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Abstract

In this paper, we propose a novel edge-labeling graph

neural network (EGNN), which adapts a deep neural net-

work on the edge-labeling graph, for few-shot learning.

The previous graph neural network (GNN) approaches in

few-shot learning have been based on the node-labeling

framework, which implicitly models the intra-cluster sim-

ilarity and the inter-cluster dissimilarity. In contrast, the

proposed EGNN learns to predict the edge-labels rather

than the node-labels on the graph that enables the evolution

of an explicit clustering by iteratively updating the edge-

labels with direct exploitation of both intra-cluster similar-

ity and the inter-cluster dissimilarity. It is also well suited

for performing on various numbers of classes without re-

training, and can be easily extended to perform a transduc-

tive inference. The parameters of the EGNN are learned

by episodic training with an edge-labeling loss to obtain a

well-generalizable model for unseen low-data problem. On

both of the supervised and semi-supervised few-shot image

classification tasks with two benchmark datasets, the pro-

posed EGNN significantly improves the performances over

the existing GNNs.

1. Introduction

A lot of interest in meta-learning [1] has been re-

cently arisen in various areas including especially task-

generalization problems such as few-shot learning [2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], learn-to-learn [16, 17,

18], non-stationary reinforcement learning[19, 20, 21], and

continual learning [22, 23]. Among these meta-learning

problems, few-shot leaning aims to automatically and ef-

ficiently solve new tasks with few labeled data based on

knowledge obtained from previous experiences. This is in
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Figure 1: Alternative node and edge feature update in

EGNN with edge-labeling for few-shot learning

contrast to traditional (deep) learning methods that highly

rely on large amounts of labeled data and cumbersome man-

ual tuning to solve a single task.

Recently, there has also been growing interest in graph

neural networks (GNNs) to handle rich relational structures

on data with deep neural networks [24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34]. GNNs iteratively perform a fea-

ture aggregation from neighbors by message passing, and

therefore can express complex interactions among data in-

stances. Since few-shot learning algorithms have shown

to require full exploitation of the relationships between a

support set and a query [2, 3, 5, 10, 11], the use of GNNs

can naturally have the great potential to solve the few-shot

learning problem. A few approaches that have explored

GNNs for few-shot learning have been recently proposed

[6, 12]. Specifically, given a new task with its few-shot sup-

port set, Garcia and Bruna [6] proposed to first construct a

graph where all examples of the support set and a query are

densely connected. Each input node is represented by the

embedding feature (e.g. an output of a convolutional neural

network) and the given label information (e.g. one-hot en-

coded label). Then, it classifies the unlabeled query by iter-

atively updating node features from neighborhood aggrega-

tion. Liu et al. [12] proposed a transductive propagation net-

work (TPN) on the node features obtained from a deep neu-
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ral network. At test-time, it iteratively propagates one-hot

encoded labels over the entire support and query instances

as a whole with a common graph parameter set. Here, it

is noted that the above previous GNN approaches in few-

shot learning have been mainly based on the node-labeling

framework, which implicitly models the intra-cluster simi-

larity and inter-cluster dissimilarity.

On the contrary, the edge-labeling framework is able to

explicitly perform the clustering with representation learn-

ing and metric learning, and thus it is intuitively a more con-

ducive framework for inferring a query association to an ex-

isting support clusters. Furthermore, it does not require the

pre-specified number of clusters (e.g. class-cardinality or

ways) while the node-labeling framework has to separately

train the models according to each number of clusters. The

explicit utilization of edge-labeling which indicates whether

the associated two nodes belong to the same cluster (class)

have been previously adapted in the naive (hyper) graphs for

correlation clustering [35] and the GNNs for citation net-

works or dynamical systems [36, 37], but never applied to

a graph for few-shot learning. Therefore, in this paper, we

propose an edge-labeling GNN (EGNN) for few-shot lean-

ing, especially on the task of few-shot classification.

The proposed EGNN consists of a number of layers

in which each layer is composed of a node-update block

and an edge-update block. Specifically, across layers, the

EGNN not only updates the node features but also ex-

plicitly adjusts the edge features, which reflect the edge-

labels of the two connected node pairs and directly exploit

both the intra-cluster similarity and inter-cluster dissimilar-

ity. As shown in Figure 1, after a number of alternative

node and edge feature updates, the edge-label prediction

can be obtained from the final edge feature. The edge loss

is then computed to update the parameters of EGNN with a

well-known meta-learning strategy, called episodic training

[2, 9]. The EGNN is naturally able to perform a transduc-

tive inference to predict all test (query) samples at once as a

whole, and this has shown more robust predictions in most

cases when a few labeled training samples are provided. In

addition, the edge-labeling framework in the EGNN enables

to handle various numbers of classes without remodeling or

retraining. We will show by means of experimental results

on two benchmark few-shot image classification datasets

that the EGNN outperforms other few-shot learning algo-

rithms including the existing GNNs in both supervised and

semi-supervised cases.

Our main contributions can be summarized as follows:

• The EGNN is first proposed for few-shot learning with

iteratively updating edge-labels with exploitation of

both intra-cluster similarity and inter-cluster dissimi-

larity. It is also able to be well suited for performing

on various numbers of classes without retraining.

• It consists of a number of layers in which each layer is

composed of a node-update block and an edge-update

block where the corresponding parameters are esti-

mated under the episodic training framework.

• Both of the transductive and non-transductive learning

or inference are investigated with the proposed EGNN.

• On both of the supervised and semi-supervised few-

shot image classification tasks with two benchmark

datasets, the proposed EGNN significantly improves

the performances over the existing GNNs. Addition-

ally, several ablation experiments show the benefits

from the explicit clustering as well as the separate uti-

lization of intra-cluster similarity and inter-cluster dis-

similarity.

2. Related works

Graph Neural Network Graph neural networks were

first proposed to directly process graph structured data with

neural networks as of form of recurrent neural networks

[28, 29]. Li et al. [31] further extended it with gated re-

current units and modern optimization techniques. Graph

neural networks mainly do representation learning with a

neighborhood aggregation framework that the node features

are computed by recursively aggregating and transforming

features of neighboring nodes. Generalized convolution

based propagation rules also have been directly applied to

graphs [34, 38, 39], and Kipf and Welling [30] especially

applied it to semi-supervised learning on graph-structured

data with scalability. A few approaches [6, 12] have ex-

plored GNNs for few-shot learning and are based on the

node-labeling framework.

Edge-Labeling Graph Correlation clustering (CC) is a

graph-partitioning algorithm [40] that infers the edge la-

bels of the graph by simultaneously maximizing intra-

cluster similarity and inter-cluster dissimilarity. Finley and

Joachims [41] considered a framework that uses structured

support vector machine in CC for noun-phrase clustering

and news article clustering. Taskar [42] derived a max-

margin formulation for learning the edge scores in CC for

producing two different segmentations of a single image.

Kim et al. [35] explored a higher-order CC over a hy-

pergraph for task-specific image segmentation. The atten-

tion mechanism in a graph attention network has recently

extended to incorporate real-valued edge features that are

adaptive to both the local contents and the global layers

for modeling citation networks [36]. Kipf et al. [37] intro-

duced a method to simultaneously infer relational structure

with interpretable edge types while learning the dynamical

model of an interacting system. Johnson [43] introduced the

Gated Graph Transformer Neural Network (GGT-NN) for
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natural language tasks, where multiple edge types and sev-

eral graph transformation operations including node state

update, propagation and edge update are considered.

Few-Shot Learning One main stream approach for few-

shot image classification is based on representation learning

and does prediction by using nearest-neighbor according to

similarity between representations. The similarity can be a

simple distance function such as cosine or Euclidean dis-

tance. A Siamese network [44] works in a pairwise man-

ner using trainable weighted L1 distance. A matching net-

work [2] further uses an attention mechanism to derive an

differentiable nearest-neighbor classifier and a prototypical

network [3] extends it with defining prototypes as the mean

of embedded support examples for each class. DEML [45]

has introduced a concept learner to extract high-level con-

cept by using a large-scale auxiliary labeled dataset show-

ing that a good representation is an important component to

improve the performance of few-shot image classification.

A meta-learner that learns to optimize model parameters

extract some transferable knowledge between tasks to lever-

age in the context of few-shot learning. Meta-LSTM [8]

uses LSTM as a model updater and treats the model param-

eters as its hidden states. This allows to learn the initial

values of parameters and update the parameters by read-

ing few-shot examples. MAML [4] learns only the initial

values of parameters and simply uses SGD. It is a model

agnostic approach, applicable to both supervised and rein-

forcement learning tasks. Reptile [46] is similar to MAML

but using only first-order gradients. Another generic meta-

learner, SNAIL [10], is with a novel combination of tempo-

ral convolutions and soft attention to learn an optimal learn-

ing strategy.

3. Method

In this section, the definition of few-shot classification

task is introduced, and the proposed algorithm is described

in detail.

3.1. Problem definition: Fewshot classification

The few-shot classification aims to learn a classifier

when only a few training samples per each class are given.

Therefore, each few-shot classification task T contains a

support set S , a labeled set of input-label pairs, and a query

set Q, an unlabeled set on which the learned classifier is

evaluated. If the support set S contains K labeled samples

for each of N unique classes, the problem is called N -way

K-shot classification problem.

Recently, meta-learning has become a standard method-

ology to tackle few-shot classification. In principle, we can

train a classifier to assign a class label to each query sam-

ple with only the compact support set of the task. How-

ever, a small number of labeled support samples for each

task are not sufficient to train a model fully reflecting the

inter- and intra-class variations, which often leads to un-

satisfactory classification performance. Meta-learning on

explicit training set resolves this issue by extracting trans-

ferable knowledge that allows us to perform better few-shot

learning on the support set, and thus classify the query set

more successfully.

As an efficient way of meta-learning, we adopt episodic

training [2, 9] which is commonly employed in various lit-

eratures [3, 4, 5]. Given a relatively large labeled training

dataset, the idea of episodic training is to sample training

tasks (episodes) that mimic the few-shot learning setting of

test tasks. Here, since the distribution of training tasks is as-

sumed to be similar to that of test tasks, the performances of

the test tasks can be improved by learning a model to work

well on the training tasks.

More concretely, in episodic training, both training and

test tasks of the N -way K-shot problem are formed as

follows: T = S
⋃

Q where S = {(xi, yi)}
N×K
i=1 and

Q = {(xi, yi)}
N×K+T
i=N×K+1. Here, T is the number of query

samples, and xi and yi ∈ {C1, · · ·CN} = CT ⊂ C are the

ith input data and its label, respectively. C is the set of all

classes of either training or test dataset. Although both the

training and test tasks are sampled from the common task

distribution, the label spaces are mutually exclusive, i.e.

Ctrain∩Ctest = ∅. The support set S in each episode serves

as the labeled training set on which the model is trained to

minimize the loss of its predictions over the query set Q.

This training procedure is iteratively carried out episode by

episode until convergence.

Finally, if some of N×K support samples are unlabeled,

the problem is referred to as semi-supervised few-shot clas-

sification. In Section 4, the effectiveness of our algorithm

on semi-supervised setting will be presented.

3.2. Model

This section describes the proposed EGNN for few-shot

classification, as illustrated in Figure 2. Given the feature

representations (extracted from a jointly trained convolu-

tional neural network) of all samples of the target task, a

fully-connected graph is initially constructed where each

node represents each sample, and each edge represents the

types of relationship between the two connected nodes;

Let G = (V, E ; T ) be the graph constructed with samples

from the task T , where V := {Vi}i=1,...,|T | and E :=
{Eij}i,j=1,...,|T | denote the set of nodes and edges of the

graph, respectively. Let vi and eij be the node feature of Vi

and the edge feature of Eij , respectively. |T | = N×K+T
is the total number of samples in the task T . Each ground-

truth edge-label yij is defined by the ground-truth node la-

bels as:

yij =

{

1, if yi = yj ,
0, otherwise.

(1)
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Figure 2: The overall framework of the proposed EGNN model. In this illustration, a 2-way 2-shot problem is presented as

an example. Blue and green circles represent two different classes. Nodes with solid line represent labeled support samples,

while a node with dashed line represents the unlabeled query sample. The strength of edge feature is represented by the color

in the square. Note that although each edge has a 2-dimensional feature, only the first dimension is depicted for simplicity.

The detailed process is described in Section 3.2.

Each edge feature eij = {eijd}
2
d=1 ∈ [0, 1]2 is a 2-

dimensional vector representing the (normalized) strengths

of the intra- and inter-class relations of the two connected

nodes. This allows to separately exploit the intra-cluster

similarity and the inter-cluster dissimilairity.

Node features are initialized by the output of the convo-

lutional embedding network v
0
i = femb(xi; θemb), where

θemb is the corresponding parameter set (see Figure 3.(a)).

Edge features are initialized by edge labels as follows:

e
0
ij =







[1||0], if yij = 1 and i, j ≤ N ×K,
[0||1], if yij = 0 and i, j ≤ N ×K,

[0.5||0.5], otherwise,
(2)

where || is the concatenation operation.

The EGNN consists of L layers to process the graph,

and the forward propagation of EGNN for inference is an

alternative update of node feature and edge feature through

layers.

In detail, given v
ℓ−1
i and e

ℓ−1
ij from the layer ℓ−1, node

feature update is firstly conducted by a neighborhood ag-

gregation procedure. The feature node v
ℓ
i at the layer ℓ

is updated by first aggregating the features of other nodes

proportional to their edge features, and then performing the

feature transformation; the edge feature e
ℓ−1
ij at the layer

ℓ− 1 is used as a degree of contribution of the correspond-

ing neighbor node like an attention mechanism as follows:

v
ℓ
i = f ℓ

v([
∑

j

ẽℓ−1
ij1 v

ℓ−1
j ||

∑

j

ẽℓ−1
ij2 v

ℓ−1
j ]; θℓv), (3)

where ẽijd =
eijd∑
k
eikd

, and f ℓ
v is the feature (node) trans-

formation network, as shown in Figure 3.(b), with the pa-

rameter set θℓv . It should be noted that besides the con-

ventional intra-class aggregation, we additionally consider

inter-class aggregation. While the intra-class aggregation

provides the target node the information of “similar neigh-

bors”, the inter-class aggregation provides the information

of “dissimilar neighbors”.

Then, edge feature update is done based on the newly

updated node features. The (dis)similarities between every

pair of nodes are re-obtained, and the feature of each edge is

updated by combining the previous edge feature value and

the updated (dis)similarities such that

ēℓij1 =
f ℓ
e(v

ℓ
i ,v

ℓ
j ; θ

ℓ
e)e

ℓ−1
ij1

∑

k f
ℓ
e(v

ℓ
i ,v

ℓ
k; θ

ℓ
e)e

ℓ−1
ik1 /(

∑

k e
ℓ−1
ik1 )

, (4)

ēℓij2 =
(1− f ℓ

e(v
ℓ
i ,v

ℓ
j ; θ

ℓ
e))e

ℓ−1
ij2

∑

k(1− f ℓ
e(v

ℓ
i ,v

ℓ
k; θ

ℓ
e))e

ℓ−1
ik2 /(

∑

k e
ℓ−1
ik2 )

, (5)

e
ℓ
ij = ē

ℓ
ij/‖ē

ℓ
ij‖1, (6)

where f ℓ
e is the metric network that computes similarity

scores with the parameter set θℓe (see Figure 3.(c)). In spe-
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Figure 3: Detailed network architectures used in EGNN.

(a) Embedding network femb. (b) Feature (node) transfor-

mation network f ℓ
v . (c) Metric network f ℓ

e .

cific, the node feature flows into edges, and each element

of the edge feature vector is updated separately from each

normalized intra-cluster similarity or inter-cluster dissim-

ilarity. Namely, each edge update considers not only the

relation of the corresponding pair of nodes but also the re-

lations of the other pairs of nodes. We can optionally use

two separate metric networks for the computations of each

of similarity or dissimilarity (e.g. separate fe,dsim instead

of (1− fe,sim)).
After L number of alternative node and edge feature up-

dates, the edge-label prediction can be obtained from the

final edge feature, i.e. ŷij = eLij1. Here, ŷij ∈ [0, 1] can be

considered as a probability that the two nodes Vi and Vj are

from the same class. Therefore, each node Vi can be classi-

fied by simple weighted voting with support set labels and

edge-label prediction results. The prediction probability of

node Vi can be formulated as P (yi = Ck|T ) = p
(k)
i :

p
(k)
i = softmax

(

∑

{j:j 6=i∧(xj ,yj)∈S}

ŷijδ(yj = Ck)
)

(7)

where δ(yj = Ck) is the Kronecker delta function that is

equal to one when yj = Ck and zero otherwise. Alternative

approach for node classification is the use of graph cluster-

ing; the entire graph G can be first partitioned into clusters,

using the edge prediction and an optimization for valid par-

titioning via linear programming [35], and then each cluster

can be labeled with the support label it contains the most.

However, in this paper, we simply apply Eq. (7) to ob-

tain the classification results. The overall algorithm for the

Algorithm 1: The process of EGNN for inference

1 Input: G = (V, E ; T ), where T = S
⋃

Q,

S = {(xi, yi)}
N×K
i=1 , Q = {xi}

N×K+T
i=N×K+1

2 Parameters: θemb ∪ {θ
ℓ
v, θ

ℓ
e}

L
ℓ=1

3 Output: {ŷi}
N×K+T
i=N×K+1

4 Initialize: v0
i = femb(xi; θemb), e

0
ij , ∀i, j

5 for ℓ = 1, · · · , L do

/* Node feature update */

6 for i = 1, · · · , |V | do

7 v
ℓ
i ← NodeUpdate({vℓ−1

i }, {eℓ−1
ij }; θ

ℓ
v)

8 end

/* Edge feature update */

9 for (i, j) = 1, · · · , |E| do

10 e
ℓ
ij ← EdgeUpdate({vℓ

i}, {e
ℓ−1
ij }; θ

ℓ
e)

11 end

12 end

/* Query node label prediction */

13 {ŷi}
N×K+T
i=N×K+1 ← Edge2NodePred({yi}

N×K
i=1 , {eLij})

EGNN inference at test-time is summarized in Algorithm 1.

The non-transductive inference means the number of query

samples T = 1 or it performs the query inference one-by-

one, separately, while the transductive inference classifies

all query samples at once in a single graph.

3.3. Training

Given M training tasks {T train
m }Mm=1 at a certain itera-

tion during the episodic training, the parameters of the pro-

posed EGNN, θemb ∪ {θ
ℓ
v, θ

ℓ
e}

L
ℓ=1, are trained in an end-to-

end fashion by minimizing the following loss function:

L =

L
∑

ℓ=1

M
∑

m=1

λℓLe(Ym,e, Ŷ
ℓ
m,e), (8)

where Ym,e and Ŷ ℓ
m,e are the set of all ground-truth query

edge-labels and the set of all (real-valued) query-edge pre-

dictions of the mth task at the ℓth layer, respectively, and the

edge loss Le is defined as binary cross-entropy loss. Since

the edge prediction results can be obtained not only from

the last layer but also from the other layers, the total loss

combines all losses that are computed in all layers in order

to improve the gradient flow in the lower layers.

4. Experiments

We evaluated and compared our EGNN 1 with state-of-

the-art approaches on two few-shot learning benchmarks,

i.e. miniImageNet [2] and tieredImageNet [7].

1The code and models are available on https://github.com/

khy0809/fewshot-egnn.
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4.1. Datasets

miniImageNet It is the most popular few-shot learn-

ing benchmark proposed by [2] derived from the original

ILSVRC-12 dataset [47]. All images are RGB colored, and

of size 84 × 84 pixels, sampled from 100 different classes

with 600 samples per class. We followed the splits used

in [8] - 64, 16, and 20 classes for training, validation and

testing, respectively.

tieredImageNet Similar to miniImageNet dataset,

tieredImageNet [7] is also a subset of ILSVRC-12 [47].

Compared with miniImageNet, it has much larger number

of images (more than 700K) sampled from larger number

of classes (608 classes rather than 100 for miniImageNet).

Importantly, different from miniImageNet, tieredImageNet

adopts hierarchical category structure where each of

608 classes belongs to one of 34 higher-level categories

sampled from the high-level nodes in the Imagenet. Each

higher-level category contains 10 to 20 classes, and divided

into 20 training (351 classes), 6 validation (97 classes) and

8 test (160 classes) categories. The average number of

images in each class is 1281.

4.2. Experimental setup

Network Architecture For feature embedding module,

a convolutional neural network, which consists of four

blocks, was utilized as in most few-shot learning models

[2, 3, 4, 6] without any skip connections 2. More concretely,

each convolutional block consists of 3 × 3 convolutions, a

batch normalization and a LeakyReLU activation. All net-

work architectures used in EGNN are described in details in

Figure 3.

Evaluation For both datasets, we conducted a 5-way 5-

shot experiment which is one of standard few-shot learn-

ing settings. For evaluation, each test episode was formed

by randomly sampling 15 queries for each of 5 classes,

and the performance is averaged over 600 randomly gen-

erated episodes from the test set. Especially, we addition-

ally conducted a more challenging 10-way experiment on

miniImagenet, to demonstrate the flexibility of our EGNN

model when the number of classes are different between

meta-training stage and meta-test stage, which will be pre-

sented in Section 4.5.

Training The proposed model was trained with Adam op-

timizer with an initial learning rate of 5× 10−4 and weight

decay of 10−6. The task mini-batch sizes for meta-training

were set to be 40 and 20 for 5-way and 10-way experi-

ments, respectively. For miniImageNet, we cut the learn-

2Resnet-based models are excluded for fair comparison.

(a) miniImageNet

Model Trans. 5-Way 5-Shot

Matching Networks [2] No 55.30

Reptile [46] No 62.74

Prototypical Net [3] No 65.77

GNN [6] No 66.41

EGNN No 66.85

MAML [4] BN 63.11

Reptile + BN [46] BN 65.99

Relation Net [5] BN 67.07

MAML+Transduction [4] Yes 66.19

TPN [12] Yes 69.43

TPN (Higher K) [12] Yes 69.86

EGNN+Transduction Yes 76.37

(b) tieredImageNet

Model Trans. 5-Way 5-Shot

Reptile [46] No 66.47

Prototypical Net [3] No 69.57

EGNN No 70.98

MAML [4] BN 70.30

Reptile + BN [46] BN 71.03

Relation Net [5] BN 71.31

MAML+Transduction [4] Yes 70.83

TPN [12] Yes 72.58

EGNN+Transduction Yes 80.15

Table 1: Few-shot classification accuracies on

miniImageNet and tieredImageNet. All results are averaged

over 600 test episodes. Top results are highlighted.

ing rate in half every 15,000 episodes while for tieredIma-

geNet, the learning rate is halved for every 30,000 because

it is larger dataset and requires more iterations to converge.

All our code was implemented in Pytorch [48] and run with

NVIDIA Tesla P40 GPUs.

4.3. Fewshot classification

The few-shot classification performance of the proposed

EGNN model is compared with several state-of-the-art

models in Table 1a and 1b. Here, as presented in [12],

all models are grouped into three categories with regard

to three different transductive settings; “No” means non-

transductive method, where each query sample is predicted

independently from other queries, “Yes” means transduc-

tive method where all queries are simultaneously processed

and predicted together, and “BN” means that query batch

statistics are used instead of global batch normalization pa-

rameters, which can be considered as a kind of transductive

inference at test-time.

The proposed EGNN was tested with both transduc-

tive and non-transductive settings. As shown in Table 1a,

EGNN shows the best performance in 5-way 5-shot set-
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ting, on both transductive and non-transductive settings on

miniImagenet. Notably, EGNN performed better than node-

labeling GNN [6], which supports the effectiveness of our

edge-labeling framework for few-shot learning. Moreover,

EGNN with transduction (EGNN + Transduction) outper-

formed the second best method (TPN [12]) on both datasets,

especially by large margin on miniImagenet. Table 1b

shows that the transductive setting on tieredImagenet gave

the best performance as well as large improvement com-

pared to the non-transductive setting. In TPN, only the la-

bels of the support set are propagated to the queries based on

the pairwise node feature affinities using a common Lapla-

cian matrix, so the queries communicate to each other only

via their embedding feature similarities. In contrast, our

proposed EGNN allows us to consider more complicated

interactions between query samples, by propagating to each

other not only their node features but also edge-label infor-

mation across the graph layers having different parameter

sets. Furthermore, the node features of TPN are fixed and

never changed during label propagation, which allows them

to derive a closed-form, one-step label propagation equa-

tion. On the contrary, in our EGNN, both node and edge

features are dynamically changed and adapted to the given

task gradually with several update steps.

4.4. Semisupervised fewshot classification

For semi-supervised experiment, we followed the same

setting described in [6] for fair comparison. It is a 5-way

5-shot setting, but the support samples are only partially la-

beled. The labeled samples are balanced among classes so

that all classes have the same amount of labeled and unla-

beled samples. The obtained results on miniImagenet are

presented in Table 2. Here, “LabeledOnly” denotes learn-

ing with only labeled support samples, and “Semi” means

the semi-supervised setting explained above. Different re-

sults are presented according to when 20% and 40%, 60%

of support samples were labeled, and the proposed EGNN

is compared with node-labeling GNN [6]. As shown in Ta-

ble 2, semi-supervised learning increases the performances

in comparison to labeled-only learning on all cases. No-

tably, the EGNN outperformed the previous GNN [6] by a

large margin (61.88% vs 52.45%, when 20% labeled) on

semi-supervised learning, especially when the labeled por-

tion was small. The performance is even more increased

on transductive setting (EGNN-Semi(T)). In a nutshell, our

EGNN is able to extract more useful information from un-

labeled samples compared to node-labeling framework, on

both transductive and non-transductive settings.

4.5. Ablation studies

The proposed edge-labeling GNN has a deep architec-

ture that consists of several node and edge-update layers.

Therefore, as the model gets deeper with more layers, the

Labeled Ratio (5-way 5-shot)

Training method 20% 40% 60% 100%

GNN-LabeledOnly [6] 50.33 56.91 - 66.41

GNN-Semi [6] 52.45 58.76 - 66.41

EGNN-LabeledOnly 52.86 - - 66.85

EGNN-Semi 61.88 62.52 63.53 66.85

EGNN-LabeledOnly(T) 59.18 - - 76.37

EGNN-Semi(T) 63.62 64.32 66.37 76.37

Table 2: Semi-supervised few-shot classification accuracies

on miniImageNet.

# of EGNN layers

Feature type 1 2 3

Intra & Inter 67.99 73.19 76.37

Intra Only 67.28 72.20 74.04

Table 3: 5-way 5-shot results on miniImagenet with differ-

ent numbers of EGNN layers and different feature types

interactions between task samples should be propagated

more intensively, which may leads to performance improve-

ments. To support this statement, we compared the few-shot

learning performances with different numbers of EGNN

layers, and the results are presented in Table 3. As the num-

ber of EGNN layers increases, the performance gets bet-

ter. There exists a big jump on few-shot accuracy when the

number of layers changes from 1 to 2 (67.99%→ 73.19%),

and a little additional gain with three layers (76.37 %).

Another key ingredient of the proposed EGNN is to use

separate exploitation of intra-cluster similarity and inter-

cluster dissimilarity in node/edge updates. To validate

the effectiveness of this, we conducted experiment with

only intra-cluster aggregation and compared the results with

those obtained by using both aggregations. The results are

also presented in Table 3. For all EGNN layers, the use of

separate inter-cluster aggregation clearly improves the per-

formances.

It should also be noted that compared to the previous

node-labeling GNN, the proposed edge-labeling framework

is more conducive in solving the few-shot problem under

arbitrary meta-test setting, especially when the number of

few-shot classes for meta-testing does not match to the one

used for meta-training. To validate this statement, we con-

ducted a cross-way experiment with EGNN, and the result

is presented in Table 4. Here, the model was trained with 5-

way 5-shot setting and tested on 10-way 5-shot setting, and

vice versa. Interestingly, both cross-way results are similar

to those obtained with the matched-way settings. There-

fore, we can observe that the EGNN can be successfully

extended to modified few-shot setting without re-training

of the model, while the previous node-labeling GNN [6] is
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Model Train way Test way Accuracy

Prototypical [3] 5 5 65.77

Prototypical 5 10 51.93

Prototypical 10 10 49.29

Prototypical 10 5 66.93

GNN [6] 5 5 66.41

GNN 5 10 N/A

GNN 10 10 51.75

GNN 10 5 N/A

EGNN 5 5 76.37

EGNN 5 10 56.35

EGNN 10 10 57.61

EGNN 10 5 76.27

Table 4: Cross-way few-shot learning results on miniIma-

genet 5-shot setting.

not even applicable to cross-way setting, since the size of

the model and parameters are dependent on the number of

ways.

Figure 4 shows t-SNE [49] visualizations of node fea-

tures for the previous node-labeling GNN and EGNN. The

GNN tends to show a good clustering among support sam-

ples after the first layer-propagation, however, query sam-

ples are heavily clustered together, and according to each la-

bel, query samples and their support samples never get close

together, especially even with more layer-propagations,

which means that the last fully-connect layer of GNN ac-

tually seems to perform most roles in query classification.

In contrast, in our EGNN, as the layer-propagation goes on,

both the query and support samples are pulled away if their

labels are different, and at the same time, equally labeled

query and support samples get close together.

For further analysis, Figure 5 shows how edge features

propagate in EGNN. Starting from the initial feature where

all query edges are initialized with 0.5, the edge feature

gradually evolves to resemble ground-truth edge label, as

they are passes through the several EGNN layers.

5. Conclusion

This work addressed the problem of few-shot learning,

especially on the few-shot classification task. We proposed

the novel EGNN which aims to iteratively update edge-

labels for inferring a query association to an existing sup-

port clusters. In the process of EGNN, a number of alter-

native node and edge feature updates were performed using

explicit intra-cluster similarity and inter-cluster dissimilar-

ity through the graph layers having different parameter sets,

and the edge-label prediction was obtained from the final

edge feature. The edge-labeling loss was used to update

the parameters of the EGNN with episodic training. Ex-

Figure 4: t-SNE visualization of node features. From top to

bottom: GNN [6], EGNN. From left to right: initial embed-

ding, 1st layer, 2nd layer, 3rd layer. ’x’ represents query, ’o’

represents support. Different colors mean different labels.

Figure 5: Visualization of edge feature propagation. From

left to right: initial edge feature, 1st layer, 2nd layer,

ground-truth edge labels. Red color denotes higher value

(eij1 = 1), while blue color denotes lower value (eij1 = 0).

This illustration shows 5-way 3-shot setting, and 3 queries

for each class, total 30 task-samples. The first 15 samples

are support set, and latter 15 are query set.

perimental results showed that the proposed EGNN outper-

formed other few-shot learning algorithms on both of the

supervised and semi-supervised few-shot image classifica-

tion tasks. The proposed framework is applicable to a broad

variety of other meta-clustering tasks. For future work, we

can consider another training loss which is related to the

valid graph clustering such as the cycle loss [35]. Another

promising direction is graph sparsification, e.g. construct-

ing K-nearest neighbor graphs [50], that will make our al-

gorithm more scalable to larger number of shots.
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