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CHAPTER I

INTRODUCTION

An edge-magic total labeling is motivated by the idea of magic squares in

number theory. In 1970 A. Kotzig and A. Rosa [6] defined an edge-magic total

labeling of a graph G as a bijection from V (G)
⋃

E(G) to the set of integers from

1 to |V (G)|+ |E(G)| such that the sum of labels on an edge and its two endpoints

is the same for all edges and G is called edge-magic (graph). They proved that

complete bipartite graphs Kn,m are edge-magic for all n and m, cycles Cn are

edge-magic for all n ≥ 3 and the disjoint union of n copies of P2 is edge-magic

where n is odd. In 1996 G. Ringel and A. S. Llado [8] proved: graphs with p

vertices and q edges are not edge-magic if q is even and p + q ≡ 2(mod 4) and

each vertex has odd degree and they also showed that wheels Wn are not edge-

magic when n ≡ 3(mod 4). In 1998 R. D. Godbold and P. J. Slater [5] found

the maximum and minimum values of magic sums for cycles Cn. In 1999 W. D.

Wallis, E. T. Baskoro, M. Miller and M. Slamin [10] enumerated every edge-magic

total labeling of complete graphs Kn and proved that n-suns and (n, 1)-kites are

edge-magic. R. Ichishima, R. M. Figueroa-Centeno and F. A. Muntaner-Batle [1]

proved that fans fn for all n, ladders Ln when n is odd and books Bn for all n are

edge-magic. In 2000 J. Wijaya and E. T. Baskoro [11] showed that the disjoint

union of m copies of Cn when m and n are odd and the disjoint union of m copies

of Pn where m is odd are edge-magic. This thesis surveys, collects many classes of

graphs that can admit an edge-magic total labeling and considers such a labeling

applied to some classes of disconnected graphs. Also proofs of some theorems are



2

rewritten for better understanding.

There are four chapters in this thesis. In Chapter I, we introduce some authors

who have studied edge-magic total labelings on many classes of graphs.

In Chapter II, we give definitions of varieties of graphs, a lemma and proposi-

tions that will be used in this thesis. Also examples are provided.

In Chapter III, edge-magic total labelings on many classes of connected graphs

are discussed and edge-magic total labelings on connected graphs: an (n, 1)-kite

and an (n, m)-pineapple, are shown.

In Chapter IV, edge-magic total labelings on some classes of disconnected

graphs are discussed and we also show edge-magic total labelings on the following

disconnected graphs: the graph m(n, 1)-kites, the disjoint union of m copies of

(n, 1)-kite, when m and n are odd and the graph mPn

⋃
mK1, the graph consists

of the disjoint union of m copies of Pn and the disjoint union of m copies of K1,

when m is odd and n is even.



CHAPTER II

DEFINITIONS AND EXAMPLES

We first introduce the definitions, follow by examples, a lemma and propositions

that are needed in the next chapters.

Definition 2.1. A graph G consists of a finite nonempty set V (G) of elements,

called vertices, and a set E(G) of 2-element subsets of V (G), called edges.

We call V (G) as the vertex-set of G and E(G) as the edge-set of G.

If {x, y} is an edge in a graph G, then an edge {x, y} joins x and y, or x and y

are adjacent, or an edge {x, y} is incident to x (or y). We usually write {x, y} as

xy.

Definition 2.2. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and

E(H) ⊆ E(G).

Definition 2.3. A graph G is connected if for any given pair of vertices a and b

there is a finite sequence of distinct vertices and edges of the form vi0 , ei1 , vi1 , . . . ,

ein , vin where vi0 = a and vin = b and ei1 = vi0vi1 , ei2 = vi1vi2 , . . . , ein = vin−1vin ,

and disconnected otherwise.

Definition 2.4. A component of a graph G is a connected subgraph of G that is

not contained in any larger connected subgraph of G.

Definition 2.5. The degree of a vertex v in graph G, denoted by deg v, is the

number of edges incident to v.

Definition 2.6. Let G1 and G2 be graphs with disjoint vertex-sets V (G1) and

V (G2) and edge-sets E(G1) and E(G2) respectively. The join of G1 and G2,
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denoted by G1+G2, is a graph with the vertex-set V (G1)
⋃

V (G2) and the edge-

set E(G1)
⋃

E(G2) and all edges joining vertices in V (G1) and V (G2).

Definition 2.7. A cycle Cn, n ≥ 3, is a graph which the vertex-set is

{v1, v2, . . . , vn} and the edge-set is {e1 = v1v2, e2 = v2v3, . . . , en−1 = vn−1vn, en = vnv1}.

Definition 2.8. A path Pn is a cycle with an edge deleted.

Definition 2.9. A complete graph Kn is a graph of n vertices which every two

distinct vertices are adjacent.

Definition 2.10. The wheel Wn, n ≥ 4, is the graph K1 + Cn.

Definition 2.11. The fan Fn is the graph Pn + K1.

Definition 2.12. An n-sun is a cycle Cn with an edge terminating in a vertex of

degree 1 attached to each vertex.

Definition 2.13. An (n, t)-kite is a graph which consists of a cycle Cn and a

path graph Pt+1 (the tail) attached to one vertex.

Definition 2.14. A complete bipartite graph Kn,m is a graph whose the vertex-set

can be partitioned into two subsets V1 and V2 where |V1| = n and |V2| = m and

two vertices are adjacent if they lie in different sets.

Definition 2.15. A star is a complete bipartite graph K1,n.

Definition 2.16. Let G1 and G2 be graphs with disjoint vertex-sets V (G1) and

V (G2) and edge-sets E(G1) and E(G2) respectively. The product of G1 and G2,

denoted by G1×G2, is a graph with the vertex-set V (G1)×V (G2) and specified by

putting (u1, u2) adjacent to (v1, v2) if either u1 = v1 and u2v2 ε E(G2) or u2 = v2

and u1v1 ε E(G1).

Definition 2.17. The ladder Ln is the graph Pn × P2.
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Definition 2.18. The book Bn is the graph K1,n × K2.

Definition 2.19. An (n, m)-pineapple is a graph which consists of a cycle Cn

and m copies of P2 attached to one vertex.

Definition 2.20. A tree is a connected graph with n vertices and n − 1 edges.

Definition 2.21. Let G1, G2, . . . , Gm be graphs with disjoint vertex-sets

V (G1), V (G2), . . . , V (Gm) and edge-sets E(G1), E(G2), . . . , E(Gm) respectively.

The disjoint union of G1, G2, . . . , Gm, denoted by G1

⋃
G2

⋃
. . .

⋃
Gm, is

a graph with the vertex-set V (G1)
⋃

V (G2)
⋃

. . .
⋃

V (Gm) and the edge-set

E(G1)
⋃

E(G2)
⋃

. . .
⋃

E(Gm).

If G1 = G2 = . . . = Gm = G then G1

⋃
G2

⋃
. . .

⋃
Gm is denoted by mG and

is called the disjoint union of m copies of G.

Definition 2.22. A caterpillar CPn1,...,nt is the graph K1,n1

⋃
. . .

⋃
K1,nt in which

each K1,ni
shares exactly one edge with K1,ni+1

and t−1 is the length of the skeleton

path.

Figure 2.1 and figure 2.2 show diagrams which represent C8, W4, K4, P5, F5,

8-sun, (4, 2)-kite, K2,4, K1,5, L5, B4, (5, 4)-pineapple and CP4,4,6,4.



6

W = K + C4C8 1 4

P5K4

F = P + K 8-sun5 15

K2,4(4,2)-kite

Figure 2.1: Diagrams which represent C8, W4, K4, P5, F5, 8-sun, (4, 2)-kite and

K2,4.
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 K1,5 L  = P  x P25 5

(5, 4)-  pineappleB = K    x K4 1,4 2

CP4,4,6,4

Figure 2.2: Diagrams which represent K1,5, L5, B4, (5, 4)-pineapple and CP4,4,6,4.
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Definition 2.23. An edge-magic total labeling on a graph G is a one-to-one

function from V (G)
⋃

E(G) onto the set {1, 2, ..., p + q} where p = |V (G)| and

q = |E(G)| with the property that, for any edge xy

f(x) + f(xy) + f(y) = k

for some constant k which is called a magic sum.

Definition 2.24. A graph G is called edge-magic if it admits an edge-magic total

labeling.

Example 2.25. A tree T with vertex-set V (T ) = {v1, v2, v3, v4, v5, v6} and

edge-set E(T ) = {v1v2, v2v3, v4v5, v5v6, v2v5} is edge-magic with k = 18, that

is

v

v

v

v

v

v

6

1

2

3

4

5

Define f : V (T )
⋃

E(T ) → {1, 2, . . . , 11} by f(v1) = 3, f(v2) = 11, f(v3) = 2,

f(v4) = 8, f(v5) = 1, f(v6) = 7, f(v1v2) = 4, f(v2v3) = 5, f(v4v5) = 9,

f(v5v6) = 10, f(v2v5) = 6.

For edge v1v2, f(v1) + f(v1v2) + f(v2) = 3 + 4 + 11 = 18.

For edge v2v3, f(v2) + f(v2v3) + f(v3) = 11 + 5 + 2 = 18.

For edge v4v5, f(v4) + f(v4v5) + f(v5) = 8 + 9 + 1 = 18.

For edge v5v6, f(v5) + f(v5v6) + f(v6) = 1 + 10 + 7 = 18.

For edge v2v5, f(v2) + f(v2v5) + f(v5) = 11 + 6 + 1 = 18.
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10

7

11

8

9
6

1

2

3

4

5

Figure 2.3: An edge-magic total labeling of a tree T .

Example 2.26. The graph in figure 2.4 is a famous graph which is disscussed by

Julius Petersen and is named Petersen graph after him in a paper of 1898 [12].

Petersen graph is edge-magic with k = 29.

1

3

69

4

25

20

14

16

24
18

21

15
13

23
2

10

5

87

22

19 17

12 11

Figure 2.4: An edge-magic total labeling of Petersen graph.

Example 2.27. 3C3, the disjoint union of 3 copies of C3, is edge-magic with

k = 24.
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21 3

45 6 7 8910 11 12

1314 1516 1718

Figure 2.5: An edge-magic total labeling of 3C3.

From now on we assume the following:

1. G is a graph with vertex-set V (G) = {v1, v2, . . . , vp} and edge-set E(G) =

{e1, e2, . . . , eq} that is |V (G)| = p and |E(G)| = q,

2. the degree of vi is di,

3. if G is edge-magic, then k is a magic sum, f is an edge-magic total labeling

and the label of vi is xi, i.e. f(vi) = xi,

4. M = p + q + 1,

5. S = {xi : 1 ≤ i ≤ p}, and

6. s =

p∑

i=1

xi.

Lemma 2.28. [10] If G is edge-magic, then

(a) kq =
(

M
2

)
+

p∑

i=1

(di − 1)xi, and

(b)
(

p+1
2

) ≤ s ≤ pq +
(

p+1
2

)
.

Proof. (a) Since G is edge-magic, the sum of all edge sums, the sum of labels of an

edge and its two endpoints, is kq which contains each label once and each vertex

label xi an additional di − 1 times. So we obtain (a).

(b) The sum s is between the sum of 1 to p and the sum of 1 + q to p + q or
p∑

i=1

i ≤ s ≤
p+q∑

i=1+q

i. Since

p∑

i=1

i =

(
p + 1

2

)

and

p+q∑

i=1+q

i = (1 + q) + (2 + q) + . . . +

(p + q) = pq +

(
p + 1

2

)

,
(

p+1
2

) ≤ s ≤ pq +
(

p+1
2

)
.
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Proposition 2.29. [8] If q is even, p + q ≡ 2(mod 4) and each vertex has odd

degree, then G is not edge-magic.

Proof. Suppose that G is edge-magic. By lemma 2.28(a)

kq =

(
M

2

)

+

p∑

i=1

(di − 1)xi

=
(p + q + 1)(p + q)

2
+ (d1 − 1)x1 + (d2 − 1)x2 + . . . + (dp − 1)xp.

Since p + q ≡ 2(mod 4), p + q = 4t + 2 for some t ∈ Z. So

kq =
(4t + 3)(4t + 2)

2
+ (d1 − 1)x1 + (d2 − 1)x2 + . . . + (dp − 1)xp

= (4t + 3)(2t + 1) + (d1 − 1)x1 + (d2 − 1)x2 + . . . + (dp − 1)xp.

Since q is even, 2 can divide kq. We consider only 4t + 3 , because 2t + 1 is odd

and 2 can divide (di − 1)xi for all i, since di is odd. Since 4t is even, 4t+3 is odd.

So 2 can not divide kq, a contradiction. Hence G is not edge-magic.

Definition 2.30. Let G be edge-magic. The duality f ′ of f (or dual labeling) is

defined by f ′(vi) = M − f(vi) for any vertex vi and f ′(ei) = M − f(ei) for any

edge ei .

Proposition 2.31. [10] If G is edge-magic, then the duality f ′ of f is an edge-

magic total labeling with magic sum k′ = 3M − k and the sum s′ = pM − s.

Proof. Assume G is edge-magic. Let f be an edge-magic total labeling, so f ′ is

one-to-one and onto. Let vivj be an edge in G. Then k = f(vi) + f(vivj) + f(vj).

So

k = M − f ′(vi) + M − f ′(vivj) + M − f ′(vj).

Then

k′ = f ′(vi) + f ′(vivj) + f ′(vj) = 3M − k.
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And

s′ =

p∑

i=1

f ′(vi)

=

p∑

i=1

M − f(vi)

= pM −
p∑

i=1

f(vi)

= pM − s.

Example 2.32. The graph G in figure 2.6 with the vertex-set V (G) =

{v1, v2, v3, v4} and the edge-set E(G) = {v1v2, v2v3, v3v4, v4v1, v1v3} is edge-magic

with k = 12.

Define f : V (G)
⋃

E(G) → {1, 2, . . . , 9} by f(v1) = 1, f(v2) = 2, f(v3) = 4,

f(v4) = 3, f(v1v2) = 9, f(v2v3) = 6, f(v3v4) = 5, f(v4v1) = 8, f(v1v3) = 7. Then

s = 10.

1

2

4

3

69

8 5

7

8

1

9

4

6
3

2

7

5

k=12     s= 10 k'=18     s'=30

Figure 2.6: An edge-magic total labeling and its duality.

Then the duality f ′ is defined by f ′(v1) = 9, f ′(v2) = 8, f ′(v3) = 6, f ′(v4) = 7,

f ′(v1v2) = 1, f ′(v2v3) = 4, f ′(v3v4) = 5, f ′(v4v1) = 2, f ′(v1v3) = 3 with k′ = 18

and s′ = 30.



CHAPTER III

EDGE-MAGIC TOTAL LABELINGS ON CONNECTED

GRAPHS

In this chapter, we discuss some connected graphs which are or are not

edge-magic and give some examples of small cases.

Theorem 3.1. [10] The wheel Wn when n ≡ 3(mod 4) is not edge-magic.

Proof. Since n ≡ 3(mod 4), there exists t ∈ Z
+ such that n = 4t + 3. Since the

number q of edges of Wn is 2n which is even,

p + q = (n + 1) + 2n

= 3n + 1

= 3(4t + 3) + 1

= 12t + 10

= 4(3t + 2) + 2.

Thus p+q ≡ 2(mod 4). Clearly every vertex of Wn has odd degree. By proposition

2.29, Wn is not edge-magic.

Theorem 3.2. [8] The complete graph Kn when n ≡ 4 or 6(mod 8) is not

edge-magic .

Proof. Case 1 : n ≡ 4(mod 8). There exists t ∈ Z
+ such that n = 8t + 4. Since
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the number q of edges of Kn is
(

n
2

)
which is always even,

p + q = n +

(
n

2

)

= n +
n2 − n

2

=
n(n + 1)

2

=
(8t + 4)(8t + 5)

2

= (4t + 2)(8t + 5)

= 32t2 + 36t + 10

= 4(8t2 + 9t + 2) + 2.

Thus p + q ≡ 2(mod 4). Since the degree of each vertex of Kn is n − 1 which is

odd and q is even, by proposition 2.29, Kn is not edge-magic.

Case 2 : n ≡ 6(mod 8). The proof is similar to the previous case.

Definition 3.3. [7] A well-spread sequence of length n is a sequence

A = (a1, a2, . . . , an) of positive integers with the following properties:

1. 0 < a1 < a2 < . . . < an

2. ai + aj �= ak + al whenever i �= j and k �= l (except, of course, when

{ai, aj} = {ak, al}).
And we define ρ(A) = an + an−1 − a2 − a1 + 1 and ρ∗(n) = minρ(A) where the

minimum is taked over all well-spread sequences A of length n.

Remarks 3.1. The values of ρ∗(n) are discussed in [6] and show that

1. ρ∗(7) = 30

2. ρ∗(8) = 43

3. ρ∗(n) ≥ n2 − 5n + 14 when n > 8.

Theorem 3.4. [10] If G is edge-magic which contains a complete subgraph with

n vertices, then the number of vertices and edges in G is at least ρ∗(n).
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Proof. Assume that G is edge-magic with a magic sum k and contains a complete

subgraph H with n vertices b1, b2, . . . , bn. Let f be an edge-magic total labeling

of G and f(bi) = ai for all i. So we can assume that a1 < a2 < . . .< an. Then

A = (a1, a2, . . . , an) is well-spread sequence. So f(bnbn−1) = k − an − an−1 and

f(b2b1) = k− a2 − a1. Then k− an − an−1 ≥ 1 and k− a2 − a1 ≤ p + q. Therefore

p + q ≥ an + an−1 − a2 − a1 + 1 = ρ∗(n).

Theorem 3.5. [10] No complete graph with more than 6 vertices is edge-magic.

Proof. Suppose a complete graph Kn where n > 6 is edge-magic.By theorem 3.4

n +

(
n

2

)

≥ ρ∗(n). (3.1)

For n = 7, by remarks 3.1 and the equation (3.1)

28 = 7 +

(
7

2

)

≥ ρ∗(7) = 30,

a contradiction.

For n = 8, by remarks 3.1 and the equation (3.1)

36 = 8 +

(
8

2

)

≥ ρ∗(8) = 43,

a contradiction.

For n > 8, by remarks 3.1 and the equation (3.1)

n +

(
n

2

)

≥ ρ∗(n) ≥ n2 − 5n + 14.

So

1

2
n2 − 11

2
n + 14 ≤ 0.

If 1
2
n2 − 11

2
n + 14 = 0, then n =

11±
√

112−8(48)

2
= 4 or 7.

If 1
2
n2 − 11

2
n + 14 < 0, then 4 < n < 7.

All cases are contradicted. Therefore Kn is not edge-magic when n > 6.
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n s k

odd 1
2
n(n + 1) 1

2
(5n + 3)

1
2
n(n + 3) 1

2
(5n + 5)

...
...

1
2
n(n + 2i − 1) 1

2
(5n + 2i + 1)

...
...

1
2
n(3n + 1) 1

2
(7n + 3)

even 1
2
n2 + n 5

2
n + 2

1
2
n2 + 2n 5

2
n + 3

...
...

1
2
n2 + in 5

2
n + i + 1

...
...

3
2
n2 7

2
n + 1

Table 3.1: The possible values s with corresponding magic sums k of cycles Cn.

Next we will consider some graphs which are edge-magic. A. Kotzig and A.

Rosa [6] proved that all cycles are edge-magic and R. D. Godbold and P. J. Slater

[5] can find the minimum and maximum values of magic sums k; later, W. D.

Wallis and others [10] can find many possible values of magic sums k. So we start

with the way to find magic sums k.

Proposition 3.6. [10] If cycle Cn is edge-magic, then possible values s with

corresponding magic sums k are in table 3.1.

Proof. Assume Cn is edge-magic. Since the degree of the cycle Cn is 2, by lemma

2.28(a)

kn =

(
2n + 1

2

)

+ s .
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So

kn =
2n(2n + 1)

2
+ s . (3.2)

The equation (3.2) is possible if n divides s. So s = n(k − 2n − 1).

By lemma 2.28(b),

n(n + 1)

2
≤ s ≤ n2 +

n(n + 1)

2
.

So

n(n + 1)

2
≤ s ≤ 2n2 + (n + 1)n

2
.

Therefore

n(n + 1)

2
≤ s ≤ n(3n + 1)

2
. (3.3)

By the equations (3.2) and (3.3) we can know all possible values s, and also can

get magic sums k which are corresponded to s.

We are going to show that Cn is edge-magic by giving the notations for Cn as

follows: V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {e1, e2, . . . , en} where e1 = v1v2,

e2 = v2v3, . . . , en−1 = vn−1vn, en = vnv1, that is

vn

v1

en

e
1

v2 e
2

v3

e
3

v4
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Theorem 3.7. [10] Every odd cycle Cn is edge-magic with k = 1
2
(5n + 3).

Proof. Let n = 2t + 1 for some t ∈ Z
+ and define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

i+1
2

for i = 1, 3, . . . , 2t + 1,

t + i+2
2

for i = 2, 4, . . . , 2t;

and

f(ei) =

⎧
⎪⎪⎨

⎪⎪⎩

4t + 2 − i for i = 1, 2, . . . , 2t,

4t + 2 for i = 2t + 1.

The labeling f is shown in figure 3.1.

3

t+3

2

t+2

1 t+1

2t+1

t

4t-2

4t-1

4t

4t+1
4t+2

2t+2

2t+3

Figure 3.1: An edge-magic total labeling of C2t+1 with k = 5t + 4 for some t ∈ Z
+.

The numbers 1, 2, 3, . . . , t + 1 are labels of v1, v3, v5, . . . , v2t+1. The numbers

t + 2, t + 3, t + 4, . . . , 2t + 1 are labels of v2, v4, v6, . . . , v2t. The numbers

2t + 2, 2t + 3, . . . , 4t + 1 are labels of e2t, e2t−1, . . . , e1 and the number 4t + 2 is

a label of e2t+1. So all numbers 1 through 2n = 4t + 2 are used exactly once.

Observe that

for ei; i = 1, 3, . . . , 2t − 1,

f(vi) + f(ei) + f(vi+1) = ( i+1
2

) + (4t + 2 − i) + (t + i+1+2
2

) = 5t + 4 = 1
2
(5n + 3),

for ei; i = 2, 4, . . . , 2t,

f(vi) + f(ei) + f(vi+1) = (t + i+2
2

) + (4t + 2 − i) + ( i+1+1
2

) = 5t + 4 = 1
2
(5n + 3),
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and f(v1) + f(e2t+1) + f(v2t+1) = 1 + (4t + 2) + (t + 1) = 5t + 4 = 1
2
(5n + 3).

Therefore f is an edge-magic total labeling with k = 1
2
(5n + 3) (this case is for

the smallest magic sum k in proposition 3.6).

By duality, we have the following corollary.

Corollary 3.2. [10] Every odd cycle Cn is edge-magic with k = 1
2
(7n + 3). �

Theorem 3.8. [10] Every odd cycle Cn is edge-magic with k = 3n + 1.

Proof. Let n = 2t + 1 for some t ∈ Z
+ and define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

i for i = 1, 3, . . . , 2t + 1,

2t + i + 1 for i = 2, 4, . . . , 2t;

and

f(ei) =

⎧
⎪⎪⎨

⎪⎪⎩

4t − 2i + 2 for i = 1, 2, . . . , 2t,

4t + 2 for i = 2t + 1.

The proof is similar to the previous theorem. Therefore f is an edge-magic total

labeling with k = 3n + 1.

By duality, we have the following corollary.

Corollary 3.3. [10] Every odd cycle Cn is edge-magic with k = 3n+2. �

Theorem 3.9. [10] Every even cycle Cn is edge-magic with k = 1
2
(5n + 4).

Proof. Assume n = 2t for some t ∈ Z
+.
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Case 1 : t is even. Let t = 2t′ for some t′ ∈ Z
+ and define a labeling f as

follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1
2

for i = 1, 3, . . . , 2t′ + 1,

6t′ for i = 2,

4t′+i
2

for i = 4, 6, . . . , 2t′,

i+2
2

for i = 2t′ + 2, 2t′ + 4, . . . , 4t′,

4t′+i−1
2

for i = 2t′ + 3, 2t′ + 5, . . . , 4t′ − 1;

and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t′ + 1 for i = 1,

4t′ for i = 2,

8t′ − i + 1 for i = 3, 4, . . . , 2t′ and i = 2t′ + 2, 2t′ + 3, . . . , 4t′ − 1,

8t′ − 1 for i = 2t′ + 1,

8t′ for i = 4t′.

From the given labeling f , the numbers 1, 2, . . . , t′ + 1 are labels of v1, v3, . . . ,

v2t′+1. The numbers t′ + 2, t′ + 3, . . . , 2t′ + 1 are labels of v2t′+2, v2t′+4, . . . , v4t′ .

The numbers 2t′ + 2, 2t′ + 3, . . . , 3t′ are labels of v4, v6, . . . , v2t′ . The numbers

3t′ + 1, 3t′ + 2, . . . , 4t′ − 1 are labels of v2t′+3, v2t′+5, . . . , v4t′−1. And the numbers

4t′ and 4t′ +1 are labels of e2 and e1. The numbers 4t′ +2, 4t′ +3, . . . , 6t′− 1 are

labels of e4t′−1, e4t′−2, . . . , e2t′+2. The number 6t′ is a label of v2. The numbers

6t′+1, 6t′+2, . . . , 8t′−2 are labels of e2t′ , e2t′−1, . . . , e3. And the numbers 8t′−1

and 8t′ are labels of e2t′+1 and e4t′ . So all numbers 1 through 2n = 4t = 8t′ are

used exactly once. Observe that

f(v1) + f(e1) + f(v2) = 1 + (4t′ + 1) + 6t′ = 10t′ + 2 = 1
2
(5n + 4),

f(v2) + f(e2) + f(v3) = 6t′ + (4t′) + 2 = 10t′ + 2 = 1
2
(5n + 4),

for ei; i = 3, 5, . . . , 2t′ − 1,
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f(vi) + f(ei) + f(vi+1) = i+1
2

+ (8t′ + 1 − i) + 4t′+i+1
2

= 10t′ + 2 = 1
2
(5n + 4),

for ei; i = 4, 6, . . . , 2t′,

f(vi) + f(ei) + f(vi+1) = 4t′+i
2

+ (8t′ + 1 − i) + i+1+1
2

= 10t′ + 2 = 1
2
(5n + 4),

f(v2t′+1) + f(e2t′+1) + f(v2t′+2) = t′ + 1 + (8t′ − 1) + t′ + 2 = 10t′ + 2 = 1
2
(5n + 4),

for ei; i = 2t′ + 2, 2t′ + 4, . . . , 2t′ − 2,

f(vi) + f(ei) + f(vi+1) = i+2
2

+ (8t′ − i + 1) + 4t′+i+1−1
2

= 10t′ + 2 = 1
2
(5n + 4),

for ei; i = 2t′ + 3, 2t′ + 5, . . . , 2t′ − 1,

f(vi) + f(ei) + f(vi+1) = 4t′+i−1
2

+ (8t′ − i + 1) + i+1+2
2

= 10t′ + 2 = 1
2
(5n + 4),

and f(v4t′) + f(e4t′) + f(v1) = 2t′ + 1 + (8t′) + 1 = 10t′ + 2 = 1
2
(5n + 4).

Case 2 : t is odd. Let t = 2t′ + 1 for some t′ ∈ Z
+ and define a labeling f as

follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1
2

for i = 1, 3, . . . 2t′ + 1,

6t′ + 3 for i = 2,

4t′+i+4
2

for i = 4, 6, . . . 2t′,

2t′+4
2

for i = 2t′ + 2,

i+3
2

for i = 2t′ + 3, 2t′ + 5, . . . 4t′ + 1,

4t′+i+2
2

for i = 2t′ + 4, 2t′ + 6, . . . 4t′,

2t′ + 3 for i = 4t′ + 2;
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and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t′ + 3 for i = 1,

4t′ + 2 for i = 2,

8t′ − i + 4 for i = 3, 4, . . . , 2t′ and i = 2t′ + 3, 2t′ + 4, . . . , 4t′,

8t′ + 4 for i = 2t′ + 1,

8t′ + 2 for i = 2t′ + 2,

6t′ + 2 for i = 4t′ + 1,

8t′ + 3 for i = 4t′ + 2.

We can verify similarly to the case 1. Therefore f is an edge-magic total labeling

with k = 1
2
(5n + 4).

By duality, we have the following corollary.

Corollary 3.4. [10] Every cycle Cn when 4 divides n is edge-magic with

k = 1
2
(7n + 2). �

Theorem 3.10. [10] Every cycle Cn when 4 divides n is edge-magic with k = 3n.

Proof. For n = 4 we use the same labeling from theorem 3.9. So assume n ≥ 8

and n = 4t for some t ∈ Z
+. Define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i for i = 1, 3, . . . 2t − 1,

4t + i + 1 for i = 2, 4, . . . , 2t − 2,

i + 1 for i = 2t, 2t + 2, . . . , 4t − 2,

4t + i for i = 2t + 1, 2t + 3, . . . 4t − 3,

2 for i = 4t − 1,

2n − 2 for i = 4t;



23

and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8t − 2i − 2 for i = 1, 2, . . . , 2t − 2 and i = 2t, 2t + 1, . . . , 4t − 3,

8t for i = 2t − 1,

8t − 1 for i = 4t − 2,

4t for i = 4t − 1,

4t + 1 for i = 4t.

We can verify similarly to the previous theorem. Therefore f is an edge-magic

total labeling with k = 3n.

By duality, we have the following corollary.

Corollary 3.5. [10] Every cycle Cn when 4 divides n is edge-magic with

k = 3n + 3. �

Table 3.2 shows all possible edge-magic total labelings for Cn when n ≤ 6.

Theorem 3.11. [10] Every path graph Pn is edge-magic.

Proof. Let f be an edge-magic total labeling from theorem 3.7, 3.8, 3.9 and 3.10

where the number 2n is a label of an edge. If we delete the edge which label 2n,

then a path graph Pn is edge-magic.
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cycle k s label x1,x2,. . . ,xn

C3 9 6 1,2,3

10 9 1,3,5

11 12 2,4,6

12 15 4,5,6

C4 12 12 1,3,2,6

13 16 1,4,6,5

1,5,2,8

C5 14 15 1,4,2,5,3

16 25 1,5,9,3,7

1,7,3,4,10

C6 17 24 1,5,2,3,6,7

1,6,7,2,3,5

1,5,4,3,2,9

18 30 1,8,4,2,5,10

19 36 1,6,11,3,7,8

1,7,3,12,5,8

1,8,7,3,5,12

1,8,9,4,3,11

2,7,11,3,4,9

3,4,5,6,11,7

Table 3.2: All possible edge-magic total labelings for Cn when n ≤ 6.
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Theorem 3.12. [8] A caterpillar CPn1, n2, ..., nt is edge-magic.

Proof. Define f by mapping consecutively (we start at the number 1) the non-

center vertices of the stars K1,n1 , K1,n3 , K1,n5 , . . . and then the non-center vertices

of the stars K1,n2 , K1,n4 , K1,n6 , . . . . And we map the edges of the stars K1,nt ,

K1,nt−1 , K1,nt−2 , . . . by starting at the edge which is incident to the vertex with

the highest label. Then all vertices and edges are labeled.

a

a+1

a+n   - 2

b+1

b

b+n      - 2

c+1

c

b+n     - 1

c+n     - 2

c+n     -1

c+n

c+n    +n  - 3

c+n    +n  - 2

i

ia+n  - 1

i+1

i+1

i+1

i+1

i+ 1

i+ 1

i+ 1 i

i

K

K

1, n i

1, n i+1

Figure 3.2: A labeling of caterpillar in the star K1,ni
and the star K1,ni+1

.

From the given labeling f , we consider the star K1,ni
and the star K1,ni+1

in figure

3.2. If a, a+1, . . . , a+ni − 1 are labels of the non-center vertices of the star K1,ni

and b, b+1, . . . , b+ni+1−1 are labels of the non-center vertices of the star K1,ni+1

and c, c + 1, . . . , c + ni+1 + ni − 2 are labels of all edges of the star K1,ni
and the

star K1,ni+1
, then the sum of labels of each edge and its two vertices which are

adjacent is a + b + c + ni+1 + ni − 2 that is the same for all edges.

Conjecture [8] Every tree is edge-magic.
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29

1

2

3

4

5

6 7

8

9

10

11 12

13

14

15

16

17

1819

20
21

2223
24

25

26
27

28

31 30

k=42

Figure 3.3: An edge-magic total labeling of CP4,4,6,4 with a magic sum k = 42.

We are going to show that an n-sun is edge-magic by giving the notations for

an n-sun as follows: V (n-sun) = {v1, v2, . . . , v2n} and E(n-sun) = {e1, e2, . . . , e2n}
where e1 = v1v2, e2 = v2v3, . . . , en−1 = vn−1vn, en = vnv1 and en+i = vn+ivi for

i = 1, 2, . . . , n, that is

v2n

e
2n

vn

v1

vn+ 1
en+1

en

e1 v2

v n+2

en+2
e
2

v3
e
3

en+3

vn+ 3

v4 e
n+4

vn+ 4

Theorem 3.13. [10] Every n-sun is edge-magic with k = 1
2
(11n + 3) when n is odd.

Proof. Let n = 2t + 1 for some t ∈ Z
+ and define a labeling f as follows:
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f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+4t+3
2

for i = 1, 3, . . . 2t + 1,

i+4
2

+ 3t for i = 2, 4, . . . , 2t,

i+2
2

for i = 2t + 2, 2t + 4, . . . , 4t,

i−2t+1
2

for i = 2t + 3, 2t + 5, . . . , 4t + 1,

1 for i = 4t + 2;

and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6t − i + 3 for i = 1, 2, . . . , 2t,

6t + 3 for i = 2t + 1,

10t − i + 5 for i = 2t + 2, 2t + 3, . . . , 4t + 1,

8t + 4 for i = 4t + 2.

From the given labeling f , the numbers 1, 2, . . . , t+1 are labels of v4t+2, v2t+3,

v2t+5, . . . , v4t+1. The numbers t + 2, t + 3, . . . , 2t + 1 are labels of v2t+2, v2t+4,

. . . , v4t. The numbers 2t + 2, 2t + 3, . . . , 3t + 2 are labels of v1, v3, . . . , v2t+1.

The numbers 3t + 3, 3t + 4, . . . , 4t + 2 are labels of v2, v4, . . . , v2t. The numbers

4t + 3, 4t + 4, . . . , 6t + 2 are labels of e2t, e2t−1, . . . , e1. The numbers 6t + 3 is a

label of e2t+1. The numbers 6t + 4, 6t + 5, . . . , 8t + 3 are labels of e4t+1, e4t, . . . ,

e2t+2. The number 8t+4 is a label of e4t+2. So all numbers 1 through 4n = 8t+4

are used exactly once. Observe that

for ei; i = 1, 3, . . . , 2t − 1,

f(vi) + f(ei) + f(vi+1) = i+4t+3
2

+ (6t− i + 3) + i+1+4
2

+ 3t = 11t + 7 = 1
2
(11n + 3),

for ei; i = 2, 4, . . . , 2t,

f(vi) + f(ei) + f(vi+1) = i+4
2

+ 3t + (6t− i + 3) + i+1+4t+3
2

= 11t + 7 = 1
2
(11n + 3),

for e2t+1,

f(v2t+1) + f(e2t+1) + f(v1) = 2t+1+4t+3
2

+ (6t + 3) + 1+4t+3
2

= 11t + 7 = 1
2
(11n + 3),
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for ei; i = 2t + 2, 2t + 4, . . . , 4t,

f(vi) + f(ei) + f(vi−(2t+1)) = i+2
2

+ (10t − i + 5) + i−2t−1+4t+3
2

= 11t + 7 = 1
2
(11n + 3),

for ei; i = 2t + 3, 2t + 5, . . . , 4t + 1,

f(vi) + f(ei) + f(vi−(2t+1)) = i−2t+1
2

+ (10t − i + 5) + i−2t−1+4
2

+ 3t

= 11t + 7 = 1
2
(11n + 3),

and f(v2t+1) + f(e4t+2) + f(v4t+2) = 3t + 2 + (8t + 4) + 1 = 11t + 7 = 1
2
(11n + 3).

Therefore f is an edge-magic total labeling with k = 1
2
(11n+3) when n is odd.

Theorem 3.14. [10] Every n-sun is edge-magic with k = 1
2
(11n + 4) when n is

even.

Proof. Let n = 2t for some t ∈ Z
+.

Case 1 : t is even. Let t = 2t′ for some t′ ∈ Z
+ and define a labeling f as

follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+8t′+1
2

for i = 1, 3, . . . , 2t′ + 1,

10t′ for i = 2,

i+12t′
2

for i = 4, 6, . . . , 2t′

i+8t′+2
2

for i = 2t′ + 2, 2t′ + 4, . . . , 4t′

i+12t′−1
2

for i = 2t′ + 3, 2t′ + 5, . . . , 4t′ − 1

i+1
2

for i = 4t′ + 1, 4t′ + 3, . . . , 6t′ + 1,

1 for i = 4t′ + 2,

i
2
− 2t′ + 1 for i = 4t′ + 4, 4t′ + 6, . . . , 6t′,

i+2
2

for i = 6t′ + 2, 6t′ + 4, . . . , 8t′ − 2,

2 for i = 8t′,

i+1
2

− 2t′ for i = 6t′ + 3, 6t′ + 5, . . . , 8t′ − 1;
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and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8t′ + 1 for i = 1,

8t′ for i = 2,

12t′ − i + 1 for i = 3, 4, . . . , 2t′

and i = 2t′ + 2, 2t′ + 3, . . . , 4t′ − 1,

12t′ − 1 for i = 2t′ + 1,

12t′ for i = 4t′,

20t′ − i + 1 for i = 4t′ + 1, 4t′ + 3, . . . , 6t′ + 1,

12t′ + 1 for i = 4t′ + 2,

20t′ − i + 1 for i = 4t′ + 4, 4t′ + 6, . . . , 6t′,

20t′ − i for i = 6t′ + 2, 6t′ + 4, . . . , 8t′ − 2,

20t′ − i + 2 for i = 6t′ + 3, 6t′ + 5, . . . , 8t′ − 1,

16t′ − 1 for i = 8t′.

From the given labeling f , the numbers 1 and 2 are labels of v4t′+2 and v8t′ . The

numbers 3, 4, . . . , t′ + 1 are labels of v4t′+4, v4t′+6, . . . , v6t′ . The numbers t′ + 2,

t′ + 3, . . . , 2t′ are labels of v6t′+3, v6t′+5, . . . , v8t′−1. The numbers 2t′ + 1, 2t′ + 2,

. . . , 3t′ +1 are labels of v4t′+1, v4t′+3, . . . , v6t′+1. The numbers 3t′ +2, 3t′ +3, . . . ,

4t′ are labels of v6t′+2, v6t′+4, . . . , v8t′−2. The numbers 4t′ + 1, 4t′ + 2, . . . , 5t′ + 1

are labels of v1, v3, . . . , v2t′+1. The numbers 5t′ + 2, 5t′ + 3, . . . , 6t′ + 1 are labels

of v2t′+2, v2t′+4, . . . , v4t′ . The numbers 6t′ + 2, 6t′ + 3, . . . , 7t′ are labels of v4, v6,

. . . , v2t′ . The numbers 7t′ + 1, 7t′ + 2, . . . , 8t′ − 1 are labels of v2t′+3, v2t′+5, . . . ,

v4t′−1. The numbers 8t′ and 8t′ + 1 are labels of e2 and e1. The numbers 8t′ + 2,

8t′ + 3, . . . , 10t′ − 1 are labels of e4t′−1, e4t′−2, . . . , e2t′+2. The number 10t′ is a

label of v2. The numbers 10t′ + 1, 10t′ + 2, . . . , 12t′ − 2 are labels of e2t′ , e2t′−1,
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. . . , e3. The numbers 12t′ − 1, 12t′ and 12t′ + 1 are labels of e2t′+1, e4t′ and e4t′+2.

The numbers 12t′ + 2, 12t′ + 3, 12t′ + 4, 12t′ + 5, . . . , 14t′ − 2, 14t′ − 1 are labels

of e8t′−2, e8t′−1, e8t′−4, e8t′−3, . . . , e6t′+2, e6t′+3. The numbers 14t′, 14t′ + 1, . . . ,

16t′ − 2 are labels of e6t′+1, e6t′ , . . . , e4t′+3. The numbers 16t′ − 1 and 16t′ are

labels of e8t′ and e4t′+1. So all numbers 1 through 4n = 8t = 16t′ are used exactly

once. Observe that

for e1,

f(v1)+ f(e1)+ f(v2) = 4t′ +1+(8t′ +1)+10t′ = 22t′ +2 = 11t+2 = 1
2
(11n+4),

for e2,

f(v2) + f(e2) + f(v3) = 10t′ + (8t′) + 4t′ + 2 = 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for ei; i = 3, 5, . . . , 2t′ + 1,

f(vi) + f(ei) + f(vi+1) = i+8t′+1
2

+ (12t′ + 1 − i) + i+1+12t′
2

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for ei; i = 4, 6, . . . , 2t′,

f(vi) + f(ei) + f(vi+1) = i+12t′
2

+ (12t′ + 1 − i) + i+1+8t′+1
2

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for ei; i = 2t′ + 2, 2t′ + 4, . . . , 4t′,

f(vi) + f(ei) + f(vi+1) = i+8t′+2
2

+ (12t′ + 1 − i) + i+1+12t′+1
2

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for ei; i = 2t′ + 3, 2t′ + 5, . . . , 4t′ − 1,

f(vi) + f(ei) + f(vi+1) = i+12t′−1
2

+ (12t′ + 1 − i) + i+1+8t′+2
2

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for e4t′+1,

f(v1) + f(e4t′+1) + f(v4t′+1) = 4t′ + 1 + (16t′) + 2t′ + 1

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),
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for e4t′+2,

f(v2)+f(e4t′+2)+f(v4t′+2) = 10t′+(12t′+1)+1 = 22t′+2 = 11t+2 = 1
2
(11n+4),

for ei; i = 4t′ + 3, 4t′ + 5, . . . , 6t′ + 1,

f(vi−4t′) + f(ei) + f(vi) = i−4t′+8t′+1
2

+ (20t′ − i + 1) + ( i+1
2

)

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for ei; i = 4t′ + 4, 4t′ + 6, . . . , 6t′,

f(vi−4t′) + f(ei) + f(vi) = i−4t′+12t′
2

+ (20t′ − i + 1) + i
2
− 2t′ + 1

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for ei; i = 6t′ + 2, 6t′ + 4, . . . , 8t′ − 2,

f(vi−4t′) + f(ei) + f(vi) = i−4t′+8t′+2
2

+ 20t′ − i + i+2
2

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for ei; i = 6t′ + 3, 6t′ + 5, . . . , 8t′ − 1,

f(vi−4t′) + f(ei) + f(vi) = i−4t′+12t′−1
2

+ 20t′ − i + 2 + i+1
2

− 2t′

= 22t′ + 2 = 11t + 2 = 1
2
(11n + 4),

for e8t′ ,

f(v4t′)+f(e8t′)+f(v8t′) = 6t′+1+(16t′−1)+2 = 22t′+2 = 11t+1 = 1
2
(11n+4).

Case 2 : t is odd. Let t = 2t′ + 1 for some t′ ∈ Z
+ and define a labeling f as

follows:
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f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+8t′+5
2

for i = 1, 3, . . . , 2t′ + 1,

10t′ + 5 for i = 2,

i+12t′+8
2

for i = 4, 6, . . . , 2t′,

5t′ + 4 for i = 2t′ + 2,

i+8t′+7
2

for i = 2t′ + 3, 2t′ + 5, . . . , 4t′ + 1,

i+12t′+6
2

for i = 2t′ + 4, 2t′ + 6, . . . , 4t′,

6t′ + 5 for i = 4t′ + 2,

i+1
2

for i = 4t′ + 3, 4t′ + 5, . . . , 6t′ + 3,

1 for i = 4t′ + 4,

i
2
− 2t′ + 1 for i = 4t′ + 6, 4t′ + 8, . . . , 6t′ + 2,

3t′ + 3 for i = 6t′ + 4,

i+3
2

for i = 6t′ + 5, 6t′ + 7, . . . , 8t′ + 1,

2 for i = 8t′ + 3,

i
2
− 2t′ for i = 6t′ + 6, 6t′ + 8, . . . , 8t′ + 2,

3 for i = 8t′ + 4;
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and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8t′ + 5 for i = 1,

8t′ + 4 for i = 2,

12t′ − i + 6 for i = 3, 4, . . . , 2t′,

and for i = 2t′ + 3, 2t′ + 4, . . . , 4t′,

12t′ + 6 for i = 2t′ + 1,

12t′ + 4 for i = 2t′ + 2,

10t′ + 4 for i = 4t′ + 1,

12t′ + 5 for i = 4t′ + 2,

20t′ − i + 11 for i = 4t′ + 3,

and for i = 4t′ + 5, 4t′ + 7, . . . , 6t′ + 3,

and for i = 6t′ + 6, 6t′ + 8, . . . , 8t′ + 2,

12t′ + 7 for i = 4t′ + 4,

14t′ + 6 for i = 6t′ + 4,

20t′ − i + 9 for i = 4t′ + 6, 4t′ + 8, . . . , 6t′ + 2,

and for i = 6t′ + 5, 6t′ + 7, . . . , 8t′ + 1,

16t′ + 7 for i = 8t′ + 3,

16t′ + 5 for i = 8t′ + 4.

We can verify similarly to the previous case. Therefore f is an edge-magic total

labeling with k = 1
2
(11n + 4) when n is even.
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Figure 3.4: Edge-magic total labelings of 5-sun and 6-sun with magic sums k = 29

and k = 35 respectively.

We are going to show that an (n, 1)-kite is edge-magic by giving the

notations as follows: V ((n, 1)-kite) = {v1, v2, . . . , vn, vn+1} and E((n, 1)-kite) =

{e1, e2, . . . , en, en+1} where ei = vivi+1 for i = 1, 2, . . . , n − 1 and en = vnv1 and

en+1 = vnvn+1, that is

1
vn+1

vn-1

v

en-1

ne
en+1 v

n

Theorem 3.15. An (n, 1)-kite is edge-magic with k = 1
2
(7n + 9) when n is odd.

Proof. Let n = 2t + 1 for some t ∈ Z
+ and define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4t + 7−i
2

for i = 1, 3, . . . , 2t + 1,

3t + 6−i
2

for i = 2, 4, . . . , 2t,

4t + 4 for i = 2t + 2;
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and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i + 2 for i = 1, 2, . . . , 2t,

2 for i = 2t + 1,

1 for i = 2t + 2.

The numbers 1 and 2 are labels of e2t+2 and e2t+1. The numbers 3, 4, . . . , 2t+2

are labels of e1, e2, . . . , e2t. The numbers 2t + 3, 2t + 4, . . . , 3t + 2 are labels

of v2t, v2t−2, . . . , v2. The numbers 3t + 3, 3t + 4, . . . , 4t + 3 are labels of v2t+1,

v2t−1, . . . , v1. And the number 4t+4 is a label of v2t+2. So all numbers 1 through

2n = 4t + 4 are used exactly once. Observe that

for ei; i = 1, 3, . . . , 2t − 1,

f(vi) + f(ei) + f(vi+1) = 4t + 7−i
2

+ (i + 2) + 3t + 6−(i+1)
2

= 7t + 8 = 1
2
(7n + 9),

for ei; i = 2, 4, . . . , 2t,

f(vi) + f(ei) + f(vi+1) = 3t + 6−i
2

+ (i + 2) + 4t + 7−(i+1)
2

= 7t + 8 = 1
2
(7n + 9),

for e2t+1,

f(v2t+1) + f(e2t+1) + f(v1) = 4t + 7−2t−1
2

+ (2) + 4t + 3 = 7t + 8 = 1
2
(7n + 9),

for e2t+2,

f(v2t+2) + f(e2t+2) + f(v2t+1) = 4t + 4 + (1) + 3t + 3 = 7t + 8 = 1
2
(7n + 9).

Therefore f is an edge-magic total labeling with k = 1
2
(7n+9) when n is odd.

By duality, we have the following corollary.

Corollary 3.16. [10] An (n, 1)-kite is edge-magic with k = 1
2
(5n + 9) when n is

odd. �

Theorem 3.17. An (n, 1)-kite is edge-magic with k = 3n + 4 when n is odd.

Proof. Let n = 2t + 1 for some t ∈ Z
+ and define a labeling f as follows:
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f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i + 1 for i = 1, 3, . . . , 2t + 1,

2t + i + 2 for i = 2, 4, . . . , 2t,

4t + 4 for i = 2t + 2;

and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4t − 2i + 3 for i = 1, 2, . . . , 2t,

4t + 3 for i = 2t + 1,

1 for i = 2t + 2.

It is easy to verify that f is an edge-magic total labeling with k = 3n + 4 when n

is odd.

By duality, we have the following corollary.

Corollary 3.18. An (n, 1)-kite is edge-magic with k = 3n + 5 when n is odd. �

k=20
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53

Figure 3.5: Edge-magic total labelings of (5, 1)-kites with magic sums k = 22,

k = 19 and k = 20..
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Theorem 3.19. [10] An (n, 1)-kite is edge-magic with k = 1
2
(5n + 10) when n is

even.

Proof. Let n = 2t for some t ∈ Z
+.

Case 1 : t is even. Let t = 2t′ for some t′ ∈ Z
+ and define a labeling f as

follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+3
2

for i = 1, 3, . . . , 2t′ + 1,

6t′ + 1 for i = 2,

4t′+i+2
2

for i = 4, 6, . . . , 2t′,

i+4
2

for i = 2t′ + 2, 2t′ + 4, . . . , 4t′,

4t′+i+1
2

for i = 2t′ + 3, 2t′ + 5, . . . , 4t′ − 1,

8t′ + 2 for i = 4t′ + 1;

and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t′ + 2 for i = 1,

4t′ + 1 for i = 2

8t′ − i + 2 for i = 3, 4, . . . , 2t′ and i = 2t′ + 2, 2t′ + 3, . . . , 4t′ − 1,

8t′ for i = 2t′ + 1,

8t′ + 1 for i = 4t′,

1 for i = 4t′ + 1.

It is easy to verify that f is an edge-magic total labeling with k = 1
2
(5n + 10)

when n = 2t where t is even.

Case 2 : t is odd. Let v1, v2, . . . , vn+1 be the vertices and for i = 1, 2, . . . , n − 1,

ei = vivi+1 and en = vnv1 and en+1 = vn−1vn+1, that is
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v

v

n

n-1
vn+1

vn-2
en-2

en-1

en+1

Let t = 2t′ + 1 for some t′ ∈ Z
+ and define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+3
2

for i = 1, 3, . . . , 2t′ + 1,

6t′ + 4 for i = 2,

4t′+i+6
2

for i = 4, 6, . . . , 2t′,

2t′+6
2

for i = 2t′ + 2,

i+5
2

for i = 2t′ + 3, 2t′ + 5, . . . , 4t′ + 1,

4t′+i+4
2

for i = 2t′ + 4, 2t′ + 6, . . . , 4t′,

2t′ + 4 for i = 4t′ + 2,

8t′ + 6 for i = 4t′ + 3;
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and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4t′ + 4 for i = 1,

4t′ + 3 for i = 2,

8t′ − i + 5 for i = 3, 4, . . . , 2t′,

and for i = 2t′ + 3, 2t′ + 4, . . . , 4t′,

8t′ + 5 for i = 2t′ + 1,

8t′ + 3 for i = 2t′ + 2,

6t′ + 3 for i = 4t′ + 1,

8t′ + 4 for i = 4t′ + 2,

1 for i = 4t′ + 3.

It is easy to verify that f is an edge-magic total labeling with k = 1
2
(5n + 10)

when n = 2t where t is odd.

By duality, we have the following corollary.

Corollary 3.20. An (n, 1)-kite is edge-magic with k = 1
2
(7n + 8) when n is

odd. �

Theorem 3.21. [3] The fan Fn is edge-magic with k = 3n + 3 for all positive

integer n.

Proof. Let vi be the vertex of Fn for i = 0, 1, . . . , n and ei = v0vi for i = 1, . . . , n

and en+i = vivi+1 for i = 1, . . . , n − 1, that is
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Define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for i = 0,

1−5(−1)i+6i
4

for i = 1, . . . , n;

and

f(ei) =

⎧
⎪⎪⎨

⎪⎪⎩

12n+7+5(−1)i−6i
4

for i = 1, . . . , n,

6n − 3i + 1 for i = n + 1, . . . , 2n − 1.

Case 1 : n is even. Let n = 2t for some t ∈ Z
+. From the given labeling f ,

the number 1 is a label of v0. The numbers 2, 5, 8, . . . , 3t − 1 are labels of v2,

v4, v6, . . . , v2t. The numbers 3, 6, 9, . . . , 3t are labels of v1, v3, v5, . . . , v2t−1.

The numbers 4, 7, 10, . . . , 3t + 1, 3t + 4, . . . , 6t − 2 are labels of e4t−1, e4t−2,

. . . , e3t+2, e3t+1, . . . , e2t+1. And the numbers 3t + 2 and 3t + 3 are labels of e2t−1

and e2t. The numbers 3t + 5 and 3t + 6 are labels of e2t−3 and e2t−2. Until the

numbers 6t − 4 and 6t − 3 are labels of e3 and e4. And the numbers 6t − 1 and

6t are labels of e1 and e2. Observe that

for ei; i = 1, 2, . . . , 2t,

f(v0) + f(ei) + f(vi) = 1 + (24t+7+5(−1)i−6i
4

) + 1−5(−1)i+6i
4

= 6t + 3 = 3n + 3,

for ei; i = 2t + 1, 2t + 2, . . . , 4t − 1,

f(vi−2t) + f(ei) + f(vi+1−2t) = 1−5(−1)i−2t+6(i−2t)
4

+ (12t − 3i + 1) + 1−5(−1)i+1−2t+6(i+1−2t)
4

= 6t + 3 = 3n + 3.
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Case 2 : n is odd. The proof is similar to the previous case.

Therefore f is an edge-magic total labeling of Fn .

By duality, we have the following corollary.

Corollary 3.22. The Fn is edge-magic with k = 6n− 3. �
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Figure 3.6: Edge-magic total labelings of F3, F4 and F5 with magic sums k = 12,

k = 15 and k = 18 respectively.

Theorem 3.23. [10] The complete bipartite graph Kn,m is edge-magic for any n

and m with k = (m + 2)(n + 1).

Proof. Let v1, v2, . . . , vn be the vertices in the set V1 and vn+1, vn+2, . . . , vn+m

the vertices in the set V2. And ei,j = vivj for i = 1, 2, . . . , n and j = n + 1, n+2,

. . . , n + m are edges of Kn,m, that is
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v v v v

v v v v

1 2 n-1 n

n+1 n+ 2 n+m- 1 n+m

e e1, n+ 1 n, n+m

Define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

i for i = 1, 2, . . . , n,

(i − n)(n + 1) for i = n + 1, n + 2, . . . , n + m;

and for i = 1, 2, . . . , n and j = n + 1, n + 2, . . . , n + m,

f(ei,j) = (m + n − j + 2)(n + 1) − i.

From the given labeling f , the numbers 1, 2, . . . , n are labels of v1, v2, . . . , vn.

The numbers (n + 1), 2(n + 1), . . . , m(n + 1) are labels of vn+1, vn+2, . . . , vn+m.

The numbers n + 2, n + 3, . . . , 2n + 1 are labels of en,n+m, en−1,n+m, . . . , e1,n+m.

The numbers 2n + 3, 2n + 4, . . . , 3n + 2 are labels of en,n+m−1, en−1,n+m−1, . . . ,

e1,n+m−1. Until the numbers m(n + 1) + 1, m(n + 1) + 2, . . . , m(n + 1) + n are

labels of en,n+1, en−1,n+1, . . . , e1,n+1. So all numbers 1 through m(n + 1) + n are

used exactly once. Observe that

for ei,j; i = 1, 2, . . . , n and j = n + 1, n + 2, . . . , n + m,

f(vi) + f(ei,j) + f(vj) = i + (m + n − j + 2)(n + 1) − i + (j − n)(n + 1)

= (m + 2)(n + 1).

Therefore f is an edge-magic total labeling with k = (m + 2)(n + 1).

By duality, we have the following corollary.

Corollary 3.24. The complete bipartite graph Kn,m is edge-magic with

k = (2m + 1)(n + 1). �
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W.D. Wallis and the others [10] enumerated every edge-magic total labeling

for K2,3 in the case 14 ≤ k ≤ 22 and K3,3 for the case 18 ≤ k ≤ 30 and k must be

even which are shown in table 3.3.

Km,n k labeling for V1 labeling for V2

K2,3 14 no solutions

15 1,2 3,6,9

16 1,2 5,8,11

17 5,6 1,4,9

18 1,5 9,10,11

19 6,7 3,8,11

20 10,11 1,4,7

21 10,11 3,6,9

22 no solutions

K3,3 18 no solutions

20 1,2,3 4,8,12

22 1,2,3 7,11,15

24 no solutions

26 1,5,9 13,14,15

28 4,8,12 13,14,15

30 no solutions

Table 3.3: Edge-magic total labelings of K2,3 in the case 14 ≤ k ≤ 22 and K3,3

for the case 18 ≤ k ≤ 30 and k must be even.

Lemma 3.6. [10] If a star K1,n is edge-magic, then the center receives label 1,

n + 1 or 2n + 1.



44

Proof. Assume that the center receives label x. Then by lemma 2.28(a)

kn =

(
2n + 2

2

)

+ (n − 1)x. (3.4)

Then

(n − 1)x = kn − (n + 1)(2n + 1).

So

x − x

n
= k − 2n − 3 − 1

n
.

Then x ≡ 1(mod n). Since all labels of star are 1, 2, . . . , 2n + 1, x can be 1, n + 1

or 2n + 1.

Theorem 3.25. [10] There are 3 · 2n edge-magic total labelings of star K1,n up to

equivalence.

Proof. Let f be the edge-magic total labeling of star K1,n and c the label of the

center v0 and xi the label of the edge ei = v0vi where vi is the peripheral vertex

for i = 1, 2, . . . , n. By lemma 3.6 and the equation (3.4), we have k = 2n + 4,

3n+3 and 4n+2 if c is 1, n+1 and 2n+1 respectively. Since f is an edge-magic

total labeling, xi + yi = k − c = T where yi = f(ei) and ei is an edge which is

incident to xi. So T = 2n + 3, 2n + 2 or 2n + 1. Then there is exactly one way

to partition the 2n + 1 integers 1, 2, . . . , 2n + 1 into n + 1 set. i.e.{c}, {a1, b1},
{a2, b2},. . . , {an, bn} where ai + bi = T . For convenience, we choose the labels so

that ai < bi for every i and a1 < a2 < . . . < an. Then up to isomorphism, one

can assume that {xi, yi}={ai, bi}. Each of these n equations provides two choices,

according as xi=ai or bi. So each of the three values of c gives 2n edge-magic total

labelings of star K1,n.

Theorem 3.26. [3] The book Bn is edge-magic with k = 7n + 6 for all positive

integer n.
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Proof. Let ui and vi be the vertices of Bn for i = 0, 1, . . . , n and ei = uivi for

i = 0, 1, . . . , n and en+i = v0vi for i = 1, . . . , n and e2n+i = u0ui for i = 1, . . . , n,

that is

uu

u
u

u

vv

v v

v

0

0

1

1

2

2

n- 1

n-1

n

n

e

e

e

e

e
e

e

e

e

e e

e

e01
2 n- 1 n

n+1
n+2 2n-1

2n

2n+1

2n+2 3n-1

3n

Define a labeling f as follows:

f(ui) =

⎧
⎪⎪⎨

⎪⎪⎩

1 for i = 0,

2n + i + 2 for i = 1, . . . , n;

and

f(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

5n + 3 for i = 0,

2n − 2i + 2 for i = 1, . . . , n;

and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n + 2 for i = 0,

3n + i + 2 for i = 1, . . . , n,

2i + 1 − 2n for i = n + 1, . . . , 2n,

7n − i + 3 for i = 2n + 1, . . . , 3n.

From the given labeling f , the number 1 is a label of u0. The numbers 2, 4, . . . ,

2n− 2, 2n are labels of vn, vn−1, . . . , v2, v1. The numbers 3, 5, . . . , 2n-1, 2n+1 are

labels of en+1, en+2, . . . , e2n. The number 2n+2 is a label of e0. The numbers 2n+3,

2n+4, . . . , 3n+2 are labels of u1, u2, . . . , un. The numbers 3n+3, 3n+4, . . . , 4n+2

are labels of e1, e2, . . . , en. The numbers 4n+3, 4n+4, . . . , 5n+1, 5n+2 are labels
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of e3n, e3n−1, . . . , e2n+2, e2n+1. And the number 5n + 3 is a label of v0. Then all

numbers 1 through 5n + 3 are used exactly once. Observe that, for i = 1, 2, . . . , n

f(u0) + f(e2n+i) + f(ui) = 1 + (7n − (2n + i) + 3) + 2n + i + 2 = 7n + 6,

f(v0) + f(en+i) + f(vi) = 5n + 3 + (2(n + i) + 1 − 2n) + 2n − 2i + 2 = 7n + 6,

f(ui) + f(ei) + f(vi) = 2n + i + 2 + (3n + i + 2) + 2n − 2i + 2 = 7n + 6,

and f(u0) + f(e0) + f(v0) = 1 + (2n + 2) + 5n + 3 = 7n + 6.

Therefore f is an edge-magic total labeling with k = 7n + 6.

By duality, we have the following corollary.

Corollary 3.27. The book Bn is edge-magic with k = 8n. �
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Figure 3.7: Edge-magic total labelings of B3 and B4 with magic sums k = 27 and

k = 34 respectively.

Theorem 3.28. [3] The ladder Ln is edge-magic with k = 1
2
(11n + 1) when n is

odd.

Proof. Let v1, v2, . . . , v2n be the vertices of Ln and e1 = v1v2, e2 = v2v3, . . . ,

en−1 = vn−1vn, en = vnv2n, en+1 = vn+1vn+2, en+2 = vn+2vn+3, . . . , e2n−1 = v2n−1v2n,

e2n = vn−1v2n−1, e2n+1 = v1vn+1, e2n+2 = v2vn+2, . . . , e3n−2 = vn−2v2n−2 edges of

Ln, that is
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Let n = 2t + 1 for some t ∈ Z
+ and define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i+1
2

for i = 1, 3, . . . , 2t + 1,

2t+i+2
2

for i = 2, 4, . . . , 2t,

4t+i+2
2

for i = 2t + 2, 2t + 4, . . . , 4t + 2,

2t+i+1
2

for i = 2t + 3, 2t + 5, . . . , 4t + 1;

and

f(ei) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10t − i + 4 for i = 1, 2, . . . , 2t,

6t + 3 for i = 2t + 1,

8t − i + 4 for i = 2t + 2, 2t + 3, . . . , 4t + 1,

6t + 4 for i = 4t + 2,

12t − i + 6 for i = 4t + 3, 4t + 4, . . . , 6t + 1.

From the given labeling f , the numbers 1, 2, . . . , t + 1 are labels of v1, v3, . . . ,

v2t+1. The numbers t+2, t+3, . . . , 2t+1 are labels of v2, v4, . . . , v2t. The numbers

2t + 2, 2t + 3, . . . , 3t + 1 are labels of v2t+3, v2t+5, . . . , v4t+1. The numbers 3t + 2,

3t + 3, . . . , 4t + 2 are labels of v2t+2, v2t+4, . . . , v4t+2. The numbers 4t + 3, 4t + 4,

. . . , 6t + 2 are labels of e4t+1, e4t, . . . , e2t+2. The numbers 6t + 3 and 6t + 4 are

labels of e2t+1 and e4t+2. The numbers 6t+5, 6t+6, . . . , 8t+3 are labels of e6t+1,
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e6t, . . . , e4t+3. The numbers 8t + 4, 8t + 5, . . . , 10t + 3 are labels of e2t, e2t−1, . . . ,

e1. So all numbers 1 through 5n − 2 = 10t + 3 are used exactly once. Observe

that

for ei; i = 1, 3, . . . , 2t − 1,

f(vi) + f(ei) + f(vi+1) = i+1
2

+ (10t − i + 4) + 2t+2+i+1
2

= 22t+12
2

= 1
2
(11n + 1),

for ei+4t+2; i = 1, 3, . . . , 2t − 1,

f(vi) + f(ei+4t+2) + f(vi+2t+1) = i+1
2

+ (12t + 6 − (i + 4t + 2)) + 4t+2+i+(2t+1)
2

= 22t+12
2

= 1
2
(11n + 1),

for ei; i = 2, 4, . . . , 2t,

f(vi) + f(ei) + f(vi+1) = 2t+i+2
2

+ (10t − i + 4) + i+1+1
2

= 22t+12
2

= 1
2
(11n + 1),

for ei+4t+2; i = 2, 4, . . . , 2t,

f(vi) + f(ei+4t+2) + f(vi+2t+1) = 2t+i+2
2

+ (12t + 6 − (i + 4t + 2)) + 2t+1+i+(2t+1)
2

= 22t+12
2

= 1
2
(11n + 1),

for en, f(vn) + f(en) + f(v2n) = t + 1 + (6t + 3) + 4t + 2 = 11t + 6 = 1
2
(11n + 1),

for ei; i = 2t + 2, 2t + 4, . . . , 4t,

f(vi) + f(ei) + f(vi+1) = 4t+i+2
2

+ (8t − i + 4) + 2t+1+i+1
2

= 22t+12
2

= 1
2
(11n + 1),

for ei; i = 2t + 3, 2t + 5, . . . , 4t + 1,

f(vi) + f(ei) + f(vi+1) = 2t+i+1
2

+ (8t − i + 4) + 4t+2+i+1
2

= 22t+12
2

= 1
2
(11n + 1).

Therefore f is an edge-magic total labeling with k = 1
2
(11n+1) when n is odd.

By duality, we have the following corollary.

Corollary 3.29. The ladder Ln is edge-magic with k = 1
2
(19n − 13) when n is

odd. �
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Figure 3.8: Edge-magic total labelings of L3 and L5 with magic sums k = 17 and

k = 28 respectively.

Theorem 3.30. An (n, m)-pineapple is edge-magic with k = 3m + 3n + 1 when

n is odd.

Proof. Let v1, v2, . . . , vm+n be the vertices and ei = vivm+1 for i = 1, 2, . . . , m and

ei = vivi+1 for i = m + 1,m + 2, . . . ,m + n − 1 and em+n = vm+nvm+1, that is

v1

em+ 1

v2

e
2

vm

e
m

vm+1

vm+ 2

vm+ 3 vm+ 4

vm+n

em+ 2

em+3

e1

em+n

Let n = 2t + 1 for some t ∈ Z
+ and define a labeling f as follows:

f(vi) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i for i = 1, 2, . . . , m,

2t + i for i = m + 1,m + 3,m + 5, . . . ,m + 2t + 1,

i − 1 for i = m + 2,m + 4,m + 6, . . . ,m + 2t;
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and

f(ei) =

⎧
⎪⎪⎨

⎪⎪⎩

2m + 4t − i + 3 for i = 1, 2, . . . , m,

3m + 4t − 2i + 4 for i = m + 1,m + 2, . . . ,m + 2t + 1.

From the given labeling f , the numbers 1, 2, . . . , m are labels of v1, v2, . . . , vm.

The numbers m + 1, m + 3, . . . , m + 2t − 1 are labels of vm+2, vm+4, . . . , vm+2t.

The numbers m + 2, m + 4, . . . , m + 2t, m + 2t + 2, . . . , m + 4t + 2 are labels of

em+2t+1, em+2t, . . . , em+t+2, em+t+1, . . . , em+1. The numbers m+2t+1, m+2t+3,

. . . , m + 4t + 1 are labels of vm+1, vm+3, . . . , vm+2t+1. The numbers m + 4t + 3,

m + 4t + 4, . . . , 2m + 4t + 2 are labels of em, em−1, . . . , e1. Observe that

for ei; i = 1, 2, . . . , m,

f(vi)+f(ei)+f(vm+1) = i+(2m+4t−i+3)+m+2t+1 = 3m+6t+4 = 3m+3n+1,

for ei; i = m + 1,m + 3, . . . ,m + 2t − 1,

f(vi) + f(ei) + f(vi+1) = 2t + i + (3m + 4t − 2i + 4) + i + 1 − 1

= 3m + 6t + 4 = 3m + 3n + 1,

for ei; i = m + 2,m + 4, . . . ,m + 2t,

f(vi) + f(ei) + f(vi+1) = i − 1 + (3m + 4t − 2i + 4) + 2t + i + 1

= 3m + 6t + 4 = 3m + 3n + 1,

for em+2t+1,

f(vm+2t+1) + f(em+2t+1) + f(vm+1) = m + 4t + 1 + (m + 2) + m + 2t + 1

= 3m + 6t + 4 = 3m + 3n + 1,

Therefore f is an edge-magic total labeling with k = 3m + 3n + 1 when n is

odd.

By duality, we have the following corollary.

Corollary 3.31. An (n,m)-pineapple is edge-magic with k = 3m + 3n + 2 when

n is odd. �
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Figure 3.9: Edge-magic total labelings of (5, 2)-pineapple and (5, 3)-pineapple

with magic sums k = 22 and k = 25 respectively.



CHAPTER IV

EDGE-MAGIC TOTAL LABELINGS ON

DISCONNECTED GRAPHS

In this chapter, we discuss the disconnected graph which are or are not

edge-magic. Moreover, some examples are shown.

Theorem 4.1. The graph mKn is not edge-magic when m is odd and n ≡ 4(mod 8).

Proof. Since n ≡ 4(mod 8), there exists t ∈ Z
+ such that n = 8t + 4. Let

m = 2t′ + 1 for some t′ ∈ Z
+. Then

p + q = mn + m

(
n

2

)

= (2t′ + 1)(8t + 4 +
(8t + 4)2 − (8t + 4)

2
)

= (2t′ + 1)(32t2 + 36t + 10)

= 4(2t′ + 1)(8t2 + 9t + 2) + 2.

Thus p + q ≡ 2(mod 4). Since each vertex of mKn has n − 1 degree which is odd

and q is even, by proposition 2.29, Kn is not edge-magic.

Theorem 4.2. The graph mWn is not edge-magic when m is odd and n ≡ 3(mod 4).

Proof. The proof is similar to the previous theorem.

We are going to show that the graph mCn is edge-magic by giving the

notations as follows: V (mCn) = V1

⋃
. . .

⋃
Vm where Vi = {vi

1, v
i
2, . . . , v

i
n} and

E(mCn) = E1

⋃
. . .

⋃
Em where Ei = {ei

1, e
i
2, . . . , e

i
n} and ei

1 = vi
1v

i
2, ei

2 = vi
2v

i
3,

. . . , ei
n−1 = vi

n−1v
i
n, ei

n = vi
nv

i
1, that is
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1
n

e

v1
n

v1

1

e 1
1

v1
2

e 1

2

v1

3
2v
1

e 2
n

v2
n

e2
1

v2
2

e2

2

v 2
3 v m

1

1
e m

v m

2

em
2

vm
3

e
m

n

vm
n

Theorem 4.3. [11] The graph mCn is edge-magic with k = 1
2
(5nm + 3) when m

(> 1) and n are odd.

Proof. Let m (> 1) and n be odd.

For i = 1, . . . , m−1
2

, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i for j = 1,

tm + i for j = 2t + 1; t = 1, . . . , n−3
2

,

1
2
[(n + 2t)m + 1 + 2i] for j = 2t; t = 1,. . . , n−1

2
,

1
2
(n + 1)m + 1 − 2i for j = n;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2n − 1)m + 1 − 2i for j = 1,

(2n − 2t − 1)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−3
2

,

(2n − 2t)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−3
2

,

nm + i for j = n − 1,

1
2
[(4n − 1)m + 1 + 2i] for j = n.
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For i = m+1
2

, . . . ,m, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i for j = 1,

tm + i for j = 2t + 1; t = 1, . . . , n−3
2

,

1
2
[(n + 2t − 2)m + 1 + 2i] for j = 2t; t = 1, . . . , n−1

2
,

1
2
(n + 3)m + 1 − 2i for j = n;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2nm + 1 − 2i for j = 1,

(2n − 2t)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−3
2

,

(2n − 2t + 1)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−3
2

,

nm + i for j = n − 1,

1
2
[(4n − 3)m + 1 + 2i] for j = n.

Let n = 2z + 1 and m = 2z′ + 1 for some z, z′ ∈ Z
+. The numbers 1, 2, . . . ,

2z′ + 1, 2z′ + 2, . . . , 2zz′ + z are labels of v1
1, v2

1, . . . , vm
1 , v1

3, v2
3, . . . , vm

3 , . . . ,

v1
n−2, . . . , vm

n−2. The numbers 2zz′ + z + 1, . . . , 2zz′ + z + 2z′ + 1 are labels of

vi
n for i = m, m−1

2
,m − 1, m−1

2
− 1, . . . , m+1

2
. The numbers 2zz′ + z + 2z′ + 2, . . . ,

4zz′ +2z +2z′ +1 are labels of v
m+1

2
2 , v

m+3
2

2 , . . . , vm
2 v

m+1
2

4 , v
m+3

2
4 . . . , vm

4 , . . . , vm
n−1.

The numbers 4zz′ + 2z + 2z′ + 2, . . . , 4zz′ + 2z + 4z′ + 2 are labels of e1
n−1, e2

n−1,

. . . , em
n−1. The numbers 4zz′ + 2z + 4z′ + 3, . . . , 8zz′ + 4z + 2z′ + 1 are labels of

em
n−2, e

m−1
2

n−2 , em−1
n−2 , . . . , e

m+1
2

n−2 , em
n−3, e

m−1
2

n−3 , em−1
n−3 , . . . , e

m+1
2

n−3 , . . . , e
m+1

2
1 . The numbers

8zz′ + 4z + 2z′ + 2, . . . , 8zz′ + 4z + 3z′ + 2 are labels of e
m+1

2
n , e

m+3
2

n , . . . , em
n .

The numbers 8zz′ + 4z + 3z′ + 3, . . . , 8zz′ + 4z + 4z′ + 2 are labels of e1
n, e2

n, . . . ,

e
m−1

2
n . So all numbers 1 through 2nm = 8zz′ + 4z + 4z′ + 2 are used exactly once.

Observe that, for i = 1, . . . , m−1
2

,
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for ei
1,

f(vi
1) + f(ei

1) + f(vi
2) = i + ((2n − 1)m + 1 − 2i) + (n+2)m+1+2i

2
= 1

2
(5nm + 3),

for ei
j; j = 2t where t = 1, 2, . . . , n−3

2
,

f(vi
j)+f(ei

j)+f(vi
j+1) = (n+2t)m+1+2i

2
+(2n−2t)m+1−2i+ tm+ i = 1

2
(5nm+3),

for ei
j; j = 2t + 1 where t = 1, 2, . . . , n−3

2
,

f(vi
j) + f(ei

j) + f(vi
j+1) = tm + i + (2n − 2t − 1)m + 1 − 2i + (n+2(t+1))m+1+2i

2

= 1
2
(5nm + 3),

for ei
n−1,

f(vi
n−1)+f(ei

n−1)+f(vi
n) = (2n−1)m+1+2i

2
+nm+ i+ (n+1)m

2
+1−2i = 1

2
(5nm+3),

for ei
n,

f(vi
n) + f(ei

n) + f(vi
1) = (n+1)m

2
+ 1 − 2i + (4n−1)m+1+2i

2
+ i = 1

2
(5nm + 3).

For i = m+1
2

, . . . ,m, we can verify similarly. Therefore f is an edge-magic total

labeling with k = 1
2
(5nm + 3) when m and n are odd.

By duality, we have the following corollary.

Corollary 4.1. [11] The graph mCn is edge-magic with k = 1
2
(7nm + 3) when m

(> 1) and n are odd. �
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Figure 4.1: Edge-magic total labelings of 3C3 and 5C5 with magic sums k = 24

and k = 64 respectively.

We are going to show that the graph mPn is edge-magic by giving the

notations as follows: V (mPn) = V1

⋃
. . .

⋃
Vm where Vi = {vi

1, v
i
2, . . . , v

i
n} and

E(mPn) = E1

⋃
. . .

⋃
Em where Ei = {ei

1, e
i
2, . . . , e

i
n−1} and ei

1 = vi
1v

i
2, ei

2 = vi
2v

i
3,

. . . , ei
n−1 = vi

n−1v
i
n, that is

v
1

1

e1
1

v 1
2 v 1

n

v 1
n-1

e1
n-1

v
2

1

v2
2 v 2

n

e2
n-1

e2
1

v 2
n-1

v
m

1 vm
n-1

em
1 em

n-1

vm
2 vm

n

Theorem 4.4. [11] The graph mPn is edge-magic with k = 1
2
(5nm + 3) when m

(> 1) and n are odd.

Proof. By the edge-magic total labeling f in theorem 4.3, the m highest labels

appear as edge labels with one in each component. We delete those edges and their

labels. Then we have a graph mPn which is edge-magic with k = 1
2
(5nm+3).
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By duality, we have the following corollary.

Corollary 4.2. [11] The graph mPn is edge-magic with k = 1
2
[(7n−6)m+3] when

m (> 1) and n are odd. �

Theorem 4.5. [11] The graph mPn is edge-magic with k = 1
2
[(5n−2)m+3] when

m (> 1) and n are odd.

Proof. Let m > 1 and n be odd.

For i = 1, . . . , m−1
2

, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
(nm + 1 + 2i) for j = 1,

1
2
[(n + 2t)m + 1 + 2i] for j = 2t + 1; t = 1, . . . , n−1

2
,

(t − 1)m + i for j = 2t; t = 1, . . . , n−1
2

;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2n − 1)m + 1 − 2i for j = 1,

(2n − 2t − 1)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−3
2

,

(2n − 2t)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−1
2

.

For i = m+1
2

, . . . ,m, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
[(n − 2)m + 1 + 2i] for j = 1,

1
2
[(n + 2t − 2)m + 1 + 2i] for j = 2t + 1; t = 1, . . . , n−1

2
,

(t − 1)m + i for j = 2t; t = 1, . . . , n−1
2

;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2nm + 1 − 2i for j = 1,

(2n − 2t)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−3
2

,

(2n + 1 − 2t)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−1
2

.
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It is easy to verify that all numbers 1 through m(2n − 1) are used exactly once.

Observe that, for i = 1, 2, . . . , m−1
2

,

for ei
1,

f(vi
1) + f(ei

1) + f(vi
2) = nm+1+2i

2
+ (2n − 1)m + 1 − 2i + i = 1

2
(5nm − 2m + 3),

for ei
j; j = 2t where t = 1, 2, . . . , n−1

2
,

f(vi
j) + f(ei

j) + f(vi
j+1) = (t − 1)m + i + (2n − 2t)m + 1 − 2i + (n+2t)m+1+2i

2

= 1
2
(5nm − 2m + 3),

for ei
j; j = 2t + 1 where t = 1, 2, . . . , n−3

2
,

f(vi
j) + f(ei

j) + f(vi
j+1) = (n+2t)m+1+2i

2
+ (2n− 2t− 1)m + 1− 2i + (t + 1− 1)m + i

= 1
2
(5nm − 2m + 3).

For i = m+1
2

, . . . ,m, we can verify similarly. Therefore f is an edge-magic total

labeling with k = 1
2
[(5n − 2)m + 3] when m and n are odd.

By duality, we have the following corollary.

Corollary 4.3. [11] The graph mPn is edge-magic with k = 1
2
[(7n−4)m+3] when

m (> 1) and n are odd. �
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Figure 4.2: Edge-magic total labelings of 3P3 and 3P4 with magic sums k = 21

and k = 30 respectively.

Theorem 4.6. [11] The graph mPn is edge-magic with k = 1
2
[(5n−1)m+3] when

m (> 1) is odd and n is even.

Proof. Let m > 1 be odd and n even.

For i = 1, . . . , m−1
2

, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
[(n + 1)m + 1 + 2i] for j = 1,

1
2
[(n + 2t + 1)m + 1 + 2i] for j = 2t + 1; t = 1, 2,. . . , n−2

2
,

(t − 1)m + i for j = 2t; t = 1, 2, . . . , n
2
;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2n − 1)m + 1 − 2i for j = 1,

(2n − 2t − 1)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−2
2

,

(2n − 2t)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−2
2

.
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For i = m+1
2

, . . . ,m, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2
[(n − 1)m + 1 + 2i] for j = 1,

1
2
[(n + 2t − 1)m + 1 + 2i] for j = 2t + 1; t = 1,2, . . . , n−2

2
,

(t − 1)m + i for j = 2t; t = 1, 2, . . . , n
2
;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2nm + 1 − 2i for j = 1,

(2n − 2t)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−2
2

,

(2n − 2t + 1)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−2
2

.

It is easy to verify that f is an edge-magic total labeling with k = 1
2
[(5n−1)m+3]

when m is odd and n is even.

By duality, we have the following corollary.

Corollary 4.4. [11] The graph mPn is edge-magic with k = 1
2
[(7n−5)m+3] when

m (> 1) is odd and n is even. �

Theorem 4.7. The graph mPn

⋃
mK1, the graph consists of the disjoint union

of m copies of Pn and the disjoint union of m copies of K1, is edge-magic with

k = 1
2
[(5n − 2)m + 3] when m > 1 and m is odd and n is even.

Proof. By the edge-magic total labeling f in theorem 4.5, the m highest labels

appear as edge labels with one in each component. We delete those edges and

their labels. Then we have the graph mPn

⋃
mK1 which is edge-magic with the

same magic sum.

We are going to show that the graph m(n, 1)-kite is edge-magic by giving the

notations as follows: V (m(n, 1)-kite) = V1

⋃
. . .

⋃
Vm where Vi={vi

1, v
i
2, . . . , v

i
n, v

i
n+1}

and E(m(n, 1)-kite) = E1

⋃
. . .

⋃
Em where Ei={ei

1, e
i
2, . . . , e

i
n, ei

n+1} and ei
1 = vi

1v
i
2,

ei
2 = vi

2v
i
3, . . . , ei

n−1 = vi
n−1v

i
n, ei

n = vi
nv

i
1, ei

n+1 = vi
nv

i
n+1, that is
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v
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Theorem 4.8. The graph m(n, 1)-kite is magic with k = 1
2
[m(5n + 6) + 3] when

m (> 1) and n are odd.

Proof. Let m (> 1) and n be odd.

For components i = 1, . . . , m−1
2

, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i + m for j = 1,

(t + 1)m + i for j = 2t + 1; t = 1, 2, . . . , n−3
2

,

1
2
[(n + 2t + 2)m + 1 + 2i] for j = 2t; t = 1, 2, . . . , n−1

2
,

1
2
(n + 3)m + 1 − 2i for j = n,

1
2
[(4n + 3)m + 1] + i for j = n + 1;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2mn + 1 − 2i for j = 1,

(2n − 2t)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−3
2

,

(2n − 2t + 1)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−3
2

,

(n + 1)m + i for j = n − 1,

1
2
[(4n + 1)m + 1 + 2i] for j = n,

i for j = n + 1.
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For components i = m+1
2

, . . . ,m, define a labeling f as follows:

f(vi
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i + m for j = 1,

(t + 1)m + i for j = 2t + 1; t = 1, . . . , n−3
2

,

1
2
[(n + 2t)m + 1 + 2i] for j = 2t; t = 1, . . . , n−1

2
,

1
2
(n + 5)m + 1 − 2i for j = n,

1
2
[(4n + 1)m + 1] + i for j = n + 1;

and

f(ei
j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2n + 1)m + 1 − 2i for j = 1,

(2n − 2t + 1)m + 1 − 2i for j = 2t + 1; t = 1, 2, . . . , n−3
2

,

(2n − 2t + 2)m + 1 − 2i for j = 2t; t = 1, 2, . . . , n−3
2

,

(n + 1)m + i for j = n − 1,

1
2
[(4n − 1)m + 1 + 2i] for j = n,

i for j = n + 1.

It is easy to verify that f is an edge-magic total labeling with k = 1
2
[m(5n +

6) + 3] when m and n are odd.

By duality, we have the following corollary.

Corollary 4.5. The graph m(n, 1)-kite is edge-magic with k = 1
2
[m(7n + 6) + 3]

when m (> 1) and n are odd. �
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Figure 4.3: An edge-magic labeling of 7(3, 1)-kite with a magic sum k = 75.



64

REFERENCES

[1] Figueroa-Centeno, R.M.; Inchishima, R.; and Muntaner-Batle, F.A. Magical

coronations of graphs. Austral. J. Combin. (To appear).

[2] Figueroa-Centeno, R.M.; Inchishima, R.; and Muntaner-Batle, F.A. On super

edge-magic graphs. ARS Combin. (To appear).

[3] Figueroa-Centeno, R.M.; Inchishima, R.; and Muntaner-Batle, F.A. The place

of super edge-magic labelings among other classes of labelings.

Discrete Math. 231(2001):153-168.

[4] Gallian, J.A. A dynamic survey of graph labelings. J. Combinatorics 5[online]

(1998). Available from: http://www.combinatorics.org[2001, Apirl 20]

[5] Godbold, R.D.; and Slater, P.J. All cycles are edge-magic. Bull. of ICA 22

(1998): 93-97.

[6] Kotzig, A.; and Rosa, A. Magic valuations of finite graphs. Cand. Math. Bull.

13 (1970): 451-561.

[7] Phillips, N.C.K.; and Wallis, W.D. Well-spread sequences. J. Combin. Math.

Combin. Comput. 31(1999): 91-96.

[8] Ringel, G; and Llado, A.S. Another tree conjecture. Bull. of ICA 18(1996):

83-85.

[9] Wallis, W.D. Magic graphs. Boston: Birkhäuser, 2001.
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