation is either performed on

the edge node or offloaded to the cloud. Third, the scalability

of the system is easy as applications are globally managed in

the cloud and adding another geographical site with the help

of an edge node requires less effort. This is also important

in the PM use case for IIoT as production/manufacturing

facilities can be extended.

Although Edge-Cloud architecture addresses some of the

concerns of Sensor-Cloud and Device-Edge architectures,

it also presents a few concerns which can play an important

role while designing frameworks. Firstly, deciding which

part of the application needs to run where requires careful

consideration. To be specific, part of the framework deployed

on the edge node will meet the real-time requirement and

those deployed in the cloud will leverage more computational

power. Secondly, it also depends on the underlying networks

which connect the edge and the cloud. Lastly, as data privacy

and security have been hindering the adoption of IIoT [102],

not all production facilities will be willing to store confi-

dential data in the cloud. However, these concerns can be

addressed to some extent in the IIoT context. For example,

in IIoT, dividing an implementation based on analytics (real-

time alarms, PM analytics) can help. The second challenge

can be addressed by exploiting the network information such

as congestion. A potential IIoT architecture proposed in this

article uses these concepts and is discussed in the section V.

C. FEDERATED LEARNING AND IIoT

FL is another computing paradigm that was recently pro-

posed by Google [32]. Rather than storing and training ML

models on a centralized location (cloud), FL is used to train

local models on the edge/end devices (called clients) where

raw data are available. The clients then upload their model

updates to a central server which computes a global model

using a Federated Averaging algorithm. The new global

model is then shared with all clients. This approach serves

two purposes. Firstly, it meets privacy requirements because

raw data are not leaving the source. Secondly, it minimizes

the communication burden as only the model updates are

forwarded, not the raw data. The approach relies on having

sufficient computation resources to train models.

Since FL was proposed, efforts have been made to apply

it in IIoT. For instance, for AD, authors in [103] used an FL

approach to train an LSTM model for detecting the anoma-

lous behaviour of a sensor in a smart building. Similarly,

research by authors in [104] involved detecting anomalies in

IIoT scenarios. In this case, an AD model is collaboratively

trained on edge devices which is generalized later. Unlike the

work in [103], the approach also captured the most important

features, with an attention-based CNN model. These features

are then passed to LSTMwhich predicts the future time-series

data. Moreover, the approach also provides a mechanism

to limit the number of Stochastic Gradient Descent (SGD)

updates which the FL client can send to the server, improving

communication efficiency. However, when training with FL,

parameter selection for DL networks requires attention. For

example, the authors of [105] made a specific effort towards

such optimization using a PSO approach.

For the aeronautical industry, authors in [106], have com-

bined FL with active learning. A DT model is trained on

historic data of an aircraft. Then, during the flight, a local

model is trained. During training, client nodes obtain labels

for uncertain data from the server while maintaining the

communication budget. In the air conditioning industry work

has been done to use FL and blockchain to detect device

failure in IIoT [107]. To alleviate the issue of class imbal-

ance, a distance-based weighted federated averaging is also

proposed. An incentive mechanism, to encourage clients to

participate in the learning process is also provided which

takes into account the size of the client data and class (nor-

mal or abnormal) of that data. RaspberryPi is used as an
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edge node which is equipped with two ML models, logistic

regression and neural network. This technique is not based

on FL as initially proposed by Google where raw data do

not leave the source. However, such an idea where there is

a middle entity in form of an edge server between sensing

devices and the cloud is also gaining attention. The research

work proposed in [108] is another effort based on a new

hierarchical version of FL. In this, the edge serves as a local

aggregator and the cloud as a global aggregator. An edge node

aggregates models from sensing nodes and forwards to the

global aggregator. Therefore, the edge node serves as an FL

server for sensing nodes and as an FL client to the global

aggregator.

FL has also been used to increase security and for pre-

venting IIoT from attacks. For instance, authors in [69] have

used FL to avoid Denial of Service Attacks (DDoS) in IIoT.

Models are trained locally and edge nodes contain detection

and analyzing modules for DDoS. These modules have traffic

policies and any network traffic must pass them. In case

an attack is detected, it is blocked and an update is sent to

the cloud. Similarly, authors in [109] proposed an FL based

approach to defend against an attack on DNN models in IIoT

while others have used FL to detect malware in applications

of IIoT [110].

While FL promises privacy, it also faces security chal-

lenges. For instance, research shows that parameter sharing

with the server is sufficient for an attacker to infer knowl-

edge of underlying data. Moreover, since the models are

being trained locally, an adversary can attack local mod-

els on a client, eventually affecting the global model at

the server [111]. Therefore, several efforts are also made

to address these issues. For instance, research work done

in [112] is specifically focused on the idea of data mining

from several sources while sharing the data in a cipher state.

The authors claim that using their approach, a client can share

the data in cipher state with the server and the server can train

the model using data in cipher state. Similarly, the authors

of [111] provide a secure gradient aggregation framework.

The authors in [113], [114] provide a comprehensive survey

on the security and privacy of FL.

1) OBSERVATIONS ON FL

Although FL has gained significant attention since it was

proposed, some challenges are yet to be fully resolved. These

are discussed below.

Research shows that a very large number of model updates

between edge nodes and server could result in failure of

model convergence [115]. In IIoT scenario, in particular,

a scalability issue can arise if every IoT sensing node partic-

ipates as a learning client. Furthermore, Google’s Federated

Average algorithm does not take into account heterogeneity

in the data which exists in industrial data e.g., size and

also the distribution of datasets on each edge device could

differ [107]. Moreover, sometimes environmental conditions

are heterogeneous which have a direct impact on data being

recorded. In such a case, a local model update could report

negative knowledge to the global aggregator as FL is based

on data similarity of the participating clients [116]. However,

a new version of FL inwhich a local server aggregates the data

from IoT nodes and serves as a client to a global aggregator

can help in overcoming such issues [108].

In FL, two further problemsmay arise. Firstly, when differ-

ent nodes have heterogeneity in terms of quantity and quality

of the data, it is difficult to decide the weight or importance

to assign to an update from a particular node. Secondly,

the convergence of the global model depends on the slowest

node in the network. In the IIoT context, a sensing node

can have poor network conditions which results in a delay

in getting updates. In such as case, a naive node dropping

approach can have a detrimental effect on the accuracy of the

global model given the situation that a model of the slower

node was trained on more or better data samples. In this

direction, work needs to done, although some contributions

are emerging [117], [118].

Finally, limited resources to deploy DL models on a

device, unreliability of wireless channels during frequent

client-server updates and the trust of the participating

clients to share the trained models with the cloud limit

the possible applications of FL [119]. Moreover, designing

incentive-based FL frameworks to encourage clients to par-

ticipate in the learning process is still a challenge [120].

Furthermore, FL is developed for only DL as it takes SGD

updates from distributed clients. For using other models,

it requires modifications [106]. Based on these observations,

deploying DL models on tiny sensors in IIoT seems an inap-

propriate approach. However, the Edge-Cloud architecture

can be leveraged to transmit data from sensors to the edge

node (where a DL model can be trained) and pass on the

model update to the cloud.

While we reviewed some of the state-of-the-art of FL

based contributions, and more have been discussed in

[121], [122], it is worth noting that FL has not been studied

for the PM use case in IIoT except the contribution of authors

in [123] in which they compared two algorithms with the

FL and non-FL. They revealed that FL can preserve data

locally and at the same time achieve similar performance to a

traditional non-FL approach when an ML model is trained in

a centralized manner. However, more work needs to be done

to realize PM using FL in IIoT.

V. CHALLENGES & FUTURE DIRECTIONS

On one hand, given the heterogeneity of data types of

IoT systems, one universal data reduction approach seems

an infeasible option. On the other hand, an applica-

tion or scenario-specific data reduction approach is also

inconvenient. This is especially true given the growing variety

of IoT domains (e.g. smart cities, agriculture, health and envi-

ronment monitoring). A naive approach could be to design

an algorithm based on data types. However, different appli-

cations having the same data type generate data at different

velocity and volume. Therefore, a more realistic approach

would be to design data reduction approaches based on data
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types and using EC and ML technologies. When reducing

the data, considering the accuracy of the prediction model is

important.

Based on the different techniques reviewed in the previous

section, the role of EC is important for the future of IIoT sys-

tems. The underlying reason is the location and computation

ability of the edge. Since the edge is very close to the data

source, the data do not need to be transmitted from the sensor

to the cloud which adds latency and cost to the system. With

EC, data will be processed in near real-time. The computation

ability of edge devices means they provide more computation

resources than the sensor nodes. This results in shifting more

computation burden of the ML algorithms from the cloud to

the edge. One such example is online/recurring training of the

ML models based on new data.

Retraining is especially important when observations from

the machine being monitored deteriorate but are less likely

to cause it to fail. In this case, new observations which are

still normal would need to be passed to ML for retraining.

New ML algorithms can be designed which can be retrained

based on environmental change. However, it can be costly

(computation and energy) if all of the data are passed for

retraining. This calls for data reduction approaches which

can help in reducing the data size before passing it to the

retraining phase. It would incur less computation and energy

consumption while maintaining the latency requirement of

PM analytics.

Research on data reduction approaches, based on the accu-

racy of the MLmodels, especially for complex analytics such

as PM, are needed. Data reduction is yet to be explored given

the fact that even state-of-the-art data reduction techniques

have tested performance on the reduced data for very basic

queries and do not support complex analytics such as PM.

The accuracy of the models trained on reduced data should

also be a concern when optimizing energy consumption and

latency. This is more important in DL approaches which

require more data to be trained on.We have seen from Table 4

that most of the time DL models are used for prediction.

Moreover, the transmission cost can be reduced if a data

reduction mechanism is deployed on the device itself. The

literature shows that contextual information learning could

be paramount for improving the performance of IoT systems

[124], [125]. In IIoT, an approach proposed in [126] is an

approach that learns context based on energy, backlog and

conflict of participating nodes. Similarly, the authors of [127]

proposed learning for task offloading in low latency and

ultra-reliable communication scenarios. Therefore, in future,

RL can greatly help in IIoT while leveraging EC.

Based on the reviewed PM work, it is evident that there

is no de-facto architecture to be followed. From Table 4,

different researchers have exploited different network enti-

ties for deploying frameworks for PM based on the appli-

cation. This shows that the field has not fully matured and

demands further exploration. The emergence of EC and an

ability to deploy ML algorithms on the edge (sensors and

EC), has also provided an opportunity. However, it is still

unclear what is the best practice on where to implement

the different parts of the application. Firstly, since most

of the time DL is used, which requires large amounts of

data for training, not much attention is given to other algo-

rithms. Even FL only supports DL algorithms. Using other

algorithms requires further efforts. However, if models can

be trained on reduced data, then data reduction approaches

would be helpful. Secondly, data types also demand atten-

tion. If there are observations from sensors or images,

research needs to be done to determine which ML algo-

rithms can produce the best results and where they can be

implemented.

We propose an abstract level architecture of PM for IIoT,

shown in Figure 3. This is based on the de-facto three-

layer architecture involving EC. The three layers are Device

Layer, Edge Layer, and Cloud Layer. Since this is based on

Edge-Cloud architecture, the device layer merely consists of

IoT devices that are forwarding data to the edge layer. For

example, it can be assumed they are placed in a production

environment to monitor some equipment. The cloud layer is

responsible for detailed data analytics and defining accuracy

constraints. However, the role of the edge layer is worth

describing here.

FIGURE 3. A novel IIoT architecture for local anomaly detection and PM
cloud analytics.

The core of the edge layer is a data reduction module.

This module 1) reduces data, 2) passes data to local analytics

such as AD, and 3) forwards data to the cloud for detailed

and long-term analytics such as PM. For intelligent data

reduction, this module leverages certain information. Firstly,

it gets information about the underlying network such as con-

gestion from connected network nodes. For example, when

there is more congestion in the network, a smaller number

of data samples can be forwarded to the cloud system and

similarly when network conditions improve, a greater number

of samples can be forwarded. Exploiting network devices for

data reduction has been proposed already [50], [78]. Sec-

ondly, the data reduction module gets accuracy constraints

from the cloud for the phenomena under observation. When

greater accuracy is required in the cloud, more samples can

be forwarded and vice versa. However, a more intelligent
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decision to adopt data reduction would be to use both PM

accuracy and network information.

When reducing data, local retraining on reduced data is

also possible. For instance, when the data reduction module

is extracting a greater number of samples to forward to the

cloud for the PM model, data can also be passed to retrain a

local AD model to improve its accuracy. Retraining requires

storing data at the edge which has also been proposed by

authors in [128]. A retrained local model can be pushed to

the cloud and can be integrated with a PM model to further

improve PM accuracy.

VI. CONCLUSION

This article presents data processing and PM analytics in

the IIoT context. Firstly, simple data reduction approaches

which do not use ML including sampling, compression, and

fusion, are discussed. Secondly, frameworks for data process-

ing proposed specifically for IIoT are presented. The IIoT

architecture is dissected and presented. In particular, three

categories are discussed; 1) Device and Edge 2) Edge and

Cloud 3) FL. In these approaches, we discuss what part of

the frameworks is being implemented in which location of

an IoT system. Finally, some challenges and future directions

are presented. In this, a new architecture for implementing

data reduction in conjunction with PM analytic is proposed.

The proposed architecture is based on a three-layer EC archi-

tecture. It proposes to exploit the edge for data reduction,

dynamic local short term decisions and forwarding data to

the cloud for detailed data analysis and long-term decisions.
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