

Thesis Title	Edge-Magic Total Labelings on Connected and Disconnected
	Graphs
By	Miss Sirirat Sompong
Field of study	Mathematics
Thesis Advisor	Associate Professor Wanida Hemakul, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master 's Degree
(Associate Professor Pipat Karntiang, Ph.D.) Acting Dean, Faculty of Science

THESIS COMMITTEE

\qquad

(Associate Professor Wanida Hemakul, Ph.D.)
สถาบันวิทยบริถลร

> ศิรัรัตน์ สมพงษ์ : การกำกับรวมอย่างมหัศจรรย์บนด้านของกราฟที่เชื่อมโยงได้และกราฟที่ เชื่อมโยงไม่ได้(EDGE-MAGIC TOTAL LABELINGS ON CONNECTED AND DISCONNECTED GRAPHS) อ. ที่ปรึกษา : รองศาสตราจารย์ ดร.วนิดา เหมะกุล, 65 หน้า. ISBN 974-03-0932-1.

การกำกับรวมอย่างมหัศจรรย์บนด้านของกราฟ G ที่มี $V(G)$ เป็นเซตของจุดยอด และ $E(G)$ เป็นเซตของด้าน คือฟังก์ชัน f ที่เป็นฟังก์ชันหนึ่งต่อหนึ่งจาก $V(G) \cup E(G)$ ไปทั่วถึง $\{1,2, \ldots, p+q\}$ เมื่อ $p=|V(G)|$ และ $q=|E(G)|$ ที่มีสมบัติว่า สำหรับทุกด้าน $x y$ จะได้ว่า $f(x)+f(x y)+f(y)=k$ เมื่อ k เป็นค่าคงตัวที่กำหนดให้

วิทยานิพนธ์นี้ได้ศึกษาและรวบรวมกราฟที่มีการกำกับรวมอย่างมหัศจรรย์บนด้าน นอกจากนี้ เรายังพิสูจน์ว่ากราฟต่อไปนี้มีการกำกับรวมอย่างมหัศจรรย์บนด้าน กราฟว่าว n เหลี่ยมหางยาว 1 เมื่อ n เป็นจำนวนคี่ สำหรับค่า k ที่ต่าง ๆ กัน กราฟสับปะรด n เหลี่ยมจุกมี m ใบ เมื่อ n เป็นจำนวนคี่ ผล ผนวกที่แยกออกจากกันของกราฟว่าวขนาด n หางยาว 1 จำนวน m ชุด เมื่อ m และ n เป็นจำนวนคี่ และ กราฟที่ประกอบด้วยผลผนวกที่แยกออกจากกันของกราฟวิถีขนาด n จำนวน m ชุด และผลผนวก ที่แยกออกจากกันของกราฟบริบูรณ์ขนาด 1 จำนวน m ชุด เมื่อ m เป็นจำนวนคี่ และ n เป็นจำนวนคู่

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา คณิตศาสตร์ สาขาวิชา คณิตศาสตร์ ปีการศึกษา 2544

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ทีปรึกษาร่วม -

```
\# \# 4272407023 : MAJOR MATHEMATICS
```

KEY WORD: EDGE-MAGIC TOTAL LABELING
SIRIRAT SOMPONG : EDGE-MAGIC TOTAL LABELINGS ON CONNECTED AND DISCONNECTED GRAPHS. THESIS ADVISOR:ASSOC.PROF. WANIDA HEMAKUL, Ph.D., 65 pp. ISBN 974-03-0932-1.

An edge-magic total labeling on a graph G with the vertex-set $V(G)$ and the edge-set $E(G)$ is a one-to-one function f from $V(G) \cup E(G)$ onto the set $\{1,2, \ldots, p+q\}$ where $p=|V(G)|$ and $q=|E(G)|$ with the property that, for any edge $x y, f(x)+f(x y)+f(y)=k$ for some constant k.

This thesis surveys and collects many classes of graphs that can admit an edge-magic total labeling. Moreover, we prove that the following graphs have edge-magic total labelings: an ($n, 1$)-kite when n is odd for some different values of k, an (n, m)-pineapple when n is odd, the graph $m(n, 1)$-kite: the disjoint union of m copies of $(n, 1)$-kite, when m and n are odd and the graph $m P_{n} U m K_{1}$: the graph consists of the disjoint union of m copies of P_{n} and the disjoint union of m copies of K_{1}, when m is odd and n is even.

สถาบันวิทยบริการ
 จุฬาลงกรณ์มหาวิทยาลัย

Department Mathematics
Field of study Mathematics
Academic year 2001

Student's signature \qquad
Advisor's signature \qquad
Co-advisor's signature -

ACKNOWLEDGMENTS

I am greatly indebted to Associate Professor Dr.Wanida Hemakul, my thesis advisor, for her untired offering me helpful advice during preparation and writing this thesis.
E.T. Baskoro, W.D. Wallis and R. Ichishima sent some papers for studying edge-magic total labelings. Thank you all. Moreover, I would like to thank Associate Professor Dr.Yupaporn Kemprasit and Dr.Krung Sinapiromsaran, the chairman and member of this thesis committee, respectively.

Finally, I would like to express my gratitude to all of my friends and my beloved family for their encouragement throughout my graduate study.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I. INTRODUCTION 1
II. DEFINITIONS AND EXAMPLES. 3
III. EDGE-MAGIC TOTAL LABELINGS
ON CONNECTED GRAPHS 13
IV. EDGE-MAGIC TOTAL LABELINGS
ON DISCONNECTED GRAPHS 52
REFERENCES 64
VITA 65
สถาบันวิทยบริการ

CHAPTER I

INTRODUCTION

An edge-magic total labeling is motivated by the idea of magic squares in number theory. In 1970 A. Kotzig and A. Rosa [6] defined an edge-magic total labeling of a graph G as a bijection from $V(G) \bigcup E(G)$ to the set of integers from 1 to $|V(G)|+|E(G)|$ such that the sum of labels on an edge and its two endpoints is the same for all edges and G is called edge-magic (graph). They proved that complete bipartite graphs $K_{n, m}$ are edge-magic for all n and m, cycles C_{n} are edge-magic for all $n \geq 3$ and the disjoint union of n copies of P_{2} is edge-magic where n is odd. In 1996 G. Ringel and A. S. Llado [8] proved: graphs with p vertices and q edges are not edge-magic if q is even and $p+q \equiv 2(\bmod 4)$ and each vertex has odd degree and they also showed that wheels W_{n} are not edgemagic when $n \equiv 3(\bmod 4)$. In 1998 R. D. Godbold and P. J. Slater [5] found the maximum and minimum values of magic sums for cycles C_{n}. In 1999 W . D. Wallis, E. T. Baskoro, M. Miller-and M. Slamin\{10] enumerated every edge-magic total labeling of complete graphs $K_{\sigma_{n}}$ and proved that n-suns and ($n, 1$)-kites are edge-magic. R. Thishima, R. M. Figueroa-Centeno and F. A. Muntaner-Batle [1] proved that fans f_{n} for all n, ladders L_{n} when n is odd and books B_{n} for all n are edge-magic. In 2000 J. Wijaya and E. T. Baskoro [11] showed that the disjoint union of m copies of C_{n} when m and n are odd and the disjoint union of m copies of P_{n} where m is odd are edge-magic. This thesis surveys, collects many classes of graphs that can admit an edge-magic total labeling and considers such a labeling applied to some classes of disconnected graphs. Also proofs of some theorems are
rewritten for better understanding.
There are four chapters in this thesis. In Chapter I, we introduce some authors who have studied edge-magic total labelings on many classes of graphs.

In Chapter II, we give definitions of varieties of graphs, a lemma and propositions that will be used in this thesis. Also examples are provided.

In Chapter III, edge-magic total labelings on many classes of connected graphs are discussed and edge-magic total labelings on connected graphs: an ($n, 1$)-kite and an (n, m)-pineapple, are shown.

In Chapter IV, edge-magic total labelings on some classes of disconnected graphs are discussed and we also show edge-magic total labelings on the following disconnected graphs: the graph $m(n, 1)$-kites, the disjoint union of m copies of ($n, 1$)-kite, when m and n are odd and the graph $m P_{n} \bigcup m K_{1}$, the graph consists of the disjoint union of m copies of P_{n} and the disjoint union of m copies of K_{1}, when m is odd and n is even.

สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

DEFINITIONS AND EXAMPLES

We first introduce the definitions, follow by examples, a lemma and propositions that are needed in the next chapters.

Definition 2.1. A graph G consists of a finite nonempty set $V(G)$ of elements, called vertices, and a set $E(G)$ of 2-element subsets of $V(G)$, called edges.

We call $V(G)$ as the vertex-set of G and $E(G)$ as the edge-set of G.
If $\{x, y\}$ is an edge in a graph G, then an edge $\{x, y\}$ joins x and y, or x and y are adjacent, or an edge $\{x, y\}$ is incident to x (or y). We usually write $\{x, y\}$ as $x y$.

Definition 2.2. A graph H is a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Definition 2.3. A graph G is connected if for any given pair of vertices a and b there is a finite sequenceof distinct vertices andedges of the form $v_{i_{0}}, e_{i_{1}}, v_{i_{1}}, \ldots$, $e_{i_{n}}, v_{i_{n}}$ where $v_{i_{0}}=a$ and $v_{i_{n}} \in b$ and $\frac{e}{e_{i_{1}}}=v_{i_{0}} v_{i_{1}}, e_{i_{2}}=v_{i_{1}} v_{i_{2}}, \ldots, e_{i_{n}}=v_{i_{n-1}} v_{i_{n}}$,

Definition 2.4. A component of a graph G is a connected subgraph of G that is not contained in any larger connected subgraph of G.

Definition 2.5. The degree of a vertex v in graph G, denoted by $\operatorname{deg} v$, is the number of edges incident to v.

Definition 2.6. Let G_{1} and G_{2} be graphs with disjoint vertex-sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge-sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ respectively. The join of G_{1} and G_{2},
denoted by $G_{1}+G_{2}$, is a graph with the vertex-set $V\left(G_{1}\right) \bigcup V\left(G_{2}\right)$ and the edgeset $E\left(G_{1}\right) \bigcup E\left(G_{2}\right)$ and all edges joining vertices in $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$.

Definition 2.7. A cycle $C_{n}, n \geq 3$, is a graph which the vertex-set is $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge-set is $\left\{e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, \ldots, e_{n-1}=v_{n-1} v_{n}, e_{n}=v_{n} v_{1}\right\}$.

Definition 2.8. A path P_{n} is a cycle with an edge deleted.

Definition 2.9. A complete graph K_{n} is a graph of n vertices which every two distinct vertices are adjacent.

Definition 2.10. The wheel $W_{n}, n \geq 4$, is the graph $K_{1}+C_{n}$.

Definition 2.11. The fan F_{n} is the graph $P_{n}+K_{1}$.

Definition 2.12. An n-sun is a cycle C_{n} with an edge terminating in a vertex of degree 1 attached to each vertex.

Definition 2.13. An (n, t)-kite is a graph which consists of a cycle C_{n} and a path graph P_{t+1} (the tail) attached to one vertex.

Definition 2.14. A complete bipartite graph $K_{n, m}$ is a graph whose the vertex-set can be partitioned into two subsets V_{1} and V_{2} where $\left|V_{1}\right|=n$ and $\left|V_{2}\right|=m$ and two vertices are adjacent ifthey lie in different sets. ${ }^{\circ}$)

Definition 2.15. A star is a complete bipartite graph $K_{1, n}$.

Definition 2.16. Let G_{1} and G_{2} be graphs with disjoint vertex-sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge-sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ respectively. The product of G_{1} and G_{2}, denoted by $G_{1} \times G_{2}$, is a graph with the vertex-set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and specified by putting $\left(u_{1}, u_{2}\right)$ adjacent to $\left(v_{1}, v_{2}\right)$ if either $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$.

Definition 2.17. The ladder L_{n} is the graph $P_{n} \times P_{2}$.

Definition 2.18. The book B_{n} is the graph $K_{1, n} \times K_{2}$.

Definition 2.19. An (n, m)-pineapple is a graph which consists of a cycle C_{n} and m copies of P_{2} attached to one vertex.

Definition 2.20. A tree is a connected graph with n vertices and $n-1$ edges.

Definition 2.21. Let $G_{1}, G_{2}, \ldots, G_{m}$ be graphs with disjoint vertex-sets $V\left(G_{1}\right), V\left(G_{2}\right), \ldots, V\left(G_{m}\right)$ and edge-sets $E\left(G_{1}\right), E\left(G_{2}\right), \ldots, E\left(G_{m}\right)$ respectively. The disjoint union of $G_{1}, G_{2}, \ldots, G_{m}$, denoted by $G_{1} \cup G_{2} \cup \ldots \cup G_{m}$, is a graph with the vertex-set $V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup \ldots \bigcup V\left(G_{m}\right)$ and the edge-set $E\left(G_{1}\right) \bigcup E\left(G_{2}\right) \bigcup \ldots \bigcup E\left(G_{m}\right)$

If $G_{1}=G_{2}=\ldots=G_{m}=G$ then $G_{1} \cup G_{2} \cup \ldots \bigcup G_{m}$ is denoted by $m G$ and is called the disjoint union of m copies of G.

Definition 2.22. A caterpillar $C P_{n_{1}, \ldots, n_{t}}$ is the graph $K_{1, n_{1}} \cup \ldots \cup K_{1, n_{t}}$ in which each $K_{1, n_{i}}$ shares exactly one edge with $K_{1, n_{i+1}}$ and $t-1$ is the length of the skeleton path.

Figure 2.1 and figure 2.2 show diagrams which represent $C_{8}, W_{4}, K_{4}, P_{5}, F_{5}$, 8-sun, (4, 2)-kite, $K_{2,4}, K_{1,5}, L_{5}, B_{4},(5,4)$-pineapple and $C P_{4,4,6,4}$.
สถาบนวิทยบรีการ

Figure 2.1: Diagrams which represent $C_{8}, W_{4}, K_{4}, P_{5}, F_{5}, 8$-sun, $(4,2)$-kite and $K_{2,4}$.

Figure 2.2: Diagrams which represent $K_{1,5}, L_{5}, B_{4},(5,4)$-pineapple and $C P_{4,4,6,4}$.

Definition 2.23. An edge-magic total labeling on a graph G is a one-to-one function from $V(G) \bigcup E(G)$ onto the set $\{1,2, \ldots, p+q\}$ where $p=|V(G)|$ and $q=|E(G)|$ with the property that, for any edge $x y$

$$
f(x)+f(x y)+f(y)=k
$$

for some constant k which is called a magic sum.

Definition 2.24. A graph G is called edge-magic if it admits an edge-magic total labeling.

Example 2.25. A tree T with vertex-set $V(T)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and edge-set $E(T)=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}, v_{5} v_{6}, v_{2} v_{5}\right\}$ is edge-magic with $k=18$, that is

Define $f: V(T) \bigcup E(T) \rightarrow\{1,2, \ldots, 11\}$ by $f\left(v_{1}\right)=3, f\left(v_{2}\right)=11, f\left(v_{3}\right)=2$, $f\left(v_{4}\right)=8, f\left(v_{5}\right)=1, f\left(v_{6}\right)=7, f f\left(v_{1} v_{2}\right) \xlongequal{=}, f\left(v_{2} v_{3}\right)=5, f\left(v_{4} v_{5}\right)=9$, $f\left(v_{5} v_{6}\right)=10, f\left(v_{2} v_{5}\right)=6$.
For edge $9 v_{1} v_{2}, f\left(v_{1}\right)+f\left(v_{1} v_{2}\right)+f\left(v_{2}\right)=3+4+21=18$.
For edge $v_{2} v_{3}, f\left(v_{2}\right)+f\left(v_{2} v_{3}\right)+f\left(v_{3}\right)=11+5+2=18$.
For edge $v_{4} v_{5}, f\left(v_{4}\right)+f\left(v_{4} v_{5}\right)+f\left(v_{5}\right)=8+9+1=18$.
For edge $v_{5} v_{6}, f\left(v_{5}\right)+f\left(v_{5} v_{6}\right)+f\left(v_{6}\right)=1+10+7=18$.
For edge $v_{2} v_{5}, f\left(v_{2}\right)+f\left(v_{2} v_{5}\right)+f\left(v_{5}\right)=11+6+1=18$.

Figure 2.3: An edge-magic total labeling of a tree T.

Example 2.26. The graph in figure 2.4 is a famous graph which is disscussed by Julius Petersen and is named Petersen graph after him in a paper of 1898 [12]. Petersen graph is edge-magic with $k=29$.

Figure 2.4: An eedge-magic total labeling of Petersen graph.

Example 2.27. $3 C_{3}$, the disjoint union of 3 copies of C_{3}, is edge-magic with 24
$k=2$

Figure 2.5: An edge-magic total labeling of $3 C_{3}$.

From now on we assume the following:

1. G is a graph with vertex-set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and edge-set $E(G)=$ $\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$ that is $|V(G)|=p$ and $|E(G)|=q$,
2. the degree of v_{i} is d_{i},
3. if G is edge-magic, then k is a magic sum, f is an edge-magic total labeling and the label of v_{i} is x_{i}, i.e. $f\left(v_{i}\right)=x_{i}$,
4. $M=p+q+1$,
5. $S=\left\{x_{i}: 1 \leq i \leq p\right\}$, and
6. $s=\sum_{i=1}^{p} x_{i}$

Lemma 2.28. [10] If G is edge-magic, then
(a) $k q=\binom{M}{2}+\sum_{i=1}^{p}\left(d_{i}-1\right) x_{i}$, and

Proof. (a) Since G is edge-magic, the sum of all edge sums, the sum of labels of an edge and its two endpoints, is $k q$ which contains each label once and each vertex label x_{i} an additional $d_{i}-1$ times. So we obtain (a).
(b) The sum s is between the sum of 1 to p and the sum of $1+q$ to $p+q$ or $\sum_{i=1}^{p} i \leq s \leq \sum_{i=1+q}^{p+q} i$. Since $\sum_{i=1}^{p} i=\binom{p+1}{2}$ and $\sum_{i=1+q}^{p+q} i=(1+q)+(2+q)+\ldots+$ $(p+q)=p q+\binom{p+1}{2},\binom{p+1}{2} \leq s \leq p q+\binom{p+1}{2}$.

Proposition 2.29. [8] If q is even, $p+q \equiv 2(\bmod 4)$ and each vertex has odd degree, then G is not edge-magic.

Proof. Suppose that G is edge-magic. By lemma 2.28(a)

$$
\begin{aligned}
k q & =\binom{M}{2}+\sum_{i=1}^{p}\left(d_{i}-1\right) x_{i} \\
& =\frac{(p+q+1)(p+q)}{2}+\left(d_{1}-1\right) x_{1}+\left(d_{2}-1\right) x_{2}+\ldots+\left(d_{p}-1\right) x_{p}
\end{aligned}
$$

Since $p+q \equiv 2(\bmod 4), p+q=4 t+2$ for some $t \in \mathbb{Z}$. So

$$
\begin{aligned}
k q & =\frac{(4 t+3)(4 t+2)}{2}+\left(d_{1}-1\right) x_{1}+\left(d_{2}-1\right) x_{2}+\ldots+\left(d_{p}-1\right) x_{p} \\
& =(4 t+3)(2 t+1)+\left(d_{1}-1\right) x_{1}+\left(d_{2}-1\right) x_{2}+\ldots+\left(d_{p}-1\right) x_{p}
\end{aligned}
$$

Since q is even, 2 can divide $k q$. We consider only $4 t+3$, because $2 t+1$ is odd and 2 can divide $\left(d_{i}-1\right) x_{i}$ for all i, since d_{i} is odd. Since $4 t$ is even, $4 t+3$ is odd. So 2 can not divide $k q$, a contradiction. Hence G is not edge-magic.

Definition 2.30. Let G be edge-magic. The duality f^{\prime} of f (or dual labeling) is defined by $f^{\prime}\left(v_{i}\right)=M-f\left(v_{i}\right)$ for any vertex v_{i} and $f^{\prime}\left(e_{i}\right)=M-f\left(e_{i}\right)$ for any edge e_{i}.

Proposition 2.31. [10] If G is edge-magic, then the duality f^{\prime} of f is an edgemagic total labeling with magic sum $k^{\prime}=3 M-\stackrel{\rightharpoonup}{c}$ and the sum $s^{\prime}=p M-s$.
Proof. Assume G is edge-magic. Let f bean edge-magic total labeling, so f^{\prime} is one-to-one and onto. Let $v_{i} v_{j}$ be an edge in G. Then $k=f\left(v_{i}\right)+f\left(v_{i} v_{j}\right)+f\left(v_{j}\right)$. So

$$
k=M-f^{\prime}\left(v_{i}\right)+M-f^{\prime}\left(v_{i} v_{j}\right)+M-f^{\prime}\left(v_{j}\right)
$$

Then

$$
k^{\prime}=f^{\prime}\left(v_{i}\right)+f^{\prime}\left(v_{i} v_{j}\right)+f^{\prime}\left(v_{j}\right)=3 M-k .
$$

And

$$
\begin{aligned}
s^{\prime} & =\sum_{i=1}^{p} f^{\prime}\left(v_{i}\right) \\
& =\sum_{i=1}^{p} M-f\left(v_{i}\right) \\
& =p M-\sum_{i=1}^{p} f\left(v_{i}\right) \\
& =p M-s .
\end{aligned}
$$

Example 2.32. The graph G in figure 2.6 with the vertex-set $V(G)=$ $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and the edge-set $E(G)=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}, v_{1} v_{3}\right\}$ is edge-magic with $k=12$.

Define $f: V(G) \bigcup E(G) \rightarrow\{1,2, \ldots, 9\}$ by $f\left(v_{1}\right)=1, f\left(v_{2}\right)=2, f\left(v_{3}\right)=4$, $f\left(v_{4}\right)=3, f\left(v_{1} v_{2}\right)=9, f\left(v_{2} v_{3}\right)=6, f\left(v_{3} v_{4}\right)=5, f\left(v_{4} v_{1}\right)=8, f\left(v_{1} v_{3}\right)=7$. Then $s=10$.

29/9Figure 2.6: An edge-magic total labeling and its duality.

Then the duality f^{\prime} is defined by $f^{\prime}\left(v_{1}\right)=9, f^{\prime}\left(v_{2}\right)=8, f^{\prime}\left(v_{3}\right)=6, f^{\prime}\left(v_{4}\right)=7$, $f^{\prime}\left(v_{1} v_{2}\right)=1, f^{\prime}\left(v_{2} v_{3}\right)=4, f^{\prime}\left(v_{3} v_{4}\right)=5, f^{\prime}\left(v_{4} v_{1}\right)=2, f^{\prime}\left(v_{1} v_{3}\right)=3$ with $k^{\prime}=18$ and $s^{\prime}=30$.

CHAPTER III

EDGE-MAGIC TOTAL LABELINGS ON CONNECTED GRAPHS

In this chapter, we discuss some connected graphs which are or are not edge-magic and give some examples of small cases.

Theorem 3.1. [10] The wheel W_{n} when $n \equiv 3(\bmod 4)$ is not edge-magic.

Proof. Since $n \equiv 3(\bmod 4)$, there exists $t \in \mathbb{Z}^{+}$such that $n=4 t+3$. Since the number q of edges of W_{n} is $2 n$ which is even,

$$
p+q=(n+1)+2 n
$$

Thus $p+q \equiv 2(\bmod 4)$. Clearly every vertex of W_{n} has odd degree. By proposition
 9 Theorem 3.2. [8] The complete graph K_{n} when $n \equiv 4$ or $6(\bmod 8)$ is not edge-magic .

Proof. Case 1: $n \equiv 4(\bmod 8)$. There exists $t \in \mathbb{Z}^{+}$such that $n=8 t+4$. Since
the number q of edges of K_{n} is $\binom{n}{2}$ which is always even,

$$
\begin{aligned}
p+q & =n+\binom{n}{2} \\
& =n+\frac{n^{2}-n}{2} \\
& =\frac{n(n+1)}{2} \\
& =\frac{(8 t+4)(8 t+5)}{2} \\
& =(4 t+2)(8 t+5) \\
& =32 t^{2}+36 t+10 \\
& =4\left(8 t^{2}+9 t+2\right)+2 .
\end{aligned}
$$

Thus $p+q \equiv 2(\bmod 4)$. Since the degree of each vertex of K_{n} is $n-1$ which is odd and q is even, by proposition $2.29, K_{n}$ is not edge-magic.

Case 2: $n \equiv 6(\bmod 8)$. The proof is similar to the previous case.

Definition 3.3. [7] A well-spread sequence of length n is a sequence $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of positive integers with the following properties:

1. $0<a_{1}<a_{2}<\ldots<a_{n}$
2. $a_{i}+a_{j} \neq a_{k}+a_{l}$ whenever $i \neq j$ and $k \neq l$ (except, of course, when $\left.\left\{a_{i}, a_{j}\right\}=\left\{a_{k}, a_{l}\right\}\right)$.
And we define $\rho(A)=a_{n}+a_{n-1}-a_{2} \frac{e}{\square}+\frac{1}{1}$ and $\rho^{*}(n)=\min \rho(A)$ where the minimum is taked over all well-spread sequences A of length n.

Remarks 3.1. The values of $\rho^{*}(n)$ are discussed in [6] and show that

1. $\rho^{*}(7)=30$
2. $\rho^{*}(8)=43$
3. $\rho^{*}(n) \geq n^{2}-5 n+14$ when $n>8$.

Theorem 3.4. [10] If G is edge-magic which contains a complete subgraph with n vertices, then the number of vertices and edges in G is at least $\rho^{*}(n)$.

Proof. Assume that G is edge-magic with a magic sum k and contains a complete subgraph H with n vertices $b_{1}, b_{2}, \ldots, b_{n}$. Let f be an edge-magic total labeling of G and $f\left(b_{i}\right)=a_{i}$ for all i. So we can assume that $a_{1}<a_{2}<\ldots<a_{n}$. Then $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is well-spread sequence. So $f\left(b_{n} b_{n-1}\right)=k-a_{n}-a_{n-1}$ and $f\left(b_{2} b_{1}\right)=k-a_{2}-a_{1}$. Then $k-a_{n}-a_{n-1} \geq 1$ and $k-a_{2}-a_{1} \leq p+q$. Therefore $p+q \geq a_{n}+a_{n-1}-a_{2}-a_{1}+1=\rho^{*}(n)$.

Theorem 3.5. [10] No complete graph with more than 6 vertices is edge-magic.
Proof. Suppose a complete graph K_{n} where $n>6$ is edge-magic.By theorem 3.4

$$
\begin{equation*}
n+\binom{n}{2} \geq \rho^{*}(n) \tag{3.1}
\end{equation*}
$$

For $n=7$, by remarks 3.1 and the equation (3.1)

$$
28=7+\binom{7}{2} \geq \rho^{*}(7)=30
$$

a contradiction.
For $n=8$, by remarks 3.1 and the equation (3.1)

$$
36=8+\binom{8}{2} \geq \rho^{*}(8)=43
$$

For $n>8$, by remarks 3.1 and the equation (3.1)
For $n>8$, by remarks 3.1 and the equation (3.1)

So

$$
\frac{1}{2} n^{2}-\frac{11}{2} n+14 \leq 0
$$

If $\quad \frac{1}{2} n^{2}-\frac{11}{2} n+14=0$, then $\quad n=\frac{11 \pm \sqrt{11^{2}-8(48)}}{2}=4$ or 7 .
If $\quad \frac{1}{2} n^{2}-\frac{11}{2} n+14<0$, then $\quad 4<n<7$.
All cases are contradicted. Therefore K_{n} is not edge-magic when $n>6$.

n	s	k
odd	$\frac{1}{2} n(n+1)$	$\frac{1}{2}(5 n+3)$
	$\frac{1}{2} n(n+3)$	$\frac{1}{2}(5 n+5)$
	\vdots	\vdots
	$\frac{1}{2} n(n+2 i-1)$	$\frac{1}{2}(5 n+2 i+1)$
	\vdots	\vdots
even	$\frac{1}{2} n(3 n+1)$	$\frac{1}{2}(7 n+3)$
		$\frac{1}{2} n^{2}+n$
		$\frac{5}{2} n+2$
		$\frac{5}{2} n+3$
		\vdots
		$\frac{1}{2} n^{2}+i n$

Table 3.1: The possible values s with corresponding magic sums k of cycles C_{n}.
Next we will consider some graphs which are edge-magic. A. Kotzig and A. Rosa [6] proved that all cycles are edge-magic and R. D. Godbold and P. J. Slater [5] can find the minimum and maximum values of magic sums k; later, W. D. Wallis and others [10] can find many possible values of magic sums k. So we start with the way to find magic sums k.

Proposition 3.6. [10] If cycle C_{n} is edge-magic, then possible values s with corresponding magic sums k are in table 3.1.

Proof. Assume C_{n} is edge-magic. Since the degree of the cycle C_{n} is 2 , by lemma 2.28(a)

$$
k n=\binom{2 n+1}{2}+s
$$

So

$$
\begin{equation*}
k n=\frac{2 n(2 n+1)}{2}+s \tag{3.2}
\end{equation*}
$$

The equation (3.2) is possible if n divides s. So $s=n(k-2 n-1)$.
By lemma 2.28(b),

So

$$
\frac{n(n+1)}{2} \leq s \leq \frac{2 n^{2}+(n+1) n}{2}
$$

Therefore

$$
\begin{equation*}
\frac{n(n+1)}{2} \leq s \leq \frac{n(3 n+1)}{2} \tag{3.3}
\end{equation*}
$$

By the equations (3.2) and (3.3) we can know all possible values s, and also can get magic sums k which are corresponded to s.

We are going to show that C_{n} is edge-magic by giving the notations for C_{n} as follows: $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ where $e_{1}=v_{1} v_{2}$, $e_{2}=v_{2} v_{3}, \ldots, e_{n-1}=v_{n-1} v_{n}, e_{n}=v_{n} v_{1}$, that is

Theorem 3.7. [10] Every odd cycle C_{n} is edge-magic with $k=\frac{1}{2}(5 n+3)$.

Proof. Let $n=2 t+1$ for some $t \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { for } i=1,3, \ldots, 2 t+1 \\ t+\frac{i+2}{2} & \text { for } i=2,4, \ldots, 2 t\end{cases}
$$

and

$$
f\left(e_{i}\right)= \begin{cases}4 t+2-i & \text { for } i=1,2, \ldots, 2 t \\ 4 t+2 & \text { for } i=2 t+1\end{cases}
$$

The labeling f is shown in figure 3.1.

Figure 3.1: An edge-magic total labeling of $C_{2 t+1}$ with $k=5 t+4$ for some $t \in \mathbb{Z}^{+}$.
The numbers $1,2,3,9.9 t+1$ are labels of $v_{1,} v_{3}, v_{5}, \approx, v_{2 t+1}$. The numbers $t+2, t+3, t+4, \ldots, 2 t+1$ are labels of $v_{2}, v_{4}, v_{6}, \ldots, v_{2 t}$, The numbers $2 t+2,2 t+3, .04 t+1$ are labels of $e_{2 t}, e_{2 t-1}, .0 ., e_{1}$ and the number $4 t+2$ is a label of $e_{2 t+1}$. So all numbers 1 through $2 n=4 t+2$ are used exactly once. Observe that
for $e_{i} ; i=1,3, \ldots, 2 t-1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\left(\frac{i+1}{2}\right)+(4 t+2-i)+\left(t+\frac{i+1+2}{2}\right)=5 t+4=\frac{1}{2}(5 n+3)$,
for $e_{i} ; i=2,4, \ldots, 2 t$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\left(t+\frac{i+2}{2}\right)+(4 t+2-i)+\left(\frac{i+1+1}{2}\right)=5 t+4=\frac{1}{2}(5 n+3)$,
and $f\left(v_{1}\right)+f\left(e_{2 t+1}\right)+f\left(v_{2 t+1}\right)=1+(4 t+2)+(t+1)=5 t+4=\frac{1}{2}(5 n+3)$.
Therefore f is an edge-magic total labeling with $k=\frac{1}{2}(5 n+3)$ (this case is for the smallest magic sum k in proposition 3.6).

By duality, we have the following corollary.

Corollary 3.2. [10] Every odd cycle C_{n} is edge-magic with $k=\frac{1}{2}(7 n+3)$.
Theorem 3.8. [10] Every odd cycle C_{n} is edge-magic with $k=3 n+1$.

Proof. Let $n=2 t+1$ for some $t \in \mathbb{Z}^{+}$and define a labeling f as follows:

and

$$
f\left(e_{i}\right)= \begin{cases}4 t-2 i+2 & \text { for } i=1,2, \ldots, 2 t \\ \frac{4 t+2}{} & \text { for } i=2 t+1\end{cases}
$$

The proof is similar to the previous theorem. Therefore f is an edge-magic total labeling with $k=3 n+1$.

By duality, we have the following corollary.
Corollary 3.3. [10] Every odd cycle C Cis edge-magic with $\kappa=3 n+2$.
Theorem 3.9. [10] Every even cycle C_{n} is edge-magic-with $h=\frac{P}{2}(5 n+4)$.
Proof. Assume $n=2 t$ for some $t \in \mathbb{Z}^{+}$.

Case 1: t is even. Let $t=2 t^{\prime}$ for some $t^{\prime} \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { for } i=1,3, \ldots, 2 t^{\prime}+1, \\ 6 t^{\prime} & \text { for } i=2, \\ \frac{4 t^{\prime}+i}{2} & \text { for } i=4,6, \ldots, 2 t^{\prime}, \\ \frac{i+2}{2} & \text { for } i=2 t^{\prime}+2,2 t^{\prime}+4, \ldots, 4 t^{\prime}, \\ \frac{4 t^{\prime}+i-1}{2} & \text { for } i=2 t^{\prime}+3,2 t^{\prime}+5, \ldots, 4 t^{\prime}-1\end{cases}
$$

and

$$
f\left(e_{i}\right)= \begin{cases}4 t^{\prime}+1 & \text { for } i=1, \\ 4 t^{\prime} & \text { for } i=2, \\ 8 t^{\prime}-i+1 & \text { for } i=3,4, \ldots, 2 t^{\prime} \\ 8 t^{\prime}-1 & \text { for } i=2 t^{\prime}+1, \\ 8 t^{\prime} & \text { for } i=4 t^{\prime} .\end{cases}
$$

From the given labeling f, the numbers $1,2, \ldots, t^{\prime}+1$ are labels of v_{1}, v_{3}, \ldots, $v_{2 t^{\prime}+1}$. The numbers $t^{\prime}+2, t^{\prime}+3, \ldots, 2 t^{\prime}+1$ are labels of $v_{2 t^{\prime}+2}, v_{2 t^{\prime}+4}, \ldots, v_{4 t^{\prime}}$. The numbers $2 t^{\prime}+2,2 t^{\prime}+3, \ldots, 3 t^{\prime}$ are labels of $v_{4}, v_{6}, \ldots, v_{2 t^{\prime}}$. The numbers $3 t^{\prime}+1,3 t^{\prime}+2, \cap 4 t^{\prime}-1$ are labels of $v_{2} t^{\prime}+3, v_{2 t^{\prime}+5}, \curvearrowleft, v_{4 t^{\prime}-1}$. And the numbers $4 t^{\prime}$ and $4 t^{\prime}+1$ are labels of e_{2} and e_{1}. The numbers $4 t^{\prime}+2,4 t^{\prime}+3, \ldots, 6 t^{\prime}-1$ are labels of $e_{4 t^{\prime}-1}, e_{4 t^{\prime}-2}, \ldots, \widetilde{e}_{\left.2 t^{\prime}\right\}_{2}}$. The number $6 t^{\prime}$ is a label of ε_{2}. The numbers $6 t^{\prime}+1,6 t^{\prime}+2, \ldots, 8 t^{\prime}-2$ are labels of $e_{2 t^{\prime}}, e_{2 t^{\prime}-1}, \ldots, e_{3}$. And the numbers $8 t^{\prime}-1$ and $8 t^{\prime}$ are labels of $e_{2 t^{\prime}+1}$ and $e_{4 t^{\prime}}$. So all numbers 1 through $2 n=4 t=8 t^{\prime}$ are used exactly once. Observe that
$f\left(v_{1}\right)+f\left(e_{1}\right)+f\left(v_{2}\right)=1+\left(4 t^{\prime}+1\right)+6 t^{\prime}=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$,
$f\left(v_{2}\right)+f\left(e_{2}\right)+f\left(v_{3}\right)=6 t^{\prime}+\left(4 t^{\prime}\right)+2=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$,
for $e_{i} ; i=3,5, \ldots, 2 t^{\prime}-1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+1}{2}+\left(8 t^{\prime}+1-i\right)+\frac{4 t^{\prime}+i+1}{2}=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$,
for $e_{i} ; i=4,6, \ldots, 2 t^{\prime}$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{4 t^{\prime}+i}{2}+\left(8 t^{\prime}+1-i\right)+\frac{i+1+1}{2}=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$,
$f\left(v_{2 t^{\prime}+1}\right)+f\left(e_{2 t^{\prime}+1}\right)+f\left(v_{2 t^{\prime}+2}\right)=t^{\prime}+1+\left(8 t^{\prime}-1\right)+t^{\prime}+2=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$,
for $e_{i} ; i=2 t^{\prime}+2,2 t^{\prime}+4, \ldots, 2 t^{\prime}-2$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+2}{2}+\left(8 t^{\prime}-i+1\right)+\frac{4 t^{\prime}+i+1-1}{2}=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$,
for $e_{i} ; i=2 t^{\prime}+3,2 t^{\prime}+5, \ldots, 2 t^{\prime}-1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{4 t^{\prime}+i-1}{2}+\left(8 t^{\prime}-i+1\right)+\frac{i+1+2}{2}=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$,
and $f\left(v_{4 t^{\prime}}\right)+f\left(e_{4 t^{\prime}}\right)+f\left(v_{1}\right)=2 t^{\prime}+1+\left(8 t^{\prime}\right)+1=10 t^{\prime}+2=\frac{1}{2}(5 n+4)$.
Case 2: t is odd. Let $t=2 t^{\prime}+1$ for some $t^{\prime} \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
\begin{gathered}
\text { s. } \\
f\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { for } i=1,3, \ldots 2 t^{\prime}+1, \\
6 t^{\prime}+3 & \text { for } i=2, \\
\frac{4 t^{\prime}+i+4}{2} & \text { for } i=4,6, \ldots 2 t^{\prime}, \\
\frac{2 t^{\prime}+4}{2} & \text { for } i=2 t^{\prime}+2, \\
\frac{i+3}{2} & \text { for } i=2 t^{\prime}+3,2 t^{\prime} \mp 5, \ldots 4 t^{\prime}+1, \\
\frac{4 t^{\prime}+i+2}{2} & \text { for } i=2 t^{\prime}+4,2 t^{\prime}+6, \ldots 4 t^{\prime}, \\
2 t^{\prime}+3 & \text { for } i=4 t^{\prime}+2\end{cases}
\end{gathered}
$$

and

$$
f\left(e_{i}\right)= \begin{cases}4 t^{\prime}+3 & \text { for } i=1, \\ 4 t^{\prime}+2 & \text { for } i=2, \\ 8 t^{\prime}-i+4 & \text { for } i=3,4, \ldots, 2 t^{\prime} \text { and } i=2 t^{\prime}+3,2 t^{\prime}+4, \ldots, 4 t^{\prime}, \\ 8 t^{\prime}+4 & \text { for } i=2 t^{\prime}+1, \\ 8 t^{\prime}+2 & \text { for } i=2 t^{\prime}+2, \\ 6 t^{\prime}+2 & \text { for } i=4 t^{\prime}+1, \\ 8 t^{\prime}+3 & \text { for } i=4 t^{\prime}+2\end{cases}
$$

We can verify similarly to the case 1 . Therefore f is an edge-magic total labeling with $k=\frac{1}{2}(5 n+4)$.

By duality, we have the following corollary.

Corollary 3.4. [10] Every cycte C_{n} when 4 divides n is edge-magic with
$k=\frac{1}{2}(7 n+2)$.

Theorem 3.10. [10] Every cycle C_{n} when 4 divides \bar{n} is edge-magic with $k=3 n$.
Proof. For $n=4$ we use the same labeling from theorem 3.9. So assume $n \geq 8$ and $n=4 t$ for some $t \in \mathbb{Z}^{+}$. Define a labeling f cas follows:

$$
f\left(v_{i}\right)= \begin{cases}i & \text { for } i=2 t, 2 t+2, \ldots, 4 t-2, \\ 4 t+i+1 & \text { for } i=2, \ldots, 2 t-2, \\ 4 t+i & \text { for } i=2 t+1,2 t+3, \ldots 4 t-3, \\ 2 & \text { for } i=4 t-1, \\ 2 n-2 & \text { for } i=4 t\end{cases}
$$

and

$$
f\left(e_{i}\right)= \begin{cases}8 t-2 i-2 & \text { for } i=1,2, \ldots, 2 t-2 \text { and } i=2 t, 2 t+1, \ldots, 4 t-3, \\ 8 t & \text { for } i=2 t-1, \\ 8 t-1 & \text { for } i=4 t-2, \\ 4 t & \text { for } i=4 t-1, \\ 4 t+1 & \text { for } i=4 t,\end{cases}
$$

We can verify similarly to the previous theorem. Therefore f is an edge-magic total labeling with $k=3 n$.

By duality, we have the following corollary.

Corollary 3.5. [10] Every cycle C_{n} when 4 divides n is edge-magic with $k=3 n+3$.

Table 3.2 shows all possible edge-magic total labelings for C_{n} when $n \leq 6$.

Theorem 3.11. [10] Every path graph P_{n} is edge-magic.

Proof. Let f be an edge-magic total labeling from theorem 3.7, 3.8, 3.9 and 3.10 where the number $2 n$ is a label of an edge. If we delete the edge which label $2 n$, then a path graph P_{n} is edge-magic.

จุฬาลงกรณ์มหาวิทยาลัย

Table 3.2: All possible edge-magic total labelings for C_{n} when $n \leq 6$.

Theorem 3.12. [8] A caterpillar $C P_{n_{1}, n_{2}, \ldots, n_{t}}$ is edge-magic.

Proof. Define f by mapping consecutively (we start at the number 1) the noncenter vertices of the stars $K_{1, n_{1}}, K_{1, n_{3}}, K_{1, n_{5}}, \ldots$ and then the non-center vertices of the stars $K_{1, n_{2}}, K_{1, n_{4}}, K_{1, n_{6}}, \ldots$ And we map the edges of the stars $K_{1, n_{t}}$, $K_{1, n_{t-1}}, K_{1, n_{t-2}}, \ldots$ by starting at the edge which is incident to the vertex with the highest label. Then all vertices and edges are labeled.

Figure 3.2: A labeling of caferpillar in the star $K_{1, n_{i}}$ and the star $K_{1, n_{i+1}}$.
From the given labeling f, we consider the star $K_{1, n_{i}}$ and the star $K_{1, n_{i+1}}$ in figure 3.2. If $a, a+1, \ldots, a+n_{i}-1$ are labels of the non-center vertices of the star $K_{1, n_{i}}$ and $b, b+1, \ldots, b+n_{i+1}-1$ are labels of the non-center vertices of the star $K_{1, n_{i+1}}$ and $c, c+1, \ldots, c+n_{i+1}+n_{i}-2$ are labels of all edges of the star $K_{1, n_{i}}$ and the star $K_{1, n_{i+1}}$, then the sum of labels of each edge and its two vertices which are adjacent is $a+b+c+n_{i+1}+n_{i}-2$ that is the same for all edges.

Conjecture [8] Every tree is edge-magic.

$$
k=42
$$

Figure 3.3: An edge-magic total labeling of $C P_{4,4,6,4}$ with a magic sum $k=42$.

We are going to show that an n-sun is edge-magic by giving the notations for an n-sun as follows: $V(n$-sun $)=\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ and $E(n$-sun $)=\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}$ where $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, \ldots, e_{n-1}=v_{n-1} v_{n}, e_{n}=v_{n} v_{1}$ and $e_{n+i}=v_{n+i} v_{i}$ for $i=1,2, \ldots, n$, that is

Theorem 3.13. [10] Every-n-sun is edge-magic-with $k=\frac{1}{2}(11 n+3)$ when n is odd. Proof. Let $n=2 t+1$ for some $t \in \mathbb{Z}^{+}$and define a labeling f as follows:
and

$$
f\left(v_{i}\right)= \begin{cases}\frac{i+4 t+3}{2} & \text { for } i=1,3, \ldots 2 t+1, \\ \frac{i+4}{2}+3 t & \text { for } i=2,4, \ldots, 2 t \\ \frac{i+2}{2} & \text { for } i=2 t+2,2 t+4, \ldots, 4 t \\ \frac{i-2 t+1}{2} & \text { for } i=2 t+3,2 t+5, \ldots, 4 t+1, \\ 1 & \text { for } i=4 t+2\end{cases}
$$

$$
f\left(e_{i}\right)=\left\{\begin{array}{l}
6 t-i+3 \quad \text { for } i=1,2, \ldots, 2 t, \\
6 t+3 \quad \text { for } i=2 t+1, \\
10 t-i+5(\text { for } i=2 t+2,2 t+3, \ldots, 4 t+1, \\
8 t+4, \text { for } i=4 t+2
\end{array}\right.
$$

From the given labeling f, the numbers $1,2, \ldots, \mathrm{t}+1$ are labels of $v_{4 t+2}, v_{2 t+3}$, $v_{2 t+5}, \ldots, v_{4 t+1}$. The numbers $t+2, t+3, \ldots, 2 t+1$ are labels of $v_{2 t+2}, v_{2 t+4}$, $\ldots, v_{4 t}$. The numbers $2 t+2,2 t+3, \ldots, 3 t+2$ are labels of $v_{1}, v_{3}, \ldots, v_{2 t+1}$. The numbers $3 t+3,3 t+4, \ldots, 4 t+2$ are labels of $v_{2}, v_{4}, \ldots, v_{2 t}$. The numbers $4 t+3,4 t+4, \ldots, 6 t+2$ are labels of $e_{2 t}, e_{2 t-1}, \ldots, e_{1}$. The numbers $6 t+3$ is a label of $e_{2 t+1}$. The numbers $6 t \leftrightarrows 4,6 t+5, \ldots, 8 t+3$ are labels of $e_{4 t+1}, e_{4 t}, \ldots$, $e_{2 t+2}$. The number $8 t+4$ is a label of $e_{4 t+2}$. So all numbers 1 through $4 n=8 t+4$ are used exactly once, Observe that
for $e_{i} ; i=1,3, \ldots, 2 t-1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+4 t+3}{2}+(6 t-i+3)+\frac{i+1+4}{2}+3 t=11 t+7=\frac{1}{2}(11 n+3)$, for $e_{i} ; i=2,4, \ldots, 2 t$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+4}{2}+3 t+(6 t-i+3)+\frac{i+1+4 t+3}{2}=11 t+7=\frac{1}{2}(11 n+3)$, for $e_{2 t+1}$,
$f\left(v_{2 t+1}\right)+f\left(e_{2 t+1}\right)+f\left(v_{1}\right)=\frac{2 t+1+4 t+3}{2}+(6 t+3)+\frac{1+4 t+3}{2}=11 t+7=\frac{1}{2}(11 n+3)$,
for $e_{i} ; i=2 t+2,2 t+4, \ldots, 4 t$,

$$
\begin{aligned}
f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i-(2 t+1)}\right) & =\frac{i+2}{2}+(10 t-i+5)+\frac{i-2 t-1+4 t+3}{2} \\
& =11 t+7=\frac{1}{2}(11 n+3),
\end{aligned}
$$

for $e_{i} ; i=2 t+3,2 t+5, \ldots, 4 t+1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i-(2 t+1)}\right)=\frac{i-2 t+1}{2}+(10 t-i+5)+\frac{i-2 t-1+4}{2}+3 t$

$$
=11 t+7=\frac{1}{2}(11 n+3),
$$

and $f\left(v_{2 t+1}\right)+f\left(e_{4 t+2}\right)+f\left(v_{4 t+2}\right)=3 t+2+(8 t+4)+1=11 t+7=\frac{1}{2}(11 n+3)$. Therefore f is an edge-magic total labeling with $k=\frac{1}{2}(11 n+3)$ when n is odd.

Theorem 3.14. [10] Every n-sun is edge-magic with $k=\frac{1}{2}(11 n+4)$ when n is even.

Proof. Let $n=2 t$ for some $t \in \mathbb{Z}^{+}$
Case 1: t is even. Let $t=2 t^{\prime}$ for some $t^{\prime} \in \mathbb{Z}^{+}$and define a labeling f as follows:

and

$$
f\left(e_{i}\right)= \begin{cases}8 t^{\prime}+1 & \text { for } i=1, \\ 8 t^{\prime} & \text { for } i=2, \\ 12 t^{\prime}-i+1 & \text { for } i=3,4, \ldots, 2 t^{\prime} \\ & \text { and } i=2 t^{\prime}+2,2 t^{\prime}+3, \ldots, 4 t^{\prime}-1, \\ 12 t^{\prime}-1 & \text { for } i=2 t^{\prime}+1, \\ 12 t^{\prime} & \text { for } i=4 t^{\prime}, \\ 20 t^{\prime}-i+1 & \text { for } i=4 t^{\prime}+1,4 t^{\prime}+3, \ldots, 6 t^{\prime}+1 \\ 12 t^{\prime}+1 & \text { for } i=4 t^{\prime}+2, \\ 20 t^{\prime}-i+1 & \text { for } i=4 t^{\prime}+4,4 t^{\prime}+6, \ldots, 6 t^{\prime}, \\ 20 t^{\prime}-i \quad \text { for } i=6 t^{\prime}+2,6 t^{\prime}+4, \ldots, 8 t^{\prime}-2 \\ 20 t^{\prime}-i+2 & \text { for } i=6 t^{\prime}+3,6 t^{\prime}+5, \ldots, 8 t^{\prime}-1 \\ 16 t^{\prime}-1 & \text { for } i=8 t^{\prime} .\end{cases}
$$

From the given labeling f, the numbers 1 and 2 are labels of $v_{4 t^{\prime}+2}$ and $v_{8 t^{\prime}}$. The numbers $3,4, \ldots, t^{\prime}+1$ are labels of $v_{4 t^{\prime}+4}, v_{4 t^{\prime}+6}, \ldots, v_{6 t^{\prime}}$. The numbers $t^{\prime}+2$, $t^{\prime}+3, \ldots, 2 t^{\prime}$ are labels of $v_{6 t^{\prime}+3,} v_{6 t^{\prime}+5}, \ldots, v_{8 t^{\prime}-1}$. The numbers $2 t^{\prime}+1,2 t^{\prime}+2$, $\ldots, 3 t^{\prime}+1$ are labels of $v_{4 t^{\prime}+1, v_{4 t^{\prime}+3}}, \ldots$. C, $v_{6 t^{\prime}+1}$. The numbers $3 t^{\prime}+2,3 t^{\prime}+3, \ldots$,
 are labels of $v_{1}, v_{3}, \ldots, v_{2 t^{\prime}+1}$. The numbers $5 t^{\prime}+2,5 t^{\prime}+3, \ldots, 6 t^{\prime}+1$ are labels of $v_{2 t^{\prime}+2}, v_{2 t^{\prime}+4}, \ldots, v_{4 t^{\prime}}$. The numbers $6 t^{\prime}+2,6 t^{\prime}+3, \ldots, 7 t^{\prime}$ are labels of v_{4}, v_{6}, $\ldots, v_{2 t^{\prime}}$. The numbers $7 t^{\prime}+1,7 t^{\prime}+2, \ldots, 8 t^{\prime}-1$ are labels of $v_{2 t^{\prime}+3}, v_{2 t^{\prime}+5}, \ldots$, $v_{4 t^{\prime}-1}$. The numbers $8 t^{\prime}$ and $8 t^{\prime}+1$ are labels of e_{2} and e_{1}. The numbers $8 t^{\prime}+2$, $8 t^{\prime}+3, \ldots, 10 t^{\prime}-1$ are labels of $e_{4 t^{\prime}-1}, e_{4 t^{\prime}-2}, \ldots, e_{2 t^{\prime}+2}$. The number $10 t^{\prime}$ is a label of v_{2}. The numbers $10 t^{\prime}+1,10 t^{\prime}+2, \ldots, 12 t^{\prime}-2$ are labels of $e_{2 t^{\prime}}, e_{2 t^{\prime}-1}$,
\ldots, e_{3}. The numbers $12 t^{\prime}-1,12 t^{\prime}$ and $12 t^{\prime}+1$ are labels of $e_{2 t^{\prime}+1}, e_{4 t^{\prime}}$ and $e_{4 t^{\prime}+2}$. The numbers $12 t^{\prime}+2,12 t^{\prime}+3,12 t^{\prime}+4,12 t^{\prime}+5, \ldots, 14 t^{\prime}-2,14 t^{\prime}-1$ are labels of $e_{8 t^{\prime}-2}, e_{8 t^{\prime}-1}, e_{8 t^{\prime}-4}, e_{8 t^{\prime}-3}, \ldots, e_{6 t^{\prime}+2}, e_{6 t^{\prime}+3}$. The numbers $14 t^{\prime}, 14 t^{\prime}+1, \ldots$, $16 t^{\prime}-2$ are labels of $e_{6 t^{\prime}+1}, e_{6 t^{\prime}}, \ldots, e_{4 t^{\prime}+3}$. The numbers $16 t^{\prime}-1$ and $16 t^{\prime}$ are labels of $e_{8 t^{\prime}}$ and $e_{4 t^{\prime}+1}$. So all numbers 1 through $4 n=8 t=16 t^{\prime}$ are used exactly once. Observe that for e_{1},
$f\left(v_{1}\right)+f\left(e_{1}\right)+f\left(v_{2}\right)=4 t^{\prime}+1+\left(8 t^{\prime}+1\right)+10 t^{\prime}=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)$, for e_{2},
$f\left(v_{2}\right)+f\left(e_{2}\right)+f\left(v_{3}\right)=10 t^{\prime}+\left(8 t^{\prime}\right)+4 t^{\prime}+2=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)$,
for $e_{i} ; i=3,5, \ldots, 2 t^{\prime}+1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+8 t^{\prime}+1}{2}+\left(12 t^{\prime}+1-i\right)+\frac{i+1+12 t^{\prime}}{2}$
$=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)$,
for $e_{i} ; i=4,6, \ldots, 2 t^{\prime}$,

$$
\begin{aligned}
f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right) & =\frac{i+12 t^{\prime}}{2}+\left(12 t^{\prime}+1-i\right)+\frac{i+1+8 t^{\prime}+1}{2} \\
& =22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)
\end{aligned}
$$

for $e_{i} ; i=2 t^{\prime}+2,2 t^{\prime}+4, \ldots, 4 t^{\prime}$,

$$
\begin{array}{r}
f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+8 t^{\prime}+2}{2}+\left(12 t^{\prime}+1-i\right)+\frac{i+1+12 t^{\prime}+1}{2} \\
6 \text { 6) } \\
\text { 622t } 2=211 t^{\prime}+2=\frac{1}{2}(11 n+4), \delta
\end{array}
$$

$$
\begin{aligned}
& \text { for } e_{i} ; i=2 t^{\prime}+3,2 t^{\prime}+5, \ldots, 4 t^{\prime}-\sigma \\
& \left.f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+12 t^{\prime}-1}{2}+\left(12 t^{\prime}+1-i\right)+\frac{i+1+8 t^{\prime}+2}{2}\right) 6!
\end{aligned}
$$

$$
=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)
$$

for $e_{4 t^{\prime}+1}$,

$$
\begin{aligned}
& f\left(v_{1}\right)+f\left(e_{4 t^{\prime}+1}\right)+f\left(v_{4 t^{\prime}+1}\right)=4 t^{\prime}+1+\left(16 t^{\prime}\right)+2 t^{\prime}+1 \\
& =22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)
\end{aligned}
$$

for $e_{4 t^{\prime}+2}$,
$f\left(v_{2}\right)+f\left(e_{4 t^{\prime}+2}\right)+f\left(v_{4 t^{\prime}+2}\right)=10 t^{\prime}+\left(12 t^{\prime}+1\right)+1=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)$,
for $e_{i} ; i=4 t^{\prime}+3,4 t^{\prime}+5, \ldots, 6 t^{\prime}+1$,
$f\left(v_{i-4 t^{\prime}}\right)+f\left(e_{i}\right)+f\left(v_{i}\right)=\frac{i-4 t^{\prime}+8 t^{\prime}+1}{2}+\left(20 t^{\prime}-i+1\right)+\left(\frac{i+1}{2}\right)$ $=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)$,
for $e_{i} ; i=4 t^{\prime}+4,4 t^{\prime}+6, \ldots, 6 t^{\prime}$,
$f\left(v_{i-4 t^{\prime}}\right)+f\left(e_{i}\right)+f\left(v_{i}\right)=\frac{i-4 t^{\prime}+12 t^{\prime}}{2}+\left(20 t^{\prime}-i+1\right)+\frac{i}{2}-2 t^{\prime}+1$

$$
=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)
$$

for $e_{i} ; i=6 t^{\prime}+2,6 t^{\prime}+4, \ldots, 8 t^{\prime}-2$,
$f\left(v_{i-4 t^{\prime}}\right)+f\left(e_{i}\right)+f\left(v_{i}\right)=\frac{i-4 t^{\prime}+8 t^{\prime}+2}{2}+20 t^{\prime}-i+\frac{i+2}{2}$

$$
=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4),
$$

for $e_{i} ; i=6 t^{\prime}+3,6 t^{\prime}+5, \ldots, 8 t^{\prime}-1$,
$f\left(v_{i-4 t^{\prime}}\right)+f\left(e_{i}\right)+f\left(v_{i}\right)=\frac{i-4 t^{\prime}+12 t^{\prime}-1}{-2}+20 t^{\prime}-i+2+\frac{i+1}{2}-2 t^{\prime}$

$$
=22 t^{\prime}+2=11 t+2=\frac{1}{2}(11 n+4)
$$

for $e_{8 t^{\prime}}$,
$f\left(v_{4 t^{\prime}}\right)+f\left(e_{8 t^{\prime}}\right)+f\left(v_{8 t^{\prime}}\right)=6 t^{\prime}+1+\left(16 t^{\prime}-1\right)+2=22 t^{\prime}+2=11 t+1=\frac{1}{2}(11 n+4)$.
Case 2: t is odd. Let $t=2 t^{\prime}+1$ for some $t^{\prime} \in \mathbb{Z}^{+}$and define a labeling f as
follows:
สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

and

We can verify similarly to the previous case. Therefore f is an edge-magic total labeling with $k=\frac{1}{2}(11 n+4)$ when n is even.

Figure 3.4: Edge-magic total labelings of 5 -sun and 6 -sun with magic sums $k=29$ and $k=35$ respectively

We are going to show that an ($n, 1$)-kite is edge-magic by giving the notations as follows: $V((n, 1)$-kite $)=\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right\}$ and $E((n, 1)$-kite $)=$ $\left\{e_{1}, e_{2}, \ldots, e_{n}, e_{n+1}\right\}$ where $e_{i}=v_{i} v_{i+1}$ for $i=1,2, \ldots, n-1$ and $e_{n}=v_{n} v_{1}$ and $e_{n+1}=v_{n} v_{n+1}$, that is

Theorem 3.15. SAn $(n, 1)$-kite iscedge-magic with $k=\frac{1}{2}(7 n+9)$ when n is odd.

Proof. Let $n=2 t+1$ for some $t \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}4 t+\frac{7-i}{2} & \text { for } i=1,3, \ldots, 2 t+1 \\ 3 t+\frac{6-i}{2} & \text { for } i=2,4, \ldots, 2 t \\ 4 t+4 & \text { for } i=2 t+2\end{cases}
$$

and

$$
f\left(e_{i}\right)= \begin{cases}i+2 & \text { for } i=1,2, \ldots, 2 t \\ 2 & \text { for } i=2 t+1 \\ 1 & \text { for } i=2 t+2\end{cases}
$$

The numbers 1 and 2 are labels of $e_{2 t+2}$ and $e_{2 t+1}$. The numbers $3,4, \ldots, 2 \mathrm{t}+2$ are labels of $e_{1}, e_{2}, \ldots, e_{2 t}$. The numbers $2 t+3,2 t+4, \ldots, 3 t+2$ are labels of $v_{2 t}, v_{2 t-2}, \ldots, v_{2}$. The numbers $3 t+3,3 t+4, \ldots, 4 t+3$ are labels of $v_{2 t+1}$, $v_{2 t-1}, \ldots, v_{1}$. And the number $4 t+4$ is a label of $v_{2 t+2}$. So all numbers 1 through $2 n=4 t+4$ are used exactly once. Observe that
for $e_{i} ; i=1,3, \ldots, 2 t-1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=4 t+\frac{7-i}{2}+(i+2)+3 t+\frac{6-(i+1)}{2}=7 t+8=\frac{1}{2}(7 n+9)$, for $e_{i} ; i=2,4, \ldots, 2 t$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=3 t+\frac{6-i}{2}+(i+2)+4 t+\frac{7-(i+1)}{2}=7 t+8=\frac{1}{2}(7 n+9)$, for $e_{2 t+1}$,
$f\left(v_{2 t+1}\right)+f\left(e_{2 t+1}\right)+f\left(v_{1}\right)=4 t+\frac{7-2 t-1}{2}+(2)+4 t+3=7 t+8=\frac{1}{2}(7 n+9)$, for $e_{2 t+2}$,
$f\left(v_{2 t+2}\right)+f\left(e_{2 t+2}\right)+f\left(v_{2 t+1}\right)=4 t+4+(1)+3 t+3=7 t+8=\frac{1}{2}(7 n+9)$.
Therefore f is an edge-magic total labeling with $k=\frac{1}{2}(7 n+9)$ when n is odd.

By duality, we have the following corollary.
Corollary 3.16. [10] An (n, 1)-kite is edge-magic with $k=\frac{1}{2}(5 n+9)$ when n is odd.

Theorem 3.17. An $(n, 1)$-kite is edge-magic with $k=3 n+4$ when n is odd.

Proof. Let $n=2 t+1$ for some $t \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}i+1 & \text { for } i=1,3, \ldots, 2 t+1 \\ 2 t+i+2 & \text { for } i=2,4, \ldots, 2 t \\ 4 t+4 & \text { for } i=2 t+2\end{cases}
$$

and

It is easy to verify that f is an edge-magic total labeling with $k=3 n+4$ when n is odd.

By duality, we have the following corollary.

Corollary 3.18. An $(n, 1)$-kite is edge-magic with $k=3 n+5$ when n is odd.

Figure 3.5: Edge-magic total labelings of (5, 1)-kites with magic sums $k=22$, $k=19$ and $k=20$..

Theorem 3.19. [10] An $(n, 1)$-kite is edge-magic with $k=\frac{1}{2}(5 n+10)$ when n is even.

Proof. Let $n=2 t$ for some $t \in \mathbb{Z}^{+}$.
Case 1: t is even. Let $t=2 t^{\prime}$ for some $t^{\prime} \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}\frac{i+3}{2} & \text { for } i=1,3, \ldots, 2 t^{\prime}+1, \\ 6 t^{\prime}+1 & \text { for } i=2, \\ \frac{4 t^{\prime}+i+2}{2} & \text { for } i=4,6, \ldots, 2 t^{\prime}, \\ \frac{i+4}{2} & \text { for } i=2 t^{\prime}+2,2 t^{\prime}+4, \ldots, 4 t^{\prime}, \\ \frac{4 t^{\prime}+i+1}{2}, & \text { for } i=2 t^{\prime}+3,2 t^{\prime}+5, \ldots, 4 t^{\prime}-1, \\ 8 t^{\prime}+2 & \text { for } i=4 t^{\prime}+1 ;\end{cases}
$$

and

It is easy to verify that f is an edge-magic total labeling with $k=\frac{1}{2}(5 n+10)$ when $n=2 t$ where t is even.

Case 2: t is odd. Let $v_{1}, v_{2}, \ldots, v_{n+1}$ be the vertices and for $i=1,2, \ldots, n-1$, $e_{i}=v_{i} v_{i+1}$ and $e_{n}=v_{n} v_{1}$ and $e_{n+1}=v_{n-1} v_{n+1}$, that is

Let $t=2 t^{\prime}+1$ for some $t^{\prime} \in \mathbb{Z}^{+}$and define a labeling f as follows:

สถาบันวิทยบริการ
and

$$
f\left(e_{i}\right)= \begin{cases}4 t^{\prime}+4 & \text { for } i=1, \\ 4 t^{\prime}+3 & \text { for } i=2, \\ 8 t^{\prime}-i+5 & \text { for } i=3,4, \ldots, 2 t^{\prime}, \\ & \text { and for } i=2 t^{\prime}+3,2 t^{\prime}+4, \ldots, 4 t^{\prime}, \\ 8 t^{\prime}+5 & \text { for } i=2 t^{\prime}+1, \\ 8 t^{\prime}+3 & \text { for } i=2 t^{\prime}+2, \\ 6 t^{\prime}+3 & \text { for } i=4 t^{\prime}+1, \\ 8 t^{\prime}+4 & \text { for } i=4 t^{\prime}+2, \\ 1 & \text { for } i=4 t^{\prime}+3 .\end{cases}
$$

It is easy to verify that f is an edge-magic total labeling with $k=\frac{1}{2}(5 n+10)$ when $n=2 t$ where t is odd,

By duality, we have the following corollary.

Corollary 3.20. An $(n, 1)$-kite is edge-magic with $k=\frac{1}{2}(7 n+8)$ when n is odd.

```
                        Q a
```

Theorem 3.21. $6_{6}[3]$ The fan $\mid F_{n}$ is edge-magie with $k=3 n+3$ for all positive integer n.
Proof. Let v_{i} be the vertex of F_{n} for $i=0,1, \ldots, n$ and $e_{i}=v_{0} v_{i}$ for $i=1, \ldots, n$ and $e_{n+i}=v_{i} v_{i+1}$ for $i=1, \ldots, n-1$, that is

Define a labeling f as follows:

and

$$
f\left(e_{i}\right)= \begin{cases}\frac{12 n+7+5(-1)^{i}-6 i}{4<\Omega} & \text { for } i=1, \ldots, n, \\ 6 n-3 i+1 & \text { for } i=n+1, \ldots, 2 n-1 .\end{cases}
$$

Case 1: n is even. Let $n=2 t$ for some $t \in \mathbb{Z}^{+}$. From the given labeling f, the number 1 is a label of v_{0}. The numbers $2,5,8, \ldots, 3 t-1$ are labels of v_{2}, $v_{4}, v_{6}, \ldots, v_{2 t}$. The numbers $3,6,9, \ldots, 3 \mathrm{t}$ are labels of $v_{1}, v_{3}, v_{5}, \ldots, v_{2 t-1}$. The numbers $4,7,10, \ldots, 3 t+1,3 t+4, \ldots, 6 t-2$ are labels of $e_{4 t-1}, e_{4 t-2}$, $\ldots, e_{3 t+2}, e_{3 t+1}, \ldots, e_{2 t+1}$. And the numbers $3 t+2$ and $3 t+3$ are labels of $e_{2 t-1}$ and $e_{2 t}$. Thenumbers $3 t+5$ and $3 t+6$ are labels of $e_{2 t-3}$ and $e_{2 t-2}$. Until the numbers $6 t-4$ and $6 t-3$ are labels of e_{3} and e_{4}. And the numbers $6 t-1$ and $6 t$ are labels of e_{1} and e_{2}. Observe that
for $e_{i} ; i=1,2, \ldots, 2 t$,
$f\left(v_{0}\right)+f\left(e_{i}\right)+f\left(v_{i}\right)=1+\left(\frac{24 t+7+5(-1)^{i}-6 i}{4}\right)+\frac{1-5(-1)^{i}+6 i}{4}=6 t+3=3 n+3$,
for $e_{i} ; i=2 t+1,2 t+2, \ldots, 4 t-1$,

$$
\begin{aligned}
f\left(v_{i-2 t}\right)+f\left(e_{i}\right)+f\left(v_{i+1-2 t}\right) & =\frac{1-5(-1)^{i-2 t}+6(i-2 t)}{4}+(12 t-3 i+1)+\frac{1-5(-1)^{i+1-2 t}+6(i+1-2 t)}{4} \\
& =6 t+3=3 n+3 .
\end{aligned}
$$

Case 2: n is odd. The proof is similar to the previous case.
Therefore f is an edge-magic total labeling of F_{n}.

By duality, we have the following corollary.

Corollary 3.22. The F_{n} is edge-magic with $k=6 n-3$.

Figure 3.6: Edge-magic total labelings of F_{3}, F_{4} and F_{5} with magic sums $k=12$, $k=15$ and $k=18$ respectively.
สถาบันวิทยบริการ

Theorem 3.23. [10] The complete bipartite graph $K_{n, m}$ is edge-magic for any n

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices in the set V_{1} and $v_{n+1}, v_{n+2}, \ldots, v_{n+m}$ the vertices in the set V_{2}. And $e_{i, j}=v_{i} v_{j}$ for $i=1,2, \ldots, n$ and $j=n+1, \mathrm{n}+2$, $\ldots, n+m$ are edges of $K_{n, m}$, that is

Define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}i & \text { for } i=1,2, \ldots, n \\ & \text { for } i=n+1, n+2, \ldots, n+m\end{cases}
$$

and for $i=1,2, \ldots, n$ and $j=n+1, n+2, \ldots, n+m$,

$$
f\left(e_{i, j}\right)=(m+n-j+2)(n+1)-i .
$$

From the given labeling f, the numbers $1,2, \ldots, n$ are labels of $v_{1}, v_{2}, \ldots, v_{n}$. The numbers $(n+1), 2(n+1)$, $m(n+1)$ are labels of $v_{n+1}, v_{n+2}, \ldots, v_{n+m}$. The numbers $n+2, n+3, \ldots, 2 n+1$ are labels of $e_{n, n+m}, e_{n-1, n+m}, \ldots, e_{1, n+m}$. The numbers $2 n+3,2 n+4, \ldots, 3 n+2$ are labels of $e_{n, n+m-1}, e_{n-1, n+m-1}, \ldots$, $e_{1, n+m-1}$. Until the numbers $m(n+1)+1, m(n+1)+2, \ldots, m(n+1)+n$ are labels of $e_{n, n+1}, e_{n-1, n+1}, \ldots, e_{1, n+1}$. So all numbers 1 through $m(n+1)+n$ are used exactly once. Observe that
for $e_{i, j} ; i=1,2, \AA, n$ and $j=n+9, n \notin 2, \ldots, n+m, \quad \delta$ $f\left(v_{i}\right)+f\left(e_{i, j}\right)+f\left(v_{j}\right)=i+(m+n-j+2)(n+1)-i+(j-n)(n+1)$

Therefore f is an edge-magic total labeling with $k=(m+2)(n+1)$.

By duality, we have the following corollary.

Corollary 3.24. The complete bipartite graph $K_{n, m}$ is edge-magic with $k=(2 m+1)(n+1)$.
W.D. Wallis and the others [10] enumerated every edge-magic total labeling for $K_{2,3}$ in the case $14 \leq k \leq 22$ and $K_{3,3}$ for the case $18 \leq k \leq 30$ and k must be even which are shown in table 3.3.

Table 3.3: Edge-magic total labelings of $K_{2,3}$ in the case $14 \leq k \leq 22$ and $K_{3,3}$ for the case $18 \leq k \leq 30$ and k must be even.

Lemma 3.6. [10] If a star $K_{1, n}$ is edge-magic, then the center receives label 1, $n+1$ or $2 n+1$.

Proof. Assume that the center receives label x. Then by lemma 2.28(a)

$$
\begin{equation*}
k n=\binom{2 n+2}{2}+(n-1) x \tag{3.4}
\end{equation*}
$$

Then

$$
(n-1) x=k n-(n+1)(2 n+1) .
$$

So

$$
x-\frac{x}{n}=k-2 n-3-\frac{1}{n} .
$$

Then $x \equiv 1(\bmod n)$. Since all labels of star are $1,2, \ldots, 2 n+1, x$ can be $1, n+1$
or $2 n+1$.

Theorem 3.25. [10] There are $3 \cdot 2^{n}$ edge-magic total labelings of star $K_{1, n}$ up to equivalence.

Proof. Let f be the edge-magic total labeling of star $K_{1, n}$ and c the label of the center v_{0} and x_{i} the label of the edge $e_{i}=v_{0} v_{i}$ where v_{i} is the peripheral vertex for $i=1,2, \ldots, n$. By lemma 3.6 and the equation (3.4), we have $k=2 n+4$, $3 n+3$ and $4 n+2$ if c is $1, n+1$ and $2 n+1$ respectively. Since f is an edge-magic total labeling, $x_{i}+y_{i}=k-c=T$ where $y_{i}=f\left(e_{i}\right)$ and e_{i} is an edge which is incident to x_{i}. So $T=2 n+3,2 n+2$ or $2 n+1$. Then there is exactly one way to partition the $2 n+1$ integers $1,2, \Omega, 2 n+1$ into $n+\mathbb{d}$ set. i.e. $\{c\},\left\{a_{1}, b_{1}\right\}$, $\left\{a_{2}, b_{2}\right\}, \odot, q\left\{a_{n}, b_{n}\right\}$ where $a_{i}+b_{i}{ }^{\sigma} \sigma^{\sigma}$. For convenience, we choose the labels so that $a_{i}<b_{i}$ for every i and $a_{1}<a_{2}<\ldots<a_{n}$. Then up to isomorphism, one can assume that $\left\{x_{i}, y_{i}\right\}=\left\{a_{i}, b_{i}\right\}$. Each of these n equations provides two choices, according as $x_{i}=a_{i}$ or b_{i}. So each of the three values of c gives 2^{n} edge-magic total labelings of star $K_{1, n}$.

Theorem 3.26. [3] The book B_{n} is edge-magic with $k=7 n+6$ for all positive integer n.

Proof. Let u_{i} and v_{i} be the vertices of B_{n} for $i=0,1, \ldots, n$ and $e_{i}=u_{i} v_{i}$ for $i=0,1, \ldots, n$ and $e_{n+i}=v_{0} v_{i}$ for $i=1, \ldots, n$ and $e_{2 n+i}=u_{0} u_{i}$ for $i=1, \ldots, n$, that is

Define a labeling f as follows:

$$
f\left(u_{i}\right)= \begin{cases}1 & \text { for } i=0 \\ 2 n+i+2 & \text { for } i=1, \ldots, n\end{cases}
$$

and

and

From the given labeling f, the number 1 is a label of u_{0}. The numbers $2,4, \ldots$, $2 n-2,2 n$ are labels of $v_{n}, v_{n-1}, \ldots, v_{2}, v_{1}$. The numbers $3,5, \ldots, 2 \mathrm{n}-1,2 \mathrm{n}+1$ are labels of $e_{n+1}, e_{n+2}, \ldots, e_{2 n}$. The number $2 n+2$ is a label of e_{0}. The numbers $2 \mathrm{n}+3$, $2 n+4, \ldots, 3 n+2$ are labels of $u_{1}, u_{2}, \ldots, u_{n}$. The numbers $3 n+3,3 n+4, \ldots, 4 n+2$ are labels of $e_{1}, e_{2}, \ldots, e_{n}$. The numbers $4 n+3,4 n+4, \ldots, 5 n+1,5 n+2$ are labels
of $e_{3 n}, e_{3 n-1}, \ldots, e_{2 n+2}, e_{2 n+1}$. And the number $5 n+3$ is a label of v_{0}. Then all numbers 1 through $5 n+3$ are used exactly once. Observe that, for $i=1,2, \ldots, n$
$f\left(u_{0}\right)+f\left(e_{2 n+i}\right)+f\left(u_{i}\right)=1+(7 n-(2 n+i)+3)+2 n+i+2=7 n+6$,
$f\left(v_{0}\right)+f\left(e_{n+i}\right)+f\left(v_{i}\right)=5 n+3+(2(n+i)+1-2 n)+2 n-2 i+2=7 n+6$,
$f\left(u_{i}\right)+f\left(e_{i}\right)+f\left(v_{i}\right)=2 n+i+2+(3 n+i+2)+2 n-2 i+2=7 n+6$,
and $f\left(u_{0}\right)+f\left(e_{0}\right)+f\left(v_{0}\right)=1+(2 n+2)+5 n+3=7 n+6$.
Therefore f is an edge-magic total labeling with $k=7 n+6$.

By duality, we have the following corollary.

Corollary 3.27. The book B_{n} is edge-magic with $k=8 n$.

Figure 3.7: Edge-magic total labelings of B_{3} and B_{4} with magic sums $k=27$ and $k=34$ respectively.
สtivel. บันวิทยบริการ

Theorem 3.28. [3] The ladder $L_{n}{ }_{n}$ is edge-magie with $k=\frac{1}{2}(11 n+1)$ when n is odd.

Proof. Let $v_{1}, v_{2}, \ldots, v_{2 n}$ be the vertices of L_{n} and $e_{1}=v_{1} v_{2}, e_{2}=v_{2} v_{3}, \ldots$,
$e_{n-1}=v_{n-1} v_{n}, e_{n}=v_{n} v_{2 n}, e_{n+1}=v_{n+1} v_{n+2}, e_{n+2}=v_{n+2} v_{n+3}, \ldots, e_{2 n-1}=v_{2 n-1} v_{2 n}$, $e_{2 n}=v_{n-1} v_{2 n-1}, e_{2 n+1}=v_{1} v_{n+1}, e_{2 n+2}=v_{2} v_{n+2}, \ldots, e_{3 n-2}=v_{n-2} v_{2 n-2}$ edges of L_{n}, that is

Let $n=2 t+1$ for some $t \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { for } i=1,3, \ldots, 2 t+1, \\ \frac{2 t+i+2}{2} & \text { for } i=2,4, \ldots, 2 t, \\ \frac{4 t+i+2}{2}, & \text { for } i=2 t+2,2 t+4, \ldots, 4 t+2, \\ \frac{2 t+i+1}{2}, & \text { for } i=2 t+3,2 t+5, \ldots, 4 t+1 ;\end{cases}
$$

and

From the given labeling f, the numbers $1,2, \ldots, t+1$ are labels of v_{1}, v_{3}, \ldots, $v_{2 t+1}$. The numbers $t+2, t+3, \ldots, 2 t+1$ are labels of $v_{2}, v_{4}, \ldots, v_{2 t}$. The numbers $2 t+2,2 t+3, \ldots, 3 t+1$ are labels of $v_{2 t+3}, v_{2 t+5}, \ldots, v_{4 t+1}$. The numbers $3 t+2$, $3 t+3, \ldots, 4 t+2$ are labels of $v_{2 t+2}, v_{2 t+4}, \ldots, v_{4 t+2}$. The numbers $4 t+3,4 t+4$, $\ldots, 6 t+2$ are labels of $e_{4 t+1}, e_{4 t}, \ldots, e_{2 t+2}$. The numbers $6 t+3$ and $6 t+4$ are labels of $e_{2 t+1}$ and $e_{4 t+2}$. The numbers $6 t+5,6 t+6, \ldots, 8 t+3$ are labels of $e_{6 t+1}$,
$e_{6 t}, \ldots, e_{4 t+3}$. The numbers $8 t+4,8 t+5, \ldots, 10 t+3$ are labels of $e_{2 t}, e_{2 t-1}, \ldots$, e_{1}. So all numbers 1 through $5 n-2=10 t+3$ are used exactly once. Observe that
for $e_{i} ; i=1,3, \ldots, 2 t-1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{i+1}{2}+(10 t-i+4)+\frac{2 t+2+i+1}{2}=\frac{22 t+12}{2}=\frac{1}{2}(11 n+1)$, for $e_{i+4 t+2} ; i=1,3, \ldots, 2 t-1$,
$f\left(v_{i}\right)+f\left(e_{i+4 t+2}\right)+f\left(v_{i+2 t+1}\right)=\frac{i+1}{2}+(12 t+6-(i+4 t+2))+\frac{4 t+2+i+(2 t+1)}{2}$ $\frac{22 t+12}{2}=\frac{1}{2}(11 n+1)$,
for $e_{i} ; i=2,4, \ldots, 2 t$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{2 t+i+2}{2}+(10 t-i+4)+\frac{i+1+1}{2}=\frac{22 t+12}{2}=\frac{1}{2}(11 n+1)$, for $e_{i+4 t+2} ; i=2,4, \ldots, 2 t$,
$f\left(v_{i}\right)+f\left(e_{i+4 t+2}\right)+f\left(v_{i+2 t+1}\right)=\frac{2 t+i+2}{2}+(12 t+6-(i+4 t+2))+\frac{2 t+1+i+(2 t+1)}{2}$

$$
=\frac{22 t+12}{2}=\frac{1}{2}(11 n+1),
$$

for $e_{n}, f\left(v_{n}\right)+f\left(e_{n}\right)+f\left(v_{2 n}\right)=t+1+(6 t+3)+4 t+2=11 t+6=\frac{1}{2}(11 n+1)$, for $e_{i} ; i=2 t+2,2 t+4, \ldots, 4 t$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{4 t+i+2}{2}+(8 t-i+4)+\frac{2 t+1+i+1}{2}=\frac{22 t+12}{2}=\frac{1}{2}(11 n+1)$,
for $e_{i} ; i=2 t+3,2 t+5, \ldots, 4 t+1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=\frac{2 t+i+1}{2}+(8 t-i+4)+\frac{4 t+2+i+1}{2}=\frac{22 t+12}{2}=\frac{1}{2}(11 n+1)$.
Therefore f is anedge-magic total labeling with $k=\frac{1}{2}(11 n-1)$ when n is odd. By duality, we have the following corollary $\frac{\sigma}{6} 9 \mathrm{Cl}$?
Corollary 3.29. The ladder L_{n} is edge-magic with $k=\frac{1}{2}(19 n-13)$ when n is odd.

$k=17$

$k=28$

Figure 3.8: Edge-magic total labelings of L_{3} and L_{5} with magic sums $k=17$ and $k=28$ respectively.

Theorem 3.30. An (n, m)-pineapple is edge-magic with $k=3 m+3 n+1$ when n is odd.

Proof. Let $v_{1}, v_{2}, \ldots, v_{m+n}$ be the vertices and $e_{i}=v_{i} v_{m+1}$ for $i=1,2, \ldots, m$ and $e_{i}=v_{i} v_{i+1}$ for $i=m+1, m+2 \ldots, m+n-1$ and $e_{m+n}=v_{m+n} v_{m+1}$, that is

Let $n=2 t+1$ for some $t \in \mathbb{Z}^{+}$and define a labeling f as follows:

$$
f\left(v_{i}\right)= \begin{cases}i & \text { for } i=1,2, \ldots, m \\ 2 t+i & \text { for } i=m+1, m+3, m+5, \ldots, m+2 t+1, \\ i-1 & \text { for } i=m+2, m+4, m+6, \ldots, m+2 t\end{cases}
$$

and

$$
f\left(e_{i}\right)= \begin{cases}2 m+4 t-i+3 & \text { for } i=1,2, \ldots, m \\ 3 m+4 t-2 i+4 & \text { for } i=m+1, m+2, \ldots, m+2 t+1\end{cases}
$$

From the given labeling f, the numbers $1,2, \ldots, m$ are labels of $v_{1}, v_{2}, \ldots, v_{m}$. The numbers $m+1, m+3, \ldots, m+2 t-1$ are labels of $v_{m+2}, v_{m+4}, \ldots, v_{m+2 t}$. The numbers $m+2, m+4, \ldots, m+2 t, m+2 t+2, \ldots, m+4 t+2$ are labels of $e_{m+2 t+1}, e_{m+2 t}, \ldots, e_{m+t+2}, e_{m+t+1}, \ldots, e_{m+1}$. The numbers $m+2 t+1, m+2 t+3$, $\ldots, m+4 t+1$ are labels of $v_{m+1}, v_{m+3}, \ldots, v_{m+2 t+1}$. The numbers $m+4 t+3$, $m+4 t+4, \ldots, 2 m+4 t+2$ are labels of $e_{m}, e_{m-1}, \ldots, e_{1}$. Observe that for $e_{i} ; i=1,2, \ldots, m$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{m+1}\right)=i+(2 m+4 t-i+3)+m+2 t+1=3 m+6 t+4=3 m+3 n+1$, for $e_{i} ; i=m+1, m+3, \ldots, m+2 t-1$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=2 t+(3 m+4 t-2 i+4)+i+1-1$ $=3 m+6 t+4=3 m+3 n+1$,
for $e_{i} ; i=m+2, m+4, \ldots, m+2 t$,
$f\left(v_{i}\right)+f\left(e_{i}\right)+f\left(v_{i+1}\right)=i-1+(3 m+4 t-2 i+4)+2 t+i+1$

$$
=3 m+6 t+4=3 m+3 n+1,
$$

$f\left(v_{m+2 t+1}\right)+f\left(e_{m+2 t+1}\right)+f\left(v_{m+1}\right)=m+4 t+1+(m+2)+m+2 t+1$

Therefore f is an edge-magic total labeling with $k=3 m+3 n+1$ when n is odd.

By duality, we have the following corollary.

Corollary 3.31. An (n, m)-pineapple is edge-magic with $k=3 m+3 n+2$ when n is odd.

Figure 3.9: Edge-magic total labelings of (5, 2)-pineapple and (5, 3)-pineapple with magic sums $k=22$ and $k=25$ respectively.

CHAPTER IV

EDGE-MAGIC TOTAL LABELINGS ON
 DISCONNECTED GRAPHS

In this chapter, we discuss the disconnected graph which are or are not edge-magic. Moreover, some examples are shown.

Theorem 4.1. The graph $m K_{n}$ is not edge-magic when m is odd and $n \equiv 4(\bmod 8)$.

Proof. Since $n \equiv 4(\bmod 8)$, there exists $t \in \mathbb{Z}^{+}$such that $n=8 t+4$. Let $m=2 t^{\prime}+1$ for some $t^{\prime} \in \mathbb{Z}^{+}$. Then

$$
\begin{aligned}
p+q & =m n+m\binom{n}{2} \\
& =\left(2 t^{\prime}+1\right)\left(8 t+4+\frac{(8 t+4)^{2}-(8 t+4)}{2}\right) \\
& =\left(2 t^{\prime}+1\right)\left(32 t^{2}+36 t+10\right) \\
& =4\left(2 t^{\prime}+1\right)\left(8 t^{2}+9 t+2\right)+2
\end{aligned}
$$

Thus $p+q \equiv 2(\bmod -4)$ © Since each vertex of $m K_{n}$ has $n-1$ degree which is odd and q is even, by proposition $2.29, K_{n}$ is not edge-magic.

Theorem 4.2. The graph $m W_{n}$ isnot edge-magic when m is odd and $n \equiv 3(\bmod 4)$.

Proof. The proof is similar to the previous theorem.

We are going to show that the graph $m C_{n}$ is edge-magic by giving the notations as follows: $V\left(m C_{n}\right)=V_{1} \bigcup \ldots \bigcup V_{m}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}\right\}$ and $E\left(m C_{n}\right)=E_{1} \bigcup \ldots \bigcup E_{m}$ where $E_{i}=\left\{e_{1}^{i}, e_{2}^{i}, \ldots, e_{n}^{i}\right\}$ and $e_{1}^{i}=v_{1}^{i} v_{2}^{i}, e_{2}^{i}=v_{2}^{i} v_{3}^{i}$, $\ldots, e_{n-1}^{i}=v_{n-1}^{i} v_{n}^{i}, e_{n}^{i}=v_{n}^{i} v_{1}^{i}$, that is

Theorem 4.3. [11] The graph $m C_{n}$ is edge-magic with $k=\frac{1}{2}(5 n m+3)$ when m (>1) and n are odd.

Proof. Let $m(>1)$ and n be odd.
For $i=1, \ldots, \frac{m-1}{2}$, define a labeling f as follows:

$$
f\left(v_{j}^{i}\right)= \begin{cases}i & \text { for } j=1, \\ t m+i & \text { for } j=2 t+1 ; t=1, \ldots, \frac{n-3}{2}, \\ \frac{1}{2}\left[(n+2 t) \frac{1+1+2 i]}{m+1}\right. & \text { for } j=2 t ; t=1, \ldots, \frac{n-1}{2}, \\ \frac{1}{2}(n+1) m+1-2 i & \text { for } j=n\end{cases}
$$

and

$$
f\left(e_{j}^{i}\right)= \begin{cases}(2 n-1) m+1-2 i & \text { for } j=1, \\ (2 n-2 t-1) m+1-2 i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-3}{2}, \\ (2 n-2 t) m+1-2 i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-3}{2}, \\ n m+i & \text { for } j=n-1, \\ \frac{1}{2}[(4 n-1) m+1+2 i] & \text { for } j=n .\end{cases}
$$

For $i=\frac{m+1}{2}, \ldots, m$, define a labeling f as follows:

$$
f\left(v_{j}^{i}\right)= \begin{cases}i & \text { for } j=1, \\ t m+i & \text { for } j=2 t+1 ; t=1, \ldots, \frac{n-3}{2}, \\ \frac{1}{2}[(n+2 t-2) m+1+2 i] & \text { for } j=2 t ; t=1, \ldots, \frac{n-1}{2}, \\ \frac{1}{2}(n+3) m+1-2 i & \text { for } j=n ;\end{cases}
$$

and

$$
f\left(e_{j}^{i}\right)= \begin{cases}2 n m+1-2 i & \text { for } j=1, \\ (2 n-2 t) m+1-2 i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-3}{2}, \\ (2 n-2 t+1) m+1-2 i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-3}{2}, \\ n m+i & \text { for } j=n-1, \\ \frac{1}{2}[(4 n-3) m+1+2 i] & \text { for } j=n .\end{cases}
$$

Let $n=2 z+1$ and $m=2 z^{\prime}+1$ for some $z, z^{\prime} \in \mathbb{Z}^{+}$. The numbers $1,2, \ldots$, $2 z^{\prime}+1,2 z^{\prime}+2, \ldots, 2 z z^{\prime}+z$ are labels of $v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{m}, v_{3}^{1}, v_{3}^{2}, \ldots, v_{3}^{m}, \ldots$, $v_{n-2}^{1}, \ldots, v_{n-2}^{m}$. The numbers $2 z z^{\prime}+z+1, \ldots, 2 z \overline{z^{\prime}}+z+2 z^{\prime}+1$ are labels of v_{n}^{i} for $i=m, \frac{m-1}{2}, m-1, \frac{m-1}{2}-1, \ldots, \frac{m+1}{2}$. The numbers $2 z z^{\prime}+z+2 z^{\prime}+2, \ldots$, $4 z z^{\prime}+2 z+2 z^{\prime}+$ Tare labels of $\frac{\frac{m+1}{m}}{v_{2}^{2}} ת v_{2}^{\frac{m+3}{2}},\{, v_{2}^{m} v_{4}^{\frac{m+1}{2}}, \overbrace{v_{4}^{2}}^{\frac{m+3}{2}} \ldots, v_{4}^{m}, \ldots, v_{n-1}^{m}$. The numbers $4 z z^{\prime}+2 z+2 z^{\prime}+2, \sigma_{0}, 4 z z^{\prime}+2 z \pm 4 z^{\prime}+2$ are labels of e_{n-1}^{1}, e_{n-1}^{2}, $\ldots, e_{n-1}^{m} q$. The numbers $4 z z^{\prime}+2 z+4 z^{\prime}+3, \ldots, 8 z z^{\prime}+4 z+2 z^{\prime}+1$ are labels of $e_{n-2}^{m}, e_{n-2}^{\frac{m-1}{2}}, e_{n-2}^{m-1}, \ldots, e_{n-2}^{\frac{m+1}{2}}, e_{n-3}^{m}, e_{n-3}^{\frac{m-1}{2}}, e_{n-3}^{m-1}, \ldots, e_{n-3}^{\frac{m+1}{2}}, \ldots, e^{\frac{m+1}{2}}$. The numbers $8 z z^{\prime}+4 z+2 z^{\prime}+2, \ldots, 8 z z^{\prime}+4 z+3 z^{\prime}+2$ are labels of $e_{n}^{\frac{m+1}{2}}, e_{n}^{\frac{m+3}{2}}, \ldots, e_{n}^{m}$. The numbers $8 z z^{\prime}+4 z+3 z^{\prime}+3, \ldots, 8 z z^{\prime}+4 z+4 z^{\prime}+2$ are labels of $e_{n}^{1}, e_{n}^{2}, \ldots$, $e_{n}^{\frac{m-1}{2}}$. So all numbers 1 through $2 n m=8 z z^{\prime}+4 z+4 z^{\prime}+2$ are used exactly once.

Observe that, for $i=1, \ldots, \frac{m-1}{2}$,
for e_{1}^{i},
$f\left(v_{1}^{i}\right)+f\left(e_{1}^{i}\right)+f\left(v_{2}^{i}\right)=i+((2 n-1) m+1-2 i)+\frac{(n+2) m+1+2 i}{2}=\frac{1}{2}(5 n m+3)$,
for $e_{j}^{i} ; j=2 t$ where $t=1,2, \ldots, \frac{n-3}{2}$,
$f\left(v_{j}^{i}\right)+f\left(e_{j}^{i}\right)+f\left(v_{j+1}^{i}\right)=\frac{(n+2 t) m+1+2 i}{2}+(2 n-2 t) m+1-2 i+t m+i=\frac{1}{2}(5 n m+3)$,
for $e_{j}^{i} ; j=2 t+1$ where $t=1,2, \ldots, \frac{n-3}{2}$,
$f\left(v_{j}^{i}\right)+f\left(e_{j}^{i}\right)+f\left(v_{j+1}^{i}\right)=t m+i+(2 n-2 t-1) m+1-2 i+\frac{(n+2(t+1)) m+1+2 i}{2}$

$$
=\frac{1}{2}(5 n m+3),
$$

for e_{n-1}^{i},
$f\left(v_{n-1}^{i}\right)+f\left(e_{n-1}^{i}\right)+f\left(v_{n}^{i}\right)=\frac{(2 n-1) m+1+2 i}{2}+n m+i+\frac{(n+1) m}{2}+1-2 i=\frac{1}{2}(5 n m+3)$, for e_{n}^{i},
$f\left(v_{n}^{i}\right)+f\left(e_{n}^{i}\right)+f\left(v_{1}^{i}\right)=\frac{(n+1) m}{2}+1-2 i+\frac{(4 n-1) m+1+2 i}{2}+i=\frac{1}{2}(5 n m+3)$.
For $i=\frac{m+1}{2}, \ldots, m$, we can verify similarly. Therefore f is an edge-magic total labeling with $k=\frac{1}{2}(5 n m+3)$ when m and n are odd.

By duality, we have the following corollary.

Corollary 4.1. [11] The graph $m C_{n}$ is edge-magic with $k=\frac{1}{2}(7 n m+3)$ when m (>1) and n are od \bar{d}.
สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Figure 4.1: Edge-magic total labelings of $3 C_{3}$ and $5 C_{5}$ with magic sums $k=24$ and $k=64$ respectively.

We are going to show that the graph $m P_{n}$ is edge-magic by giving the notations as follows: $V\left(m P_{n}\right)=V_{1} \bigcup \ldots \bigcup V_{m}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}\right\}$ and $E\left(m P_{n}\right)=E_{1} \bigcup \ldots \cup E_{m}$ where $E_{i}=\left\{e_{1}^{i}, e_{2}^{i}, \ldots, e_{n-1}^{i}\right\}$ and $e_{1}^{i}=v_{1}^{i} v_{2}^{i}, e_{2}^{i}=v_{2}^{i} v_{3}^{i}$, $\ldots, e_{n-1}^{i}=v_{n-1}^{i} v_{n}^{i}$, that is

Theorem 4.4. [11] The graph $m P_{n}$ is edge-magic with $k=\frac{1}{2}(5 n m+3)$ when m (>1) and n are odd.

Proof. By the edge-magic total labeling f in theorem 4.3, the m highest labels appear as edge labels with one in each component. We delete those edges and their labels. Then we have a graph $m P_{n}$ which is edge-magic with $k=\frac{1}{2}(5 n m+3)$.

By duality, we have the following corollary.
Corollary 4.2. [11] The graph $m P_{n}$ is edge-magic with $k=\frac{1}{2}[(7 n-6) m+3]$ when $m(>1)$ and n are odd.

Theorem 4.5. [11] The graph $m P_{n}$ is edge-magic with $k=\frac{1}{2}[(5 n-2) m+3]$ when $m(>1)$ and n are odd.

Proof. Let $m>1$ and n be odd.
For $i=1, \ldots, \frac{m-1}{2}$, define a labeling f as follows:

$$
f\left(v_{j}^{i}\right)= \begin{cases}\frac{1}{2}(n m+1+2 i) & \text { for } j=1, \\ \frac{1}{2}[(n+2 t) m+1+2 i] & \text { for } j=2 t+1 ; t=1, \ldots, \frac{n-1}{2}, \\ (t-1) m+i, & \text { for } j=2 t ; t=1, \ldots, \frac{n-1}{2}\end{cases}
$$

and

$$
f\left(e_{j}^{i}\right)= \begin{cases}(2 n-1) m+1-2 i & \text { for } j=1, \\ (2 n-2 t-1) m+1-2 i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-3}{2}, \\ (2 n-2 t) m+1-2 i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-1}{2} .\end{cases}
$$

For $i=\frac{m+1}{2}, \ldots, m$, define a labeling f as follows:

$$
\sigma_{9}\left(r_{j}^{i}\right)= \begin{cases}\frac{1}{2}[(n-2) m+1+2 i] & \text { for } g=1, \\ \frac{1}{2}[(n+2 t-2) m+1+2 i] & \text { for } j=2 t+1 ; t=1, Q ., \frac{n-1}{2}, \\ (t-1) m+i & \text { for } j=2 t ; t=1, \ldots, \frac{n-1}{2} ;\end{cases}
$$

and

$$
f\left(e_{j}^{i}\right)= \begin{cases}2 n m+1-2 i & \text { for } j=1, \\ (2 n-2 t) m+1-2 i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-3}{2}, \\ (2 n+1-2 t) m+1-2 i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-1}{2}\end{cases}
$$

It is easy to verify that all numbers 1 through $m(2 n-1)$ are used exactly once.
Observe that, for $i=1,2, \ldots, \frac{m-1}{2}$,
for e_{1}^{i},
$f\left(v_{1}^{i}\right)+f\left(e_{1}^{i}\right)+f\left(v_{2}^{i}\right)=\frac{n m+1+2 i}{2}+(2 n-1) m+1-2 i+i=\frac{1}{2}(5 n m-2 m+3)$,
for $e_{j}^{i} ; j=2 t$ where $t=1,2, \ldots, \frac{n-1}{2}$,
$f\left(v_{j}^{i}\right)+f\left(e_{j}^{i}\right)+f\left(v_{j+1}^{i}\right)=(t-1) m+i+(2 n-2 t) m+1-2 i+\frac{(n+2 t) m+1+2 i}{2}$

$$
=\frac{1}{2}(5 n m-2 m+3),
$$

for $e_{j}^{i} ; j=2 t+1$ where $t=1,2, \ldots, \frac{n-3}{2}$,
$f\left(v_{j}^{i}\right)+f\left(e_{j}^{i}\right)+f\left(v_{j+1}^{i}\right)=\frac{(n+2 t) m+1+2 i}{2}+(2 n-2 t-1) m+1-2 i+(t+1-1) m+i$
$=\frac{1}{2}(5 n m-2 m+3)$.
For $i=\frac{m+1}{2}, \ldots, m$, we can verify similarly. Therefore f is an edge-magic total labeling with $k=\frac{1}{2}[(5 n-2) m+3]$ when m and n are odd.

By duality, we have the following corollary.

Corollary 4.3. [11] The graph $m P_{n}$ is edge-magic with $k=\frac{1}{2}[(7 n-4) m+3]$ when $m(>1)$ and n are odd.
สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

$k=21$
.

$$
5
$$

$$
k=30
$$

Figure 4.2: Edge-magic total labelings of $3 P_{3}$ and $3 P_{4}$ with magic sums $k=21$ and $k=30$ respectively.

Theorem 4.6. [11] The graph $m P_{n}$ is edge-magic with $k=\frac{1}{2}[(5 n-1) m+3]$ when $m(>1)$ is odd and n is even.

Proof. Let $m>1$ be odd and n even.
For $i=1, \ldots, \frac{m-1}{2}$, define a labeling f as follows:

$$
f\left(v_{j}^{i}\right)= \begin{cases}\left.\frac{1}{2}\left[\frac{n}{n}+1\right) m+1+2 i\right] & \text { for } j=1, \\ \frac{1}{2}[(n+2 t+1) m+1+2 i] & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-2}{2}, \\ (t-1) m+i b ? \text { for } j=2 t ; t=\mathrm{d}, 2, \ldots, \frac{n}{2} ;\end{cases}
$$

$$
f\left(e_{j}^{i}\right)= \begin{cases}(2 n-1) m+1-2 i & \text { for } j=1, \\ (2 n-2 t-1) m+1-2 i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-2}{2}, \\ (2 n-2 t) m+1-2 i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-2}{2}\end{cases}
$$

For $i=\frac{m+1}{2}, \ldots, m$, define a labeling f as follows:

$$
f\left(v_{j}^{i}\right)= \begin{cases}\frac{1}{2}[(n-1) m+1+2 i] & \text { for } j=1, \\ \frac{1}{2}[(n+2 t-1) m+1+2 i] & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-2}{2}, \\ (t-1) m+i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n}{2}\end{cases}
$$

and

$$
f\left(e_{j}^{i}\right)= \begin{cases}2 n m+1-2 i & \text { for } j=1, \\ (2 n-2 t) m+1-2 i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-2}{2}, \\ (2 n-2 t+1) m+1-2 i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-2}{2} .\end{cases}
$$

It is easy to verify that f is an edge-magic total labeling with $k=\frac{1}{2}[(5 n-1) m+3]$ when m is odd and n is even.

By duality, we have the following corollary.
Corollary 4.4. [11] The graph $m P_{n}$ is edge-magic with $k=\frac{1}{2}[(7 n-5) m+3]$ when $m(>1)$ is odd and n is even.

Theorem 4.7. The graph $m P_{n} \cup m K_{1}$, the graph consists of the disjoint union of m copies of P_{n} and the disjoint union of m copies of K_{1}, is edge-magic with $k=\frac{1}{2}[(5 n-2) m+3]$ when $m \geq 1$ and m is odd and n is even.

Proof. By the edge-magic total labeling f in theorem 4.5, the m highest labels appear as edge labels with one in each component. We delete those edges and their labels. Then we have the graph $m P_{n} \bigcup m K_{1}$ which is edge-magic with the same magic sum.

We are going to show that the graph $m(n, 1)$-kite is edge-magic by giving the notations as follows: $V(m(n, 1)$-kite $)=V_{1} \bigcup \ldots \bigcup V_{m}$ where $V_{i}=\left\{v_{1}^{i}, v_{2}^{i}, \ldots, v_{n}^{i}, v_{n+1}^{i}\right\}$ and $E(m(n, 1)$-kite $)=E_{1} \bigcup \ldots \bigcup E_{m}$ where $E_{i}=\left\{e_{1}^{i}, e_{2}^{i}, \ldots, e_{n}^{i}, e_{n+1}^{i}\right\}$ and $e_{1}^{i}=v_{1}^{i} v_{2}^{i}$, $e_{2}^{i}=v_{2}^{i} v_{3}^{i}, \ldots, e_{n-1}^{i}=v_{n-1}^{i} v_{n}^{i}, e_{n}^{i}=v_{n}^{i} v_{1}^{i}, e_{n+1}^{i}=v_{n}^{i} v_{n+1}^{i}$, that is

Theorem 4.8. The graph $m(n, 1)$-kite is magic with $k=\frac{1}{2}[m(5 n+6)+3]$ when $m(>1)$ and n are odd.

Proof. Let $m(>1)$ and n be odd.
For components $i=1, \ldots, \frac{m-1}{2}$, define a labeling f as follows:

$$
f\left(v_{j}^{i}\right)= \begin{cases}i+m & \text { for } j=1, \\ (t+1) m+i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-3}{2}, \\ \frac{1}{2}[(n+2 t+2) m+1+2 i] & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-1}{2}, \\ \frac{1}{2}(n+3) m+1-2 i & \text { for } j=n, \\ \left.\frac{1}{2}(4 n+3) m+1\right]+i & \text { for } j=n+1 ;\end{cases}
$$

$\overbrace{9}\left(e_{j}^{i}\right)= \begin{cases}2 m n+1-2 i & \text { for } j=1, \\ (2 n-2 t) m+1-2 i \\ (2 n-2 t+1) m+1-2 i & \text { for } j=2 t p t=1,2, \overparen{G}, \frac{n-3}{2}, \\ (n+1) m+i & \text { for } j=n-1, \\ \frac{1}{2}[(4 n+1) m+1+2 i] & \text { for } j=n, \\ i & \text { for } j=n+1 .\end{cases}$

For components $i=\frac{m+1}{2}, \ldots, m$, define a labeling f as follows:

$$
f\left(v_{j}^{i}\right)= \begin{cases}i+m & \text { for } j=1, \\ (t+1) m+i & \text { for } j=2 t+1 ; t=1, \ldots, \frac{n-3}{2}, \\ \frac{1}{2}[(n+2 t) m+1+2 i] & \text { for } j=2 t ; t=1, \ldots, \frac{n-1}{2}, \\ \frac{1}{2}(n+5) m+1-2 i & \text { for } j=n, \\ \frac{1}{2}[(4 n+1) m+1]+i & \text { for } j=n+1 ;\end{cases}
$$

and

$$
f\left(e_{j}^{i}\right)= \begin{cases}(2 n+1) m+1-2 i & \text { for } j=1, \\ (2 n-2 t+1) m+1-2 i & \text { for } j=2 t+1 ; t=1,2, \ldots, \frac{n-3}{2}, \\ (2 n-2 t+2) m+1-2 i & \text { for } j=2 t ; t=1,2, \ldots, \frac{n-3}{2}, \\ (n+1) m+i & \text { for } j=n-1, \\ \frac{1}{2}[(4 n-1) m+1+2 i] & \text { for } j=n, \\ i= & \text { for } j=n+1 .\end{cases}
$$

It is easy to verify that f is an edge-magic total labeling with $k=\frac{1}{2}[m(5 n+$ 6) +3] when m and n are odd. $ص$

By duality, we have the following corollary.
Corollary 4.5. The graph m(n,1)-kite is edge-magic with $k=\frac{1}{2}[m(7 n+6)+3]$ when $m(>1)$ and n are odd.

Figure 4.3: An edge-magic labeling of 7(3,1)-kite with a magic sum $k=75$.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] Figueroa-Centeno, R.M.; Inchishima, R.; and Muntaner-Batle, F.A. Magical coronations of graphs. Austral. J. Combin. (To appear).
[2] Figueroa-Centeno, R.M.; Inchishima, R.; and Muntaner-Batle, F.A. On super edge-magic graphs. ARS Combin. (To appear).
[3] Figueroa-Centeno, R.M.; Inchishima, R.; and Muntaner-Batle, F.A. The place of super edge-magic labelings among other classes of labelings.

Discrete Math. 231(2001):153-168.
[4] Gallian, J.A. A dynamic survey of graph labelings. J. Combinatorics 5 [online] (1998). Available from: http://www.combinatorics.org[2001, Apirl 20]
[5] Godbold, R.D.; and Slater, P.J. All cycles are edge-magic. Bull. of ICA 22 (1998): 93-97.
[6] Kotzig, A.; and Rosa, A, Magic valuations of finite graphs. Cand. Math. Bull. 13 (1970): 451-561.
[7] Phillips, N.C.K.; and Wallis, W.D. Well-spread sequences. J. Combin. Math. Combin. Comput. 31(1999): 91-96.
[8] Ringel, G; and Llado, A.S. Another tree conjecture. Bull. of ICA 18(1996):

[9] Wallis, W.D. Magic graphs. Boston: Birkhäuser, 2001.
[10] Wallis, W.D; Baskoro, T; Miller, M; and Slamin, M. Edge-magic total 9 labelings. Austral. J. Combin. 22(2000): 177-190.
[11] Wijaya, K.; and Baskoro, T. Edge-magic total labelings on disconnected graphs. Proc. Eleventh Australasian Workshop on Combinatorial Algorithms, University of Newcastle(2000): 139-144.
[12] Wilson, J.; and Watkins, J. Graphs an introductory approach. Canada: John Wiley \& Sons, Inc., 1990.

VITA

