Bohdan Zelinka Edge neighbourhood graphs

Czechoslovak Mathematical Journal, Vol. 36 (1986), No. 1, 44-47

Persistent URL: http://dml.cz/dmlcz/102064

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

EDGE NEIGHBOURHOOD GRAPHS

BOHDAN ZELINKA, Liberec

(Received June 8, 1984)

At the Symposium on Graph Theory in Smolenice [1] in 1963 A. A. Zykov proposed a problem concerning the neighbourhood graph of vertices of undirected graphs. This was a hint for many authors to study local properties of graphs. A survey of results concerning this topic is [2]. Here we shall study a problem analogous to that of Zykov, but concerning edge neighbourhood graphs.

Let G be an undirected graph, let e be an edge of G. By the symbol $N_G(e)$ we denote the subgraph of G induced by the set of all vertices of G which are not incident to e and are adjacent to at least one end vertex of e. The graph $N_G(e)$ will be called the edge neighbourhood graph of e in G.

The edge neighbourhood version of the problem of Zykov is the following:

Characterize the graphs H with the property that there exists a graph G such that $N_G(e) \cong H$ for each edge e of G.

We shall not solve this problem completely, but only study some special cases. The class of all graphs with the above property will be denoted by \mathcal{N}_{e} .

First we shall present some simple propositions.

Proposition 1. A complete graph K_n belongs to \mathcal{N}_e for any positive integer n. Proof. The graph K_{n+2} has the property that $N_{K_{n+2}}(e) \cong K_n$ for each edge e of K_{n+2} .

Proposition 2. A complete bipartite graph $K_{m,n}$ belongs to N_e for any positive integers m, n.

Proof. The graph $K_{m+1,n+1}$ has the property that $N_{K_{m+1,n+1}}(e) \cong K_{m,n}$ for each edge e of $K_{m+1,n+1}$.

The symbol C_n will denote a circuit of the length n, i.e., with n edges.

Proposition 3. The circuits C_3 , C_4 , C_6 , C_8 belong to \mathcal{N}_e .

Proof. The assertion for C_3 follows from Proposition 1, because $C_3 \cong K_3$. The assertion for C_4 follows from Proposition 2, because $C_4 \cong K_{2,2}$. For C_6 the required graph is the graph of the regular icosahedron and for C_8 it is the graph of the covering of the plane by regular triangles.

Now we prove a theorem.

Theorem 1. There exists no graph G with the property that $N_G(e) \cong C_5$ for each edge e of G.

Proof. Suppose that a graph G with the required property exists. Let e be an edge of G, let u_1, u_2 be its end vertices. According to the assumption $N_G(e) \cong C_5$, thus it is a circuit of the length 5. Let the vertices of $N_G(e)$ be v_1, v_2, v_3, v_4, v_5 and the edges $v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_5v_1$. If u_1 is adjacent to none of the vertices v_1, v_2, v_3, v_4, v_5 , then it has the degree 1 in G; otherwise $N_G(e)$ would contain a vertex not belonging to the set $\{v_1, v_2, v_3, v_4, v_5\}$. The edge u_2v_1 exists and u_1 is an isolated vertex of $N_G(u_2v_1)$, thus $N_G(u_2v_1)$ is not isomorphic to C_5 , which is a contradiction. Hence u_1 is adjacent to at least one of the vertices v_1, v_2, v_3, v_4, v_5 and, obviously, so is u_2 . Now among the vertices v_1, v_2, v_3, v_4, v_5 there exists a pair of adjacent ones with the property that one of them is adjacent to u_1 and the other to u_2 . Without loss of generality let v_1 be adjacent to u_1 and v_2 to u_2 . Now we shall investigate which of the edges $u_1v_3, u_1v_5, u_2v_3, u_2v_5$ may exist simultaneously in G.

If v_3 is adjacent to both u_1, u_2 , then $N_G(v_1v_2)$ contains a triangle with the vertices u_1, u_2, v_3 and is not isomorphic to C_5 , which is a contradiction. Analogously if v_5 is adjacent to both u_1, u_2 .

Suppose that both v_3 , v_5 are adjacent to u_1 . The vertex v_4 must be also adjacent to at least one of the vertices u_1 , u_2 . If it is adjacent to u_1 , then $N_G(v_2v_3)$ contains a star with the centre u_1 and terminal vertices v_1 , v_4 , u_2 and is not isomorphic to C_5 . If v_4 is adjacent to u_2 , then $N_G(u_1v_5)$ contains a path of the length 2 with the vertices u_2 , v_4 , v_3 and a vertex v_1 . As $N_G(u_1v_5)$ has to be isomorphic to C_5 , the vertex v_1 must be adjacent to one of the vertices u_2 , v_3 . It cannot be adjacent to v_3 , because then $N_G(e)$ would not be a circuit (it would contain a chord of C_5). Therefore v_1 is adjacent to u_2 . But then $N_G(v_1v_5)$ contains a star with the centre u_2 and terminal vertices u_1 , v_2 , v_4 , which is again a contradiction. Hence u_1 cannot be adjacent to both v_3 , v_5 and analogously, neither can u_2 .

Suppose that u_1 is adjacent to v_5 and u_2 is adjacent to v_3 . The vertex v_4 is adjacent to one of the vertices u_1, u_2 ; without loss of generality let it be adjacent to u_1 . The graph $N_G(u_1v_4)$ contains the edges u_2v_3 and v_1v_5 ; as it has to be isomorphic to C_5 , one of the vertices u_2, v_3 must be adjacent to one of the vertices v_1, v_5 . The vertex v_3 cannot be adjacent to any of them, because then $N_G(e)$ would not be isomorphic to C_5 .

If u_2 is adjacent to v_5 , then $N_G(v_1v_2)$ contains a triangle with the vertices u_1, u_2, v_5 . Thus u_2 is adjacent to v_1 . The graph $N_G(u_2v_1)$ contains the edges u_1v_5 and v_2v_3 . Again one of the vertices u_1, v_5 must be adjacent to one of vertices v_2, v_3 and this is possible only in such a way that u_1 is adjacent to v_2 . But then $N_G(v_1v_5)$ contains a triangle with the vertices u_1, u_2, v_2 .

Thus the last case remains, when u_1 is adjacent to v_3 and u_2 to v_5 . Again without loss of generality let v_4 be adjacent to u_1 . Then $N_G(u_1v_4)$ contains a path of the length

2 with the vertices u_2 , v_5 , v_1 and the vertex v_3 . Then v_3 must be adjacent to u_2 or v_1 . It cannot be adjacent to v_1 , because then $N_G(e)$ would not be isomorphic to C_5 , and thus v_3 is adjacent to u_2 . But then $N_G(v_1v_2)$ contains a triangle with the vertices u_1 , u_2 , v_3 , which is a contradiction. All cases are exhausted and thus the assertion is proved.

Now we turn our attention to complements of circuits. The complement of a circuit of the length n will be denoted by \overline{C}_n .

Theorem 2. A graph \overline{C}_n belongs to \mathcal{N}_e if and only if n = 3 or n = 4.

Proof. For n = 3 the graph \overline{C}_n consists of three isolated vertices. Take a regular graph of degree 3 without triangles and insert a vertex onto each of its edges (i.e., replace each edge by a path of the length 2). The graph G thus obtained has the property that $N_G(e) \cong \overline{C}_3$ for each edge e of G and thus $\overline{C}_3 \in \mathcal{N}_e$. For n = 4 the graph \overline{C}_n consists of two connected components, each of which is a complete graph with two vertices. If G is the graph of the 3-dimensional cube, then $N_G(e) \cong \overline{C}_4$ for each edge e of G and thus $\overline{C}_4 \in \mathcal{N}_e$. For n = 5 we have $\overline{C}_5 \cong C_5$ and according to Theorem 1 the graph $\overline{C}_5 \notin \mathcal{N}_e$. Now let $n \geq 6$ and suppose that there exists a graph G such that $N_G(e) \cong \overline{C}_n$ for each edge e of G. Let e be an edge of G, let u_1, u_2 be its end vertices. According to the assumption, $N_G(e) \cong \overline{C}_n$; let the vertices of $N_G(e)$ be v_1, \ldots, v_n and let the edges of its complement be $v_i v_{i+1}$ for $i = 1, \ldots, n-1$ and $v_n v_1$. Each of the vertices v_1, \ldots, v_n is adjacent to at least one of the vertices u_1, u_2 . Without loss of generality suppose that v_1 is adjacent to u_1 . The graph $N_G(u_1v_1)$ contains the vertices $u_2, v_3, \ldots, v_{n-1}$. If some vertex v_i for $4 \leq i \leq n-2$ is not adjacent to u_2 , then the complement of $N_G(u_1v_1)$ contains a star with the centre v_i and with the terminal vertices u_2 , v_{i-1} , v_{i+1} ; this is a contradiction with the assumption that the complement of $N_G(u_1v_1)$ is a circuit. Hence all the vertices v_4, \ldots, v_{n-2} are adjacent to u_2 .

Now we shall distinguish the cases n = 6 and $n \ge 7$. We begin with the case $n \ge 7$ which is simpler. In this case we continue doing the same consideration for other vertices than v_1 . As v_{n-2} is adjacent to u_2 , we prove that v_1, \ldots, v_{n-5} are adjacent to u_1 . Then we proceed in the same way with u_1 and v_{n-5} ; we continue until we obtain the result that each of the vertices v_1, \ldots, v_n is adjacent to both u_1 and u_2 . Now consider $N_G(v_1v_4)$; this graph contains the vertices u_1, u_2 and all the vertices v_i for $i \ne 1$ and $i \ne 4$. As $N_G(v_1v_4)$ has to be isomorphic to \overline{C}_n , it cannot contain other vertices than those just mentioned. But then in the complement of $N_G(v_1v_4)$ the vertices u_1, u_2 are isolated, which is a contradiction. Hence $\overline{C}_n \notin \mathcal{N}_e$ for $n \ge 7$.

Now the case n = 6 remains. The consideration at the beginning of the proof implies that if v_1 is adjacent to u_1 , then v_4 is adjacent to u_2 . In general, if a vertex v_i is adjacent to u_1 , then v_{i+3} (the subscript i + 3 being taken modulo 6) is adjacent to u_2 . Consider the graph $N_G(v_1v_4)$; it contains the vertices $u_1, u_2, v_2, v_3, v_5, v_6$ and, as it has to be isomorphic to \overline{C}_6 , it contains no other vertices than those. The graph

 $N_G(v_1v_4)$ can be isomorphic to \overline{C}_6 only if exactly one of the vertices v_2, v_3 is nonadjacent to u_1 and exactly one of them is non-adjacent to u_2 , and if the same holds for the vertices v_5, v_6 . Therefore none of the vertices v_2, v_3, v_5, v_6 can be adjacent to both u_1, u_2 ; analogously this can be proved also for v_1 and v_4 . Thus we may distinguish two cases: either v_1, v_2, v_6 are adjacent to u_1 and v_3, v_4, v_5 to u_2 , or v_1, v_3 , v_5 are adjacent to u_1 and v_2, v_4, v_6 to u_2 ; any other case can be transferred to one of them by an isomorphism. In the first case consider the graph $N_G(u_1v_6)$; it contains the vertices u_2, v_1, v_2, v_3, v_4 and thus its complement contains the star with the centre v_2 and the terminal vertices u_2, v_1, v_3 ; this is a contradiction with the assumption that this complement is a circuit of the length 4 with the vertices u_2, v_3, v_4, v_5 and cannot be a circuit of the length 6, which is a contradiction. Hence also $\overline{C}_6 \notin \mathcal{N}_e$.

Remark. The assertion of Theorem 1 is in fact part of the assertion of Theorem 2. But in spite of it, we present Theorem 1 separately, because \overline{C}_5 is not only a complement of a circuit, but also a circuit, and the proof of this case is very different from the proof for $n \ge 6$.

In the end we shall add propositions concerning a certain special class of graphs. By the symbol $K_{n,n}^*$ we shall denote the graph obtained from the complete bipartite graph $K_{n,n}$ by deleting edges of the maximal matching. The graph $K_{n,n}^*$ is the complement of the graph $K_2 \times K_n$.

Proposition 4. The graph $K_{n,n}^*$ belongs to \mathcal{N}_e to for any positive integer n.

Proof. The graph $K_{n+2,n+2}^*$ has the property that $N_{K_{n+2,n+2}^*}(e) \cong K_{n,n}^*$ for any positive integer *n* and an each edge *e* of $K_{n+2,n+2}^*$.

Now we can state a proposition concerning the graphs of cubes of dimensions 1, 2 and 3. If Q_n denotes the graph of the cube of the dimension *n*, then $Q_1 \cong K_2$, $Q_2 \cong K_{2,2}, Q_3 \cong K_{4,4}^*$ and hence Propositions 1, 2, 4 yield the following proposition.

Proposition 5. The graphs of the cubes of dimensions 1, 2 and 3 belong to \mathcal{N}_{e} .

References

Theory of graphs and its applications. Proc. Symp. Smolenice 1963, Academia Prague 1964.
J. Sedláček: Local properties of graphs. (Czech) Časop. pěst. mat. 106 (1981), 290–298.

Author's address: 461 17 Liberec 1, Studentská 1292 (katedra tváření a plastů VŠST).