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Abstract

While many visual simultaneous localisation and mapping (SLAM) systems
use point features as landmarks, few take advantage of the edge information
in images. Those SLAM systems that do observe edge features do not con-
sider edges with all degrees of freedom. Edges are difficult to use in vision
SLAM because of selection, observation, initialisation and data association
challenges. However, a map that includes edge features contains higher-order
geometric information useful both during and after SLAM. We define a well-
localised edge landmark and present an efficient algorithm for selecting such
landmarks. Further, we describe how to initialise new landmarks, observe
mapped landmarks in subsequent images, and deal with the data association
challenges of edges. Initial operation of these methods in a particle-filter
based SLAM system is presented.

1 Introduction

Much work in visual SLAM systems focuses on mapping point-based landmarks. Point
landmarks have desirable properties in the context of visual SLAM: Point feature selec-
tion and description is well studied, the resulting feature descriptors are well-localisable
in images, and they are highly distinctive, easing the task of data association. However,
many environments have abundant edges and edge-like features. By tracking edges in
the world, a SLAM system can build richer maps containing higher-level geometric in-
formation, and need not rely on an abundance of good point features. In contrast to point
features, edges are well-localisable in only one image dimension, and often have non-
local extent in the other image dimension. Though highly invariant to lighting, edges
are also difficult to distinguish from each other locally. Such characteristics make the
incorporation of edge landmarks into a visual SLAM system challenging.

This paper focuses on SLAM with edges. We encourage the reader to examine [2, 13,
9, 7] for detailed discussions of the general operation of visual SLAM systems. Our work
is implemented within the system described in [4].

Edges have been recognised as critical features in image processing since the begin-
ning of computer vision. While edge detection methods abound, Canny’s algorithm[1]
for choosing edgels in an image has emerged as the standard technique, and consistently
ranks well in comparisons[6, 12]. We use it as a starting point for our edge feature selec-
tion algorithm.

The invariance of edges to lighting, orientation and scale makes them good candidates
for tracking. Model-based trackers such as [3] and [11] use edge models to permit highly
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efficient tracking of moving objects. Model-based tracking with edges, where structure
is known but camera or object position is unknown, can be considered a subset of our
SLAM problem.

The structure-from-motion algorithm described in [14] operates solely on edges de-
tected in a video sequence. A global cost function is optimised to yield camera trajectory
and line parameters. Results of this work are also shown in [12]. There are two important
differences between this and the problem of SLAM with edges: SLAM must maintain
estimates of camera motion and world structure online, not in a global optimisation, and
a SLAM system must maintain uncertainty information regarding its estimates of motion
and structure.

The vision SLAM system of [5] is designed to support heterogeneous landmark types
in a common framework. While lines are used as features, they are assumed to be confined
to planes of known orientation. Lines are also tracked by the SLAM system of [8], but
only vertical lines are considered, as the camera is known to move in a plane. Our work is
concerned with estimating edges of arbitrary location and orientation. To our knowledge,
no such visual SLAM system exists.

In this paper, we show how to efficiently select, observe, and estimate local edge fea-
tures in a real-time monocular SLAM system. In Sec. 2, we describe the basic operation
of our SLAM implementation. In Sec. 3 we define the edge features estimated as land-
marks, and describe their representation in the world and the image. In Sec. 4 we present
a simple, effective, and efficient algorithm for selecting new edge features. Sec. 5 dis-
cusses the problem of partial initialisation and describes our approach. Sec. 6 addresses
the problem of data association with edges and explains our straightforward scheme for
robust association. In Sec. 7, we present qualitative performance results of the system,
draw conclusions and discuss future work.

2 SLAM Model

Here we give an overview of the SLAM system to which we add edge landmarks. For a
detailed description and evaluation, see [4].

The system is based on a FastSLAM-type Rao-Blackwellised particle filter [10], which
exploits probabilistic independence properties of the SLAM problem: Given a set of ex-
actly determined camera poses, landmark estimates are probabilistically independent of
each other. Thus, the uncertainty of the system can be maintained as a set of hypotheses,
each one containing a camera trajectory and a set of (independent) estimates of landmarks
given the trajectory. Landmark estimates are represented analytically as gaussian distribu-
tions within each hypothesis, while the current camera pose uncertainty is spread over the
set of hypotheses. Each hypothesis is a particle in the filter, representing a full structure
estimate and associated camera trajectory.

The only sensor in the system is a single calibrated camera, delivering 30 frames per
second. Processing occurs in stages: first, the current camera pose and uncertainty for
each hypothesis is estimated from a dynamic model. Then observations are taken from
the latest video image, and the observations are used to optimise the gaussian pose esti-
mates. Next, samples are drawn from the distribution of poses, based on the likelihood of
observations, and lastly, the same set of observations is used to update landmark estimates
within each sampled particle.
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Prediction: When a new frame is retrieved from the camera, the current distribution of
particles is determined according to a constant-velocity dynamic model. Before the pre-
diction step, each particle represents an exact pose with an associated structure estimate,
which is a gaussian over landmarks with block-diagonal covariance. After the prediction,
the particle set represents a gaussian mixture model over poses and maps: Each particle’s
pose is moved according to its velocity and the elapsed time, and the result is taken as
the mean of a gaussian with covariance given by the process noise,Q. The landmark
estimates in each particle remain unchanged.

Observation: A subset of landmarks to observe in the current frame is chosen based
on expected visibility. For each landmark to be observed, the expected image location
and appearance is calculated from the filter’s estimates of landmark and camera states.
A search in the image determines the content of the observation. In the simple case
of point features, the search yields a location in the image (with associated measurement
noise) where the landmark’s descriptor is localised. A top-down active-search observation
framework limits the search region based on the uncertainty in the current estimate of
the landmark. The observation stage yields a list of landmark identifiers and associated
observations.

Particle Update and Resampling: At the point that observations are made from the lat-
est image, the particle distribution actually represents a gaussian mixture over poses and
landmarks. The observations are used within each particle (or component of the mixture)
to update the pose estimate, using a standard EKF update. Additionally, a weight is as-
signed to each component according to the likelihood of the set of observations under the
unoptimisedcomponents. Then particles are drawn from the posterior mixture according
to the component weights, with poses drawn from the component gaussians.

Landmark Update: Finally, the same set of observations is used to update landmark
estimates within each particle. After resampling, there is no uncertainty associated with
each particle’s pose hypothesis, so the conditional independence of landmark estimates
within each particle still holds. In a given particle, the gaussian estimate of each observed
landmark is updated according to a standard extended Kalman filter. Once the landmark
estimates have been updated, the system is ready to process the next frame.

Point Landmarks: Point landmarks are considered three-dimensional points in the
world with a locally planar structure, represented by an image patch. In the filter, es-
timates of landmarks are stored as three-dimensional gaussians. To localise a point land-
mark in an image, its three-sigma uncertainty ellipse, including uncertainty due to camera
pose, is projected into a two-dimensional ellipse in the image. The descriptor patch is
warped according to the expected camera pose, and the patch is localised inside the el-
lipse using normalised cross correlation.

New point landmarks are chosen using a feature selection algorithm, such as [11]. Ini-
tially, the system has no information about the landmarks depth in the world, necessitating
a partial initialisation scheme, of which several exist. Davison’s system uses a separate
particle filter to estimate the depth of each new landmark[2]. Our system maintains an
estimate of the landmark’s inverse depth in the initial frame[4]. When the estimate is
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well approximated by a gaussian, it is converted to the world frame and considered fully
initialised.

3 Edgelet Landmarks

Point landmarks fit well into a SLAM system because they have a well-defined represen-
tation, both in image space and world space. In the image, a point landmark is represented
as a locally planar patch with a distinct, but view-dependent, appearance. In the world, it
is estimated as a three-dimensional point with gaussian uncertainty. In order to use edge
features, we must also define their image and world representations.

Definition: We define our edge features, which we calledgelets, with an analogous
property in mind. An edgelet is a local portion of an edge, with an edge being a strong,
one-dimensional intensity change. Thus, given an edge, which may have significant extent
in a given image, we can take any small segment on the edge as an edgelet observation.
Furthermore, the edge need only be locally straight: a slow curve has many locally linear
pieces, all of which can be considered edgelets. Tracking only local edge segments avoids
several problems of trying to estimate full edges in the world. Full edges, because they
are not local quantities in an image, may be partially occluded, or broken into pieces
in the image. They might never be wholly visible, so determining their full extent and
actual endpoints may be impossible. The locality of edgelets means that assumptions
made about an edgelet as a unit (for instance, that it is straight) is much more likely to be
satisfied than the same assumption made about a long edge.

Representation: As a world representation of an edgelet, we use a three-dimensional
point x corresponding with the center of the edgelet, and a three-dimensional unit vector
d̂ describing the direction of the edgelet in the world. Note that this representation is
not minimal: d̂ has only two degrees of freedom. However, we find the cartesian rep-
resentation more convenient in calculations. The uncertainty in these six parameters is
represented as a gaussian with covarianceP. Given a camera poseC = (R,T) ∈ SE(3),
the observation functionh1 sendingx to a point in the image plane (the planez= 1 in the
camera frame) is identical to the observation function for points in general:

h1(x) = project(Rx+ T) (1)

project
((

x y z
)T

)
=

(
x/z y/z

)T
(2)

For the direction,̂d, we have a unit vector in the image plane:

h2(d̂) =
(

X3D1−X1D3

X3D2−X2D3

)/∣∣∣∣
(

X3D1−X1D3

X3D2−X2D3

)∣∣∣∣ (3)

X = Rx +T (4)

D = Rd̂ (5)

Because an edgelet is a local portion of a potentially longer edge, observations can
not decrease the uncertainty ofx along the direction̂d, because of the aperture problem.
However, the location of the edgelet along the edge to pixel accuracy is determined during
initialisation (Sec. 5), which is sufficiently accurate to allow subsequent observation.
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Observation: Given a gaussian estimate of an edgelet(x, d̂), we observe the landmark
by predicting its location in an image, searching for the edgelet, and then feeding the
observation to the filter. The edgelet’s parameters project into the image plane according
to 1 and 3, and its covariance projects through a linearisation of the observation functions
h1 andh2. Then the image plane quantities project into the image (pixel space) according
to the calibrated camera model. The result is a prediction of the edgelet in the image: an
image locationxp and an image directiondp with associated covariances.

The prediction implies that we expect to find a short edge segment centered atxp with
normalnp perpendicular todp. To locate the edgelet in the image, we consider the image
region given by a three-standard-deviation variation ofxp in the direction ofnp, with a
predetermined local width (e.g. 15 pixels). We consider the set of edgels in this region
with gradient direction similar tonp, and take straight segments within this local set of
edgels as possible observations of the edgelet.

We use an approximation of the Hough transform to find such segments: First, we bin
the edgels according to the gradient angleθ . Sliding a window over the bins, we consider
all peaks in total edgel count. For each peak group of edgels, we compute a histogram
of edgel location component in the direction of the bins’ average gradient angle. The
two histograms correspond to the two dimensions of the angle-radius representation of
the Hough line tranform. Thresholding the peaks in the radius histograms yields sets of
edgels that form straight segments in the region.

For each resulting edgel set, we first unproject edgel locations into the image plane,
and compute the offset in the direction ofnp of each edgel from the line given byxp

andnp. We fit a least-squares slope-intercept line to the resulting values. The fitted two-
parameter lines, all relative toxp andnp, are the two-dimensional observation hypotheses
used to update the pose and landmark estimates of the filter. The observation noise is cal-
culated by mapping the edgel location uncertainty through the line fit algorithm to yield
uncertainty in the slope-intercept fit. In the simplest case, the observation hypothesis clos-
est to the predicted edgelet location can be taken as the single hypothesis. However, when
there is clutter around the edgelet in the image, this can lead to incorrect data association.
Instead, we use all of the hypotheses, deciding maximum likelihood data association as
described in Sec. 6.

Figure 1: Edgelet observation
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4 Finding new Edgelets

Our map of the environment is initially empty, except for fiducial landmarks used to
bootstrap the system. We must acquire new landmarks to populate the map as we go. Point
features are acquired using feature selection algorithms, and edgelets must be chosen with
an analogous method. The edgelet selection algorithm should select edgelets that can be
easily localised in subsequent frames, and it must be efficient, so as not to be a burden
on the real-time operation of the system. We describe a simple, effective, and efficient
method for choosing edgelets to track. Our method yields the locations of short, straight
edge segments that are well-separated from nearby edges of similar direction.

Given an intensity image, we first identify all the edgels in the image with a minimum
gradient magnitude that is maximal along the direction of the gradient. The output of the
first steps of the Canny algorithm[1] is sufficient for this stage. The edgels are considered
in subsets determined by placing a grid of a fixed size over the image. We use a grid with
boxes of size 16× 16 pixels. All subsequent processing happens within each grid subset.

For a subset of edgels{ei}, we compute the average second moment,M of the gradi-
entsgi at the edgels:

M =
〈
gigT

i

〉
(6)

The eigenvectors ofM describe the dominant directions of intensity change in the image
patch. For a patch containing a single edgelet, the eigenvector corresponding to the larger
eigenvalue should be normal to the edgelet. Let this dominant eigenvector ben̂. For each
edgel, the angleθ between̂n and the edgel’s gradient satisfies

cosθ = gT
i n̂/ |gi | (7)

To select those edgels with gradients in agreement withn̂, we choose a minimalcosθ and
threshold according to

(
gT

i gi
)

cos2 θ >
(
gT

i n
)2

(8)

For all edgel locationsei with gradient in agreement witĥn, we consider the distribution
of location in the direction of̂n, given by

bi = eT
i n̂ (9)

The mean and variance of{bi} describe the location and agreement of edgels along the
dominant direction. For a grid element with one clear, single straight edge, the variance
will be on the order of a single pixel. We threshold on this variance to identify grid
elements containing edgelets. Note that edgels with gradient directions not similar to the
dominant gradient direction do not affect the edge-normal variance, as they are culled
from the calculations early. Thus, a grid patch can contain two orthogonal segments and
the stronger one will be chosen as an edgelet. Each grid element contributes either one or
zero edgelets, with associated location, direction, and strength.

On a Pentium IV 2.8 GHz workstation, using grid elements of size 16×16, the entire
algorithm, including non-max-suppressed edgel detection, processes a typical 320×240
grayscale image in 2-3 ms, yielding up to 300 edgelets. We choose new edgelets by taking
edgelets sufficiently distant in the image from all recently observed landmarks. We further
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(a) (b)

Figure 2: (a) Detected edgelets. The white line segments are normal to each detected
edgelet in the direction dark-to-light, and their length is proportional to the strength of the
edgelet. (b) The double lines on the left are rejected by the edgelet selector because they
are too close, and might be confused in a search.

guide edgelet selection by choosing edgelets with direction more orthogonal to the image
motion at the center of the edgelet given by the current average pose velocity. When the
image motion is orthogonal to the edge direction, the landmark’s depth can be recovered
more rapidly.

5 Initialising Edgelets

A new edgelet cannot be added to the map as a fully-initialised landmark described in
Sec. 3 until enough is known about its location and direction to make its estimate gaus-
sian. While its location and direction in the image plane is well-determined from one ob-
servation, the components along the viewing ray are unknown. Thus, the landmark must
remain partially initialised until all of its dimensions are well-represented by a gaussian.
We represent a partially initialised edgelet in its initial observation frame with inverse
depth. That is, instead of world coordinatesx = (x,y,z), the edgelet position is given as
(u,v,q), where(u,v) is the position of the edgelet in the camera plane andq = z−1, all
with respect to the first camera pose from which the landmark was observed. As shown
in [4], the observation functionh1 of a point expressed in inverse depth is nearly linear in
the coordinates(u,v,q). Thus linear techniques such as the Kalman filter can be used to
estimatexq = (u,v,q). Just aŝd is the unit differential ofx along the edge, we estimate
the unit differentiald̂q of xq along the edge for partially initialised edgelets.

As the landmark is repeatedly observed in subsequent images, the estimates ofxq and
d̂q are updated using the Kalman filter framework. When the estimate is nearly gaussian
in world coordinates, a change-of-variables is performed using the unscented transform,
and the landmark’s mean and covariance is thereafter expressed in world coordinatesx,
d̂, andP. Typically, new edgelets are fully initialised in fewer than ten frames, given
non-degenerate camera motion. Note that each particle maintains a separate estimate of
each partially initialised landmark (and each fully initialised landmark), so the change-
of-variables occurs independently, sometimes at different times and with different results
for different particles.
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6 Robust Data Association
Edges are characterised only by the direction of their intensity change from low to high.
If an edgelet’s prediction uncertainty is large, there may be several possible edges in the
image search region. We wish to choose the set of observation associations that has the
maximum likelihood given our given our current estimates of poses and landmarks.

However, form observations, there are2m subsets to consider. This number grows
when multiple hypotheses exist for some observations. We use RANSAC to sample from
the subsets. Taking observations three at a time, we consider the posterior estimate of a
single particle’s pose given those observations. The combined likelihood of the whole set
of observations under that particle is computed. For each observation, we consider the
most likely hypothesis, if there is more than one. If that likelihood is below a common
threshold, the observation is considered an outlier, and the threshold likelihood is used in
place of the observation’s likelihood.

We repeat this process with random subsets of three observations. After a fixed num-
ber of tries, we take the maximum-likelihood set of inliers as our observations, and use
that set to update all pose and landmark estimates. The number of random subsets tried is
limited by computation time; in our system, we find that 30 tries gives good results. Even
when only one observation hypothesis is found in the image for each observation, there
are in fact two possibilities for each observation: inlier or outlier. This data association
framework greatly improves the reliability of our system when viewing cluttered scenes
or when partial initialisation gives spurious estimates.

7 Results and Conclusions
Our implementation of SLAM with edgelets runs at frame rate on a Pentium IV 2.8 GHz
workstation, while measuring more than 20 landmarks each frame, and considering 30
data association RANSAC hypotheses. Figure 2 shows the output of the edgelet detection
algorithm in an indoor scene.

The average search time for locating mapped edgelets in video frames in 0.25 ms
per edgelet. This cost of finding the edge is dominated by the much greater cost of in-
corporating the landmark into the filter estimates, which currently requires 0.9 ms per
landmark. The tracking is noticeably more reliable when using the RANSAC-based
maximum-likelihood data association described in Sec. 6.

The initial performance results of our system using edgelets show that edges can be
successfully tracked and mapped in an active-search monocular SLAM setting. Further-
more, the use of only local portions of possibly extended edges yields a framework flex-
ible enough to map curved intensity changes. The main failure mode of the system is
partial initialisation; eliminating the occasional spuriously initialised landmark and asso-
ciated bad initial parameter estimates will significantly improve the system’s robustness.
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