
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 2104–2113,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Edge-Linear First-Order Dependency Parsing with Undirected Minimum
Spanning Tree Inference

Effi Levi1 Roi Reichart2

1Institute of Computer Science, The Hebrew Univeristy
2Faculty of Industrial Engineering and Management, Technion, IIT

{efle|arir}@cs.huji.ac.il roiri@ie.technion.ac.il

Ari Rappoport1

Abstract

The run time complexity of state-of-the-

art inference algorithms in graph-based

dependency parsing is super-linear in the

number of input words (n). Recently,

pruning algorithms for these models have

shown to cut a large portion of the graph

edges, with minimal damage to the re-

sulting parse trees. Solving the infer-

ence problem in run time complexity de-

termined solely by the number of edges

(m) is hence of obvious importance.

We propose such an inference algorithm

for first-order models, which encodes the

problem as a minimum spanning tree

(MST) problem in an undirected graph.

This allows us to utilize state-of-the-art

undirected MST algorithms whose run

time is O(m) at expectation and with a

very high probability. A directed parse

tree is then inferred from the undirected

MST and is subsequently improved with

respect to the directed parsing model

through local greedy updates, both steps

running in O(n) time. In experiments with

18 languages, a variant of the first-order

MSTParser (McDonald et al., 2005b) that

employs our algorithm performs very sim-

ilarly to the original parser that runs an

O(n2) directed MST inference.

1 Introduction

Dependency parsers are major components of a

large number of NLP applications. As application

models are applied to constantly growing amounts

of data, efficiency becomes a major consideration.

In graph-based dependency parsing models

(Eisner, 2000; McDonald et al., 2005a; McDon-

ald et al., 2005b; Carreras, 2007; Koo and Collins,

2010b), given an n word sentence and a model or-

der k, the run time of exact inference is O(n3) for

k = 1 and O(nk+1) for k > 1 in the projective

case (Eisner, 1996; McDonald and Pereira, 2006).

In the non-projective case it is O(n2) for k = 1
and NP-hard for k ≥ 2 (McDonald and Satta,

2007). 1 Consequently, a number of approximated

parsers have been introduced, utilizing a variety of

techniques: the Eisner algorithm (McDonald and

Pereira, 2006), belief propagation (Smith and Eis-

ner, 2008), dual decomposition (Koo and Collins,

2010b; Martins et al., 2013) and multi-commodity

flows (Martins et al., 2009; Martins et al., 2011).

The run time of all these approximations is super-

linear in n.

Recent pruning algorithms for graph-based de-

pendency parsing (Rush and Petrov, 2012; Riedel

et al., 2012; Zhang and McDonald, 2012) have

shown to cut a very large portion of the graph

edges, with minimal damage to the resulting parse

trees. For example, Rush and Petrov (2012)

demonstrated that a single O(n) pass of vine-

pruning (Eisner and Smith, 2005) can preserve

> 98% of the correct edges, while ruling out

> 86% of all possible edges. Such results give

strong motivation to solving the inference problem

in a run time complexity that is determined solely

by the number of edges (m). 2

1We refer to parsing approaches that produce only projec-
tive dependency trees as projective parsing and to approaches
that produce all types of dependency trees as non-projective
parsing.

2Some pruning algorithms require initial construction of
the full graph, which requires exactly n(n − 1) edge weight
computations. Utilizing other techniques, such as length-
dictionary pruning, graph construction and pruning can be

2104

In this paper we propose to formulate the infer-

ence problem in first-order (arc-factored) depen-

dency parsing as a minimum spanning tree (MST)

problem in an undirected graph. Our formulation

allows us to employ state-of-the-art algorithms for

the MST problem in undirected graphs, whose

run time depends solely on the number of edges

in the graph. Importantly, a parser that employs

our undirected inference algorithm can generate

all possible trees, projective and non-projective.

Particularly, the undirected MST problem (§ 2)

has a randomized algorithm which is O(m) at

expectation and with a very high probability

((Karger et al., 1995)), as well as an O(m ·
α(m, n)) worst-case deterministic algorithm (Pet-

tie and Ramachandran, 2002), where α(m, n) is

a certain natural inverse of Ackermann’s func-

tion (Hazewinkel, 2001). As the inverse of Ack-

ermann’s function grows extremely slowly 3 the

deterministic algorithm is in practice linear in m

(§ 3). In the rest of the paper we hence refer to

the run time of these two algorithms as practically

linear in the number of edges m.

Our algorithm has four steps (§ 4). First, it

encodes the first-order dependency parsing infer-

ence problem as an undirected MST problem, in

up to O(m) time. Then, it computes the MST

of the resulting undirected graph. Next, it infers

a unique directed parse tree from the undirected

MST. Finally, the resulting directed tree is greed-

ily improved with respect to the directed parsing

model. Importantly, the last two steps take O(n)
time, which makes the total run time of our al-

gorithm O(m) at expectation and with very high

probability. 4

We integrated our inference algorithm into the

first-order parser of (McDonald et al., 2005b) and

compared the resulting parser to the original parser

which employs the Chu-Liu-Edmonds algorithm

(CLE, (Chu and Liu, 1965; Edmonds, 1967)) for

inference. CLE is the most efficient exact in-

ference algorithm for graph-based first-order non-

projective parsers, running at O(n2) time.5

jointly performed in O(n) steps. We therefore do not include
initial graph construction and pruning in our complexity com-
putations.

3α(m, n) is less than 5 for any practical input sizes
(m, n).

4The output dependency tree contains exactly n−1 edges,
therefore m ≥ n− 1, which makes O(m)+O(n) = O(m).

5CLE has faster implementations: O(m+nlogn) (Gabow
et al., 1986) as well as O(mlogn) for sparse graphs (Tarjan,
1977), both are super-linear in n for connected graphs. We re-

We experimented (§ 5) with 17 languages from

the CoNLL 2006 and 2007 shared tasks on multi-

lingual dependency parsing (Buchholz and Marsi,

2006; Nilsson et al., 2007) and in three English

setups. Our results reveal that the two algorithms

perform very similarly. While the averaged un-

labeled attachment accuracy score (UAS) of the

original parser is 0.97% higher than ours, in 11 of

20 test setups the number of sentences that are bet-

ter parsed by our parser is larger than the number

of sentences that are better parsed by the original

parser.

Importantly, in this work we present an

edge-linear first-order dependency parser which

achieves similar accuracy to the existing one, mak-

ing it an excellent candidate to be used for effi-

cient MST computation in k-best trees methods,

or to be utilized as an inference/initialization sub-

routine as a part of more complex approximation

frameworks such as belief propagation. In addi-

tion, our model produces a different solution com-

pared to the existing one (see Table 2), paving the

way for using methods such as dual decomposi-

tion to combine these two models into a superior

one.

Undirected inference has been recently ex-

plored in the context of transition based pars-

ing (Gómez-Rodrı́guez and Fernández-González,

2012; Gómez-Rodrı́guez et al., 2015), with the

motivation of preventing the propagation of erro-

neous early edge directionality decisions to sub-

sequent parsing decisions. Yet, to the best of our

knowledge this is the first paper to address undi-

rected inference for graph based dependency pars-

ing. Our motivation and algorithmic challenges

are substantially different from those of the earlier

transition based work.

2 Undirected MST with the Boruvka

Algorithm

In this section we define the MST problem in undi-

rected graphs. We then discuss the Burovka al-

gorithm (Boruvka, 1926; Nesetril et al., 2001)

which forms the basis for the randomized algo-

rithm of (Karger et al., 1995) we employ in this pa-

per. In the next section we will describe the Karger

et al. (1995) algorithm in more details.

Problem Definition. For a connected undirected

graph G(V,E), where V is the set of n vertices

fer here to the classical implementation employed by modern
parsers (e.g. (McDonald et al., 2005b; Martins et al., 2013)).

2105

and E the set of m weighted edges, the MST prob-

lem is defined as finding the sub-graph of G which

is the tree (a connected acyclic graph) with the

lowest sum of edge weights. The opposite prob-

lem – finding the maximum spanning tree – can be

solved by the same algorithms used for the mini-

mum variant by simply negating the graph’s edge

weights.

Graph Contraction. In order to understand the

Boruvka algorithm, let us first define the Graph

Contraction operation. For a given undirected

graph G(V,E) and a subset Ẽ ⊆ E, this oper-

ation creates a new graph, GC(VC , EC). In this

new graph, VC consists of a vertex for each con-

nected component in G̃(V, Ẽ) (these vertices are

referred to as super-vertices). EC , in turn, consists

of one edge, (û, v̂), for each edge (u, v) ∈ E \ Ẽ,

where û, v̂ ∈ VC correspond to G̃’s connected

components to which u and v respectively belong.

Note that this definition may result in multiple

edges between two vertices in VC (denoted repeti-

tive edges) as well as in edges from a vertex in VC

to itself (denoted self edges).

Algorithm 1 The basic step of the Boruvka algo-

rithm for the undirected MST problem.

Contract graph

Input: a graph G(V,E), a subset Ẽ ⊆ E

C ← connected components of G̃(V, Ẽ)
return GC(C, E \ Ẽ)

Boruvka-step

Input: a graph G(V,E)
1: for all (u, v) ∈ E do

2: if w(u, v) < w(u.minEdge) then

3: u.minEdge← (u, v)
4: end if

5: if w(u, v) < w(v.minEdge) then

6: v.minEdge← (u, v)
7: end if

8: end for

9: for all v ∈ V do

10: Em ← Em ∪ {v.minEdge}
11: end for

12: GB(VB, EB)← Contract graph(G(V,E),Em)

13: Remove from EB self edges and non-minimal

repetitive edges

14: return GB(VB, EB), Em

The Boruvka-Step. Next, we define the basic

step of the Borukva algorithm (see example in Fig-

(a) (b)

(c) (d)

Figure 1: An illustration of a Boruvka step: (a) The orig-
inal graph; (b) Choosing the minimal edge for each vertex
(marked in red); (c) The contracted graph; (d) The contracted
graph after removing one self edge and two non-minimal
repetitive edges.

ure 1 and pseudocode in Algorithm 1). In each

such step, the algorithm creates a subset Em ⊂ E

by selecting the minimally weighted edge for each

vertex in the input graph G(V,E) (Figure 1 (a,b)

and Algorithm 1 (lines 1-11)). Then, it performs

the contraction operation on the graph G and Em

to receive a new graph GB(VB, EB) (Figure 1 (c)

and Algorithm 1 (12)). Finally, it removes from

EB all self-edges and repetitive edges that are

not the minimal edges between the vertices VB’s

which they connect (Figure 1 (d) and Algorithm 1

(13)). The set Em created in each such step is

guaranteed to consist only of edges that belong

to G’s MST and is therefore also returned by the

Boruvka step.

The Boruvka algorithm runs successive

Boruvka-steps until it is left with a single super-

vertex. The MST of the original graph G is given

by the unification of the Em sets returned in each

step. The resulting computational complexity is

O(m log n) (Nesetril et al., 2001). We now turn to

describe how the undirected MST problem can be

solved in a time practically linear in the number

of graph edges.

3 Undirected MST in Edge Linear Time

There are two algorithms that solve the undirected

MST problem in time practically linear in the

number of edges in the input graph. These al-

gorithms are based on substantially different ap-

proaches: one is deterministic and the other is ran-

domized 6.

6Both these algorithms deal with a slightly more general
case where the graph is not necessarily connected, in which
case the minimum spanning forest (MSF) is computed. In our
case, where the graph is connected, the MSF reduces to an
MST.

2106

The complexity of the first, deterministic, algo-

rithm (Chazelle, 2000; Pettie and Ramachandran,

2002) is O(m ·α(m, n)), where α(m, n) is a natu-

ral inverse of Ackermann’s function, whose value

for any practical values of n and m is lower than

5. As this algorithm employs very complex data-

structures, we do not implement it in this paper.

The second, randomized, algorithm (Karger et

al., 1995) has an expected run time of O(m + n)
(which for connected graphs is O(m)), and this

run time is achieved with a high probability of

1− exp(−Ω(m)). 7 In this paper we employ only

this algorithm for first-order graph-based parsing

inference, and hence describe it in details in this

section.

Definitions and Properties. We first quote two

properties of undirected graphs (Tarjan, 1983): (1)

The cycle property: The heaviest edge in a cycle

in a graph does not appear in the MSF; and (2) The

cut property: For any proper nonempty subset V ′

of the graph vertices, the lightest edge with exactly

one endpoint in V ′ is included in the MSF.

We continue with a number of definitions and

observations. Given an undirected graph G(V,E)
with weighted edges, and a forest F in that graph,

F (u, v) is the path in that forest between u and

v (if such a path exists), and sF (u, v) is the maxi-

mum weight of an edge in F (u, v) (if the path does

not exist then sF (u, v) =∞). An edge (u, v) ∈ E

is called F-heavy if s(u, v) > sF (u, v), otherwise

it is called F-light. An alternative equivalent def-

inition is that an edge is F-heavy if adding it to

F creates a cycle in which it is the heaviest edge.

An important observation (derived from the cycle

property) is that for any forest F , no F-heavy edge

can possibly be a part of an MSF for G. It has

been shown that given a forest F , all the F-heavy

edges in G can be found in O(m) time (Dixon et

al., 1992; King, 1995).

Algorithm. The randomized algorithm can be

outlined as follows (see pseudocode in algo-

rithm 2): first, two successive Boruvka-steps are

applied to the graph (line 4, Boruvka-step2 stands

for two successive Boruvka-steps), reducing the

number of vertices by (at least) a factor of 4 to

receive a contracted graph GC and an edge set

Em (§ 2). Then, a subgraph Gs is randomly con-

structed, such that each edge in GC , along with

7This complexity analysis is beyond the scope of this pa-
per.

Algorithm 2 Pseudocode for the Randomized

MSF algorithm of(Karger et al., 1995).

Randomized MSF

Input: a graph G(V,E)
1: if E is empty then

2: return ∅
3: end if

4: GC(VC , EC), Em ← Boruvka-step2(G)

5: for all (u, v) ∈ EC do

6: if coin-flip == head then

7: Es ← Es ∪ {(u, v)}
8: Vs ← Vs ∪ {u, v}
9: end if

10: end for

11: F ← Randomized MSF(Gs(Vs, Es))
12: remove all F-heavy edges from GC(VC , EC)
13: FC ← Randomized MSF(GC(VC , EC))
14: return FC ∪ Em

the vertices which it connects, is included in Gs

with probability 1
2

(lines 5-10). Next, the algo-

rithm is recursively applied to Gs to obtain its min-

imum spanning forest F (line 11). Then, all F-

heavy edges are removed from GC (line 12), and

the algorithm is recursively applied to the result-

ing graph to obtain a spanning forest FC (line 13).

The union of that forest with the edges Em forms

the requested spanning forest (line 14).

Correctness. The correctness of the algorithm is

proved by induction. By the cut property, every

edge returned by the Boruvka step (line 4), is part

of the MSF. Therefore, the rest of the edges in the

original graph’s MSF form an MSF for the con-

tracted graph. The removed F-heavy edges are, by

the cycle property, not part of the MSF (line 12).

By the induction assumption, the MSF of the re-

maining graph is then given by the second recur-

sive call (line 13).

4 Undirected MST Inference for

Dependency Parsing

There are several challenges in the construction of

an undirected MST parser: an MST parser that

employs an undirected MST algorithm for infer-

ence.8 These challenges stem from the mismatch

between the undirected nature of the inference al-

gorithm and the directed nature of the resulting

8Henceforth, we refer to an MST parser that employs a di-
rected MST algorithm for inference as directed MST parser.

2107

parse tree.

The first problem is that of undirected encod-

ing. Unlike directed MST parsers that explicitly

encode the directed nature of dependency parsing

into a directed input graph to which an MST al-

gorithm is applied (McDonald et al., 2005b), an

undirected MST parser needs to encode direction-

ality information into an undirected graph. In this

section we consider two solutions to this problem.

The second problem is that of scheme conver-

sion. The output of an undirected MST algorithm

is an undirected tree while the dependency pars-

ing problem requires finding a directed parse tree.

In this section we show that for rooted undirected

spanning trees there is only one way to define the

edge directions under the constraint that the root

vertex has no incoming edges and that each non-

root vertex has exactly one incoming edge in the

resulting directed spanning tree. As dependency

parse trees obey the first constraint and the sec-

ond constraint is a definitive property of directed

trees, the output of an undirected MST parser can

be transformed into a directed tree using a simple

O(n) time procedure.

Unfortunately, as we will see in § 5, even with

our best undirected encoding method, an undi-

rected MST parser does not produce directed trees

of the same quality as its directed counterpart. At

the last part of this section we therefore present

a simple, O(n) time, local enhancement proce-

dure, that improves the score of the directed tree

generated from the output of the undirected MST

parser with respect to the edge scores of a stan-

dard directed MST parser. That is, our procedure

improves the output of the undirected MST parser

with respect to a directed model without having to

compute the MST of the latter, which would take

O(n2) time.

We conclude this section with a final remark

stating that the output class of our inference algo-

rithm is non-projective. That is, it can generate all

possible parse trees, projective and non-projective.

Undirected Encoding Our challenge here is to

design an encoding scheme that encodes direc-

tionality information into the graph of the undi-

rected MST problem. One approach would be to

compute directed edge weights according to a fea-

ture representation scheme for directed edges (e.g.

one of the schemes employed by existing directed

MST parsers) and then transform these directed

weights into undirected ones.

Specifically, given two vertices u and v with

directed edges (u, v) and (v, u), weighted with

sd(u, v) and sd(v, u) respectively, the goal is to

compute the weight su(ˆu, v) of the undirected

edge (ˆu, v) connecting them in the undirected

graph. We do this using a pre-determined function

f : R×R→ R, such that f(sd(u, v), sd(v, u)) =
su(ˆu, v). f can take several forms including mean,

product and so on. In our experiments the mean

proved to be the best choice.

Training with the above approach is imple-

mented as follows. w, the parameter vector of

the parser, consists of the weights of directed fea-

tures. At each training iteration, w is used for

the computation of sd(u, v) = w · φ(u, v) and

sd(v, u) = w · φ(v, u) (where φ(u, v) and φ(v, u)
are the feature representations of these directed

edges). Then, f is applied to compute the undi-

rected edge score su(ˆu, v). Next, the undirected

MST algorithm is run on the resulting weighted

undirected graph, and its output MST is trans-

formed into a directed tree (see below). Finally,

this directed tree is used for the update of w with

respect to the gold standard (directed) tree.

At test time, the vector w which resulted from

the training process is used for sd computations.

Undirected graph construction, undirected MST

computation and the undirected to directed tree

conversion process are conducted exactly as in

training. 9

Unfortunately, preliminary experiments in our

development setup revealed that this approach

yields parse trees of much lower quality compared

to the trees generated by the directed MST parser

that employed the original directed feature set. In

§ 5 we discuss these results in details.

An alternative approach is to employ an undi-

rected feature set. To implement this approach, we

employed the feature set of the MST parser ((Mc-

Donald et al., 2005a), Table 1) with one differ-

ence: some of the features are directional, distin-

guishing between the properties of the source (par-

ent) and the target (child) vertices. We stripped

those features from that information, which re-

sulted in an undirected version of the feature set.

Under this feature representation, training with

undirected inference is simple. w, the parameter

vector of the parser, now consists of the weights

9In evaluation setup experiments we also considered a
variant of this model where the training process utilized di-
rected MST inference. As this variant performed poorly, we
exclude it from our discussion in the rest of the paper.

2108

(a) (b) (c) (d)

Figure 2: An illustration of directing an undirected tree,
given a constrained root vertex: (a) The initial undirected
tree; (b) Directing the root’s outgoing edge; (c) Directing the
root’s child’s outgoing edges; (d) Directing the last remaining
edge, resulting in a directed tree.

(a) (b) (c)

(d) (e)

Figure 3: An illustration of the local enhancement procedure
for an edge (u, v) in the du-tree. Solid lines indicate edges in
the du-tree, while dashed lines indicate edges not in the du-
tree. (a) Example subtree; (b) Evaluate gain = sd(t, u) +
sd(u, v)−(sd(t, v)+sd(v, u)) = 4+3−(5+1) = 1; (c) In
case a modification is made, first replace (u, v) with (v, u);
and then (d) Remove the edge (t, u); and, finally, (e) Add the
edge (t, v).

of undirected features. Once the undirected MST

is computed by an undirected MST algorithm, w

can be updated with respect to an undirected vari-

ant of the gold parse trees. At test time, the al-

gorithm constructs an undirected graph using the

vector w resulted from the training process. This

graph’s undirected MST is computed and then

transformed into a directed tree.

Interestingly, although this approach does not

explicitly encode edge directionality information

into the undirected model, it performed very well

in our experiments (§ 5), especially when com-

bined with the local enhancement procedure de-

scribed below.

Scheme Conversion Once the undirected MST

is found, we need to direct its edges in order for the

end result to be a directed dependency parse tree.

Following a standard practice in graph-based de-

pendency parsing (e.g. (McDonald et al., 2005b)),

before inference is performed we add a dummy

root vertex to the initial input graph with edges

connecting it to all of the other vertices in the

graph. Consequently, the final undirected tree will

have a designated root vertex. In the resulting

directed tree, this vertex is constrained to have

only outgoing edges. As observed by Gómez-

Rodrı́guez and Fernández-González (2012), this

effectively forces the direction for the rest of the

edges in the tree.

Given a root vertex that follows the above con-

straint, and together with the definitive property of

directed trees stating that each non-root vertex in

the graph has exactly one incoming edge, we can

direct the edges of the undirected tree using a sim-

ple BFS-like algorithm (Figure 2). Starting with

the root vertex, we mark its undirected edges as

outgoing, mark the vertex itself as done and its de-

scendants as open. We then recursively repeat the

same procedure for each open vertex until there

are no such vertices left in the tree, at which point

we have a directed tree. Note that given the con-

straints on the root vertex, there is no other way

to direct the undirected tree edges. This procedure

runs in O(n) time, as it requires a constant num-

ber of operations for each of the n−1 edges of the

undirected spanning tree.

In the rest of the paper we refer to the directed

tree generated by the undirected and directed MST

parsers as du-tree and dd-tree respectively.

Local Enhancement Procedure As noted

above, experiments in our development setup

(§ 5) revealed that the directed parser performs

somewhat better than the undirected one. This

motivated us to develop a local enhancement

procedure that improves the tree produced by

the undirected model with respect to the directed

model without compromising our O(m) run

time. Our enhancement procedure is motivated

by development experiments, revealing the much

smaller gap between the quality of the du-tree and

dd-tree of the same sentence under undirected

evaluation compared to directed evaluation (§ 5

demonstrates this for test results).

For a du-tree that contains the vertex u and the

edges (t, u) and (u, v), we therefore consider the

replacement of (u, v) with (v, u). Note that after

this change our graph would no longer be a di-

rected tree, since it would cause u to have two par-

ents, v and t, and v to have no parent. This, how-

ever, can be rectified by replacing the edge (t, u)
with the edge (t, v).

2109

It is easy to infer whether this change results in

a better (lower weight) spanning tree under the di-

rected model by computing the equation: gain =
sd(t, u) + sd(u, v)− (sd(t, v) + sd(v, u)), where

sd(x, y) is the score of the edge (x, y) according to

the directed model. This is illustrated in Figure 3.

Given the du-tree, we traverse its edges and

compute the above gain for each. We then choose

the edge with the maximal positive gain, as this

forms the maximal possible decrease in the di-

rected model score using modifications of the type

we consider, and perform the corresponding mod-

ification. In our experiments we performed this

procedure five times per inference problem.10 This

procedure performs a constant number of opera-

tions for each of the n − 1 edges of the du-tree,

resulting in O(n) run time.

Output Class. Our undirected MST parser is

non-projective. This stems from the fact that the

undirected MST algorithms we discuss in § 3 do

not enforce any structural constraint, and particu-

larly the non-crossing constraint, on the resulting

undirected MST. As the scheme conversion (edge

directing) and the local enhancement procedures

described in this section do not enforce any such

constraint as well, the resulting tree can take any

possible structure.

5 Experiments and Results

Experimental setup We evaluate four models:

(a) The original directed parser (D-MST, (McDon-

ald et al., 2005b)); (b) Our undirected MST parser

with undirected features and with the local en-

hancement procedure (U-MST-uf-lep);11 (c) Our

undirected MST parser with undirected features

but without the local enhancement procedure (U-

MST-uf); and (d) Our undirected MST parser with

directed features (U-MST-df). All models are im-

plemented within the MSTParser code12.

The MSTParser does not prune its input graphs.

To demonstrate the value of undirected parsing for

sparse input graphs, we implemented the length-

dictionary pruning strategy which eliminates all

edges longer than the maximum length observed

10This hyperparameter was estimated once on our English
development setup, and used for all 20 multilingual test se-
tups.

11The directed edge weights for the local enhancement
procedure (sd in § 4) were computed using the trained D-
MST parser.

12http://www.seas.upenn.edu/˜strctlrn/

MSTParser/MSTParser.html

for each directed head-modifier POS pair in the

training data. An undirected edge ˆ(u, v) is pruned

iff both directed edges (u, v) and (v, u) are to be

pruned according to the pruning method. To esti-

mate the accuracy/graph-size tradeoff provided by

undirected parsing (models (b)-(d)), we apply the

pruning strategy only to these models leaving the

the D-MST model (model (a)) untouched. This

way D-MST runs on a complete directed graph

with n2 edges.

Our models were developed in a monolin-

gual setup: training on sections 2-21 of WSJ

PTB (Marcus et al., 1993) and testing on section

22. The development phase was devoted to the

various decisions detailed throughout this paper

and to the tuning of the single hyperparameter: the

number of times the local enhancement procedure

is executed.

We tested the models in 3 English and 17 mul-

tilingual setups. The English setups are: (a) PTB:

training on sections 2-21 of the WSJ PTB and test-

ing on its section 23; (b) GENIA: training with a

random sample of 90% of the 4661 GENIA cor-

pus (Ohta et al., 2002) sentences and testing on

the other 10%; and (c) QBank: a setup identi-

cal to (b) for the 3987 QuestionBank (Judge et

al., 2006) sentences. Multilingual parsing was

performed with the multilingual datasets of the

CoNLL 2006 (Buchholz and Marsi, 2006) and

2007 (Nilsson et al., 2007) shared tasks on multi-

lingual dependency parsing, following their stan-

dard train/test split. Following previous work,

punctuation was excluded from the evaluation.

Length-dictionary pruning reduces the number

of undirected edges by 27.02% on average across

our 20 setups (std = 11.02%, median = 23.85%),

leaving an average of 73.98% of the edges in the

undirected graph. In 17 of 20 setups the reduction

is above 20%. Note that the number of edges in

a complete directed graph is twice the number in

its undirected counterpart. Therefore, on average,

the number of input edges in the pruned undirected

models amounts to 73.98%
2

= 36.49% of the num-

ber of edges in the complete directed graphs. In

fact, every edge-related operation (such as feature

extraction) in the undirected model is actually per-

formed on half of the number of edges compared

to the directed model, saving run-time not only in

the MST-inference stage but in every stage involv-

ing these operations. In addition, some pruning

methods, such as length-dictionary pruning (used

2110

Swedish Danish Bulgarian Slovene Chinese Hungarian Turkish German Czech Dutch

D-MST 87.7/88.9 88.5/89.5 90.4/90.9 80.4/83.4 86.1/87.7 82.9/84.3 75.2/75.3 89.6/90.2 81.7/84.0 81.3/83.0

U-MST-uf-lep 86.9/88.4 87.7/88.9 89.7/90.6 79.4/82.8 84.8/86.7 81.8/83.3 74.9/75.3 88.7/89.5 79.6/82.5 78.7/80.7

U-MST-uf 84.3/87.8 85.1/89.0 87.0/90.2 76.1/82.4 81.1/86.4 79.9/82.9 73.1/75.0 86.9/89.0 76.1/81.9 73.4/80.5

U-MST-df 72.0/79.2 74.3/82.9 69.5/81.4 66.8/75.8 65.9/76.5 68.2/72.1 57.4/62.6 77.7/82.5 57.3/70.9 59.0/71.3

Japanese Spanish Catalan Greek Basque Portuguese Italian PTB QBank GENIA

D-MST 92.5/92.6 83.8/86.0 91.8/92.2 82.7/84.9 72.1/75.8 89.2/89.9 83.4/85.4 92.1/92.8 95.8/96.3 88.9/90.0

U-MST-uf-lep 92.1/92.2 83.5/85.9 91.3/91.9 81.8/84.4 71.6/75.8 88.3/89.3 82.4/84.7 90.6/91.7 95.6/96.2 87.2/88.9

U-MST-uf 91.4/92.4 80.4/85.4 89.7/91.7 78.7/84 68.8/75.4 85.8/89.3 79.4/84.4 88.5/91.8 94.8/96.0 85.0/89.0

U-MST-df 74.4/85.2 73.1/81.3 73.1/83.5 71.3/78.7 62.8/71.4 67.9/79.7 65.2/77.2 77.2/85.4 89.1/92.9 72.4/81.6

Table 1: Directed/undirected UAS for the various parsing models of this paper.

Swedish Danish Bulgarian Slovene Chinese Hungarian Turkish German Czech Dutch

D-MST 20.6 20.8 15.1 25.4 15.5 26.4 22.3 21.3 29.7 27.7

U-MST-uf-lep 18.0 24.5 22.1 29.6 16.7 27.2 19.3 17.9 26.2 24.4

Oracle 88.9 89.7 91.6 81.9 87.8 83.9 77.1 90.6 82.8 82.8

(+1.2) (+1.4) (+1.2) (+1.5) (+1.7) (+1) (+1.9) (+1) (+1.1) (+1.5)

Japanese Spanish Catalan Greek Basque Portuguese Italian PTB QBank GENIA

D-MST 5.7 26.7 23.4 28.9 23.4 22.6 22.5 27.8 5.3 33.7

U-MST-uf-lep 4.0 30.1 26.3 30.5 30.8 21.9 24.9 20.9 6.0 23.8

Oracle 93.1 84.8 92.6 83.9 74.1 89.9 84.4 92.8 96.4 89.7

(+0.6) (+1) (+0.8) (+1.2) (+2) (+0.7) (+1) (+0.7) (+0.8) (+0.8)

Table 2: Top two lines (per language): percentage of sentences for which each of the models performs better than the other
according to the directed UAS. Bottom line (Oracle): Directed UAS of an oracle model that selects the parse tree of the best
performing model for each sentence. Improvement over the directed UAS score of D-MST is given in parenthesis.

in this work) perform feature extraction only for

existing (un-pruned) edges, meaning that any re-

duction in the number of edges also reduces fea-

ture extraction operations.

For each model we report the standard directed

unlabeled attachment accuracy score (D-UAS). In

addition, since this paper explores the value of

undirected inference for a problem that is directed

in nature, we also report the undirected unlabeled

attachment accuracy score (U-UAS), hoping that

these results will shed light on the differences be-

tween the trees generated by the different models.

Results Table 1 presents our main results. While

the directed MST parser (D-MST) is the best per-

forming model across almost all test sets and eval-

uation measures, it outperforms our best model,

U-MST-uf-lep, by a very small margin.

Particularly, for D-UAS, D-MST outperforms

U-MST-uf-lep by up to 1% in 14 out of 20 setups

(in 6 setups the difference is up to 0.5%). In 5

other setups the difference between the models is

between 1% and 2%, and only in one setup it is

above 2% (2.6%). Similarly, for U-UAS, in 2 se-

tups the models achieve the same performance, in

15 setups the difference is less than 1% and in the

other setups the differences is 1.1% - 1.5%. The

average differences are 0.97% and 0.67% for D-

UAS and U-UAS respectively.

The table further demonstrates the value of the

local enhancement procedure. Indeed, U-MST-

uf-lep outperforms U-MST in all 20 setups in D-

UAS evaluation and in 15 out of 20 setups in U-

UAS evaluation (in one setup there is a tie). How-

ever, the improvement this procedure provides is

much more noticeable for D-UAS, with an aver-

aged improvement of 2.35% across setups, com-

pared to an averaged U-UAS improvement of only

0.26% across setups. While half of the changes

performed by the local enhancement procedure are

in edge directions, its marginal U-UAS improve-

ment indicates that almost all of its power comes

from edge direction changes. This calls for an im-

proved enhancement procedure.

Finally, moving to directed features (the U-

MST-df model), both D-UAS and U-UAS substan-

tially degrade, with more noticeable degradation

in the former. We hypothesize that this stems from

the idiosyncrasy between the directed parameter

update and the undirected inference in this model.

Table 2 reveals the complementary nature of our

U-MST-uf-lep model and the classical D-MST:

each of the models outperforms the other on an av-

erage of 22.2% of the sentences across test setups.

An oracle model that selects the parse tree of the

best model for each sentence would improve D-

UAS by an average of 1.2% over D-MST across

the test setups.

The results demonstrate the power of first-order

graph-based dependency parsing with undirected

inference. Although using a substantially different

inference algorithm, our U-MST-uf-lep model per-

forms very similarly to the standard MST parser

which employs directed MST inference.

2111

6 Discussion

We present a first-order graph-based dependency

parsing model which runs in edge linear time at

expectation and with very high probability. In ex-

tensive multilingual experiments our model per-

forms very similarly to a standard directed first-

order parser. Moreover, our results demonstrate

the complementary nature of the models, with our

model outperforming its directed counterpart on

an average of 22.2% of the test sentences.

Beyond its practical implications, our work pro-

vides a novel intellectual contribution in demon-

strating the power of undirected graph based meth-

ods in solving an NLP problem that is directed in

nature. We believe this contribution has the po-

tential to affect future research on additional NLP

problems.

The potential embodied in this work extends to

a number of promising research directions:

• Our algorithm may be used for efficient MST

computation in k-best trees methods which

are instrumental in margin-based training al-

gorithms. For example, McDonald et al.

(2005b) observed that k calls to the CLU

algorithm might prove to be too inefficient;

our more efficient algorithm may provide the

remedy.

• It may also be utilized as an infer-

ence/initialization subroutine as a part of

more complex approximation frameworks

such as belief propagation (e.g. Smith and

Eisner (2008), Gormley et al. (2015)).

• Finally, the complementary nature of the di-

rected and undirected parsers motivates the

development of methods for their combina-

tion, such as dual decomposition (e.g. Rush

et al. (2010), Koo et al. (2010a)). Partic-

ularly, we have shown that our undirected

inference algorithm converges to a different

solution than the standard directed solution

while still maintaining high quality (Table 2).

Such techniques can exploit this diversity to

produce a higher quality unified solution.

We intend to investigate all of these directions

in future work. In addition, we are currently ex-

ploring potential extensions of the techniques pre-

sented in this paper to higher order, projective and

non-projective, dependency parsing.

Acknowledgments

The second author was partly supported by a GIF

Young Scientists’ Program grant No. I-2388-

407.6/2015 - Syntactic Parsing in Context.

References

Otakar Boruvka. 1926. O Jistém Problému
Minimálnı́m (About a Certain Minimal Problem) (in
Czech, German summary). Práce Mor. Prı́rodoved.
Spol. v Brne III, 3.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, pages 149–164.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proc. of
CoNLL.

Bernard Chazelle. 2000. A minimum spanning tree
algorithm with inverse-ackermann type complexity.
J. ACM, 47(6):1028–1047.

Y. J. Chu and T. H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14.

Brandon Dixon, Monika Rauch, Robert, and Robert E.
Tarjan. 1992. Verification and sensitivity analysis
of minimum spanning trees in linear time. SIAM J.
Comput, 21:1184–1192.

J. Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards,
71B:233–240.

Jason Eisner and Noah Smith. 2005. Parsing with soft
and hard constraints on dependency length. In Proc.
IWPT.

Jason Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proc. of
COLING.

Jason Eisner. 2000. Bilexical grammars and their
cubic-time parsing algorithms. In Harry Bunt and
Anton Nijholt, editors, Advances in Probabilistic
and Other Parsing Technologies. Kluwer Academic
Publishers.

Harold N Gabow, Zvi Galil, Thomas Spencer, and
Robert E Tarjan. 1986. Efficient algorithms for
finding minimum spanning trees in undirected and
directed graphs. Combinatorica, 6(2):109–122.

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2012. Dependency parsing with undi-
rected graphs. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 66–76. Associa-
tion for Computational Linguistics.

2112

Carlos Gómez-Rodrı́guez, Daniel Fernández-
González, and Vı́ctor Manuel Darriba Bilbao.
2015. Undirected dependency parsing. Computa-
tional Intelligence, 31(2):348–384.

Matthew Gormley, Mark Dredze, and Jason Eisner.
2015. Approximation-aware dependency parsing by
belief propagation. Transactions of the Association
for Computational Linguistics, 3:489–501.

Michiel Hazewinkel. 2001. Ackermann function. In
Encyclopedia of Mathematics. Springer.

John Judge, Aoife Cahill, and Josef Van Genabith.
2006. Questionbank: Creating a corpus of parse-
annotated questions. In Proceedings of ACL-
COLING, pages 497–504.

David Karger, Philip Klein, and Robert Tarjan. 1995.
A randomized linear-time algorithm to find mini-
mum spanning trees. J. ACM, 42(2):321–328.

Valerie King. 1995. A simpler minimum spanning tree
verification algorithm. Algorithmica, 18:263–270.

Terry Koo and Michael Collins. 2010b. Efficient third-
order dependency parsers. In Proc. of ACL.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and
D. Sontag. 2010a. Dual decomposition for pars-
ing with non-projective head automata. In Proc. of
EMNLP.

Mitchell Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
linguistics, 19(2):313–330.

A.F.T. Martins, N.A. Smith, and E.P. Xing. 2009. Con-
cise integer linear programming formulations for de-
pendency parsing. In Proc. of ACL.

A.F.T. Martins, N.A. Smith, P.M.Q. Aguiar, and
M.A.T. Figueiredo. 2011. Dual decomposition with
many overlapping components. In Proc. of EMNLP.

A.F.T. Martins, Miguel Almeida, and N.A. Smith.
2013. Turning on the turbo: Fast third-order non-
projective turbo parsers. In Proc. of ACL.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proc. of EACL.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency
parsing. In Proc. of IWPT.

Ryan McDonald, Koby Crammer, and Giorgio Satta.
2005a. Online large-margin training of dependency
parsers. In Proc. of ACL.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005b. Non-projective dependency pars-
ing using spanning tree algorithms. In Proc. of HLT-
EMNLP.

Jaroslav Nesetril, Eva Milková, and Helena Ne-
setrilová. 2001. Otakar boruvka on minimum span-
ning tree problem translation of both the 1926 pa-
pers, comments, history. Discrete Mathematics,
233(1-3):3–36.

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The conll 2007 shared task on dependency parsing.
In Proceedings of the CoNLL shared task session of
EMNLP-CoNLL, pages 915–932. sn.

Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim. 2002.
The genia corpus: An annotated research abstract
corpus in molecular biology domain. In Proceed-
ings of the second international conference on Hu-
man Language Technology Research, pages 82–86.

Seth Pettie and Vijaya Ramachandran. 2002. An op-
timal minimum spanning tree algorithm. J. ACM,
49(1):16–34.

Sebastian Riedel, David Smith, and Andrew McCal-
lum. 2012. Parse, price and cut – delayed column
and row generation for graph based parsers. In Proc.
of EMNLP-CoNLL 2012.

Alexander Rush and Slav Petrov. 2012. Vine prun-
ing for efficient multi-pass dependency parsing. In
Proc. of NAACL.

Alexander M. Rush, David Sontag, Michael Collins,
and Tommi Jaakkola. 2010. On dual decomposition
and linear programming relaxations for natural lan-
guage processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’10, pages 1–11, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

David Smith and Jason Eisner. 2008. Dependency
parsing by belief propagation. In Proc. of EMNLP.

Robert Endre Tarjan. 1977. Finding optimum branch-
ings. Networks, 7(1):25–35.

Robert Endre Tarjan. 1983. Data Structures and Net-
work Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

Hao Zhang and Ryan McDonald. 2012. Generalized
higher-order dependency parsing with cube prun-
ing,. In Proc. of EMNLP-CoNLL 2012.

2113

