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Abstract

In this paper we describe a new strategy for com-
bining orientation adaptive filtering and edge pre-
serving filtering. The filter adapts to the local orien-
tation and avoids filtering across borders. The local
orientation for steering the filter will be estimated in
a fixed sized window which never contains two orien-
tation fields. This can be achieved using generalized
Kuwahara filtering. This filter selects from a set of
fixed sized windows that contain the current pixel, the
orientation of the window with the highest anisotropy.
We compare our filter strategy with a multi-scale ap-
proach. We found that our filter strategy has a lower
complexity and yields a constant improvement of the
SNR.

1 Introduction

Noise, which is present in every real world image,
hampers manual interpretation by human experts as
well as automatic segmentation and analysis by com-
puters. Therefore many image processing techniques
are developed to reduce noise. The Wiener filter [6] is
the best linear filter but requires a priori knowledge
of the spectrum of the noise-free image as well as
the spectrum of the noise. Noise in domains without
texture can simple be reduced by isotropic smooth-
ing, where the spatial size of the smoothing opera-
tor determines the amount of noise reduction. So the
size or scale of the domain constitutes the limit to
this amount. To optimize the global noise reduction,
scale adaptive smoothing can be used. In an oriented
texture domain or along individual lines and edges,
the noise level can be reduced by applying elongated
smoothing operators that adapt to the local orienta-
tion. This requires a robust and continuous represen-
tation of orientation [1]. Since many natural images

can be described as a collection of grey value and ori-
ented texture domains, a scale and orientation adap-
tive smoothing scheme provides a powerful noise re-
duction method. Such a scheme can be realized in dif-
ferent ways, i.e. by anisotropic diffusion [8] or steer-
able filters [2].

Edges between domains are important features for
the interpretation of images. However, smoothing op-
erators tend to blur the edges or borders between the
different domains. Therefore a filter should be used
that reduces the noise but does not degrade the edges,
i.e. an edge preserving filter. In a mosaic of domains
characterized by grey value, the borders between the
domains are characterized by the difference in grey
value. This difference can directly be measured in the
image. In a mosaic of domains characterized by ori-
ented texture, the borders between the domains are
characterized the the difference in local orientation.
Therefore these borders will appear in the orientation
estimation. At an orientation border there are two
factors that make filtering more difficult. First, there
are locally two dominant orientations, which make it
more difficult to estimate the orientation. Secondly,
the adaptive filter should not blur across the border.

In this paper we present a generalization of the
Kuwahara filter for edge preserving smoothing [3, 4].
We will use this filter in a new method for combin-
ing edge preserving filtering with orientation adaptive
filtering. The method is tested on both synthetic and
natural images. The natural images are seismic im-
ages, which are narrow banded and contain layered
structures. We will compare this with a scale adaptive
approach [2].

2 Generalized Kuwahara filtering

A well known filter for edge preserving smooth-
ing for images containing grey value domains, is the
Kuwahara filter [3]. Kuwahara divided a square sym-



metric neighborhood in four (slightly overlapping)
windows, each containing the central pixel, see fig.1a.
The central pixel is replaced by the average of the
most homogeneous window, i.e. the window with
the lowest variance. The combination of filtering (av-
erage) and selection (homogeneity) avoids filtering
across edges in the image. This filter has been fur-

(a) (b)

Figure 1: a) traditional Kuwahara filter, b) generalized
Kuwahara filter. The dashed lines bound the neigh-
borhood and the solid lines the windows.

ther develop by increasing the number of windows to
eight and changing the shape of the windows to pen-
tagons and hexagons [4].

Our filter evaluates each fixed size window that
contains the current pixel. Each of these windows
yields an estimate and a confidence value. The es-
timate from the window with the highest confidence
value is taken as the result. We call this filter the gen-
eralized Kuwahara filter and a realization with round
windows is depicted in fig.1b. Note that the shape of
the windows determines the shape of the neighbor-
hood. An mostly undesired side effect of the Kuwa-
hara filter is a blemished result in regions without
clear edges. The Kuwahara filter also creates false
contours. These are artifacts due to the fact that the
Kuwahara filter always selects. However, in homoge-
neous regions the differences in confidence value are
due to noise and the selection should not take place.
A solution to this problem is to give the filter the free-
dom to decide whether or not to select. This decision
should be smooth and a good criterium would be the
the variance in the confidence values. This variance
can be evaluated globally or locall, depending on the
type of data.

By applying the generalized Kuwahara filter it is
possible to smooth grey value domains and to pre-
serve sharp borders between these domains at the
same time. A proper representation of the orienta-
tion reduces oriented texture domains to grey value
domains. Combining the orientation estimation with
the generalized Kuwahara filter yields an orientation
representation with sharp borders.

3 Scale adaptive filtering

A well known general way for dealing with dif-
ferent events at a different scale in a single neighbor-
hood is scale-space. This makes it possible to process
each scale separately and thereby provides a way to
do scale adaptive filtering. A computational more effi-
cient way to apply scale-space is to build a scale pyra-
mid, e.g. octave based difference of low-pass pyramid
(DOLP) [7]. Since our images with oriented textures
are narrow banded, the frequencies present in the im-
ages span only two octaves, so the evaluation of three
scales should be enough. A filter can be made scale
adaptive in a straight forward way. First, apply the fil-
ter on each scale. Secondly, the scale adaptive filtered
result is obtained by summation of the results on each
scale, see [2]. However, we shall show that applying
our filtering method on a single scale already yields a
good result.

4 Estimation of steering parameters ori-
entation and anisotropy

The fundamental proposition on which the ori-
entation adaptive filter is based, is local one-
dimensionality. This means that in textured domains
D that constitute the image contain a single dominant
orientation. If we describe the grey values in D with
polar coordinates I(r; �), we could write

ÆI(r; �0)� ÆI(r; �other) ; r 2 D (1)

where ÆI denotes the change in grey value and �0 the
dominant orientation. We make a distinction between
orientation, defined modulo �, and direction, defined
modulo 2�. Thus two opposite vectors differ in di-
rection but have the same orientation. A robust de-
scription of such neighborhood is given by a tensor
representation [1].

T =
1

x
xxT (2)

where x is a vector along the dominant orientation
and x = kxk is the norm of the vector.

4.1 The Gradient Square Tensor

The tensorT from eq.2 can be implemented in sev-
eral ways. The general idea is to use a set of direc-
tionally selective filters and combine the responses.
Examples of directionally selective filters are deriva-
tive filters, i.e. first or second order, and quadrature
filters [1]. The latter have the advantage to give a
response on both edges and lines, but are computa-
tionally more expensive. The Gradient Square Tensor
(GST) is based on Gaussian first order derivative fil-
ters and is given by eq.3.

TGS = rIrIT =

�
I2
x

IxIy
IxIy I2

y

�
(3)



where Ix; Iy are the Gaussian derivatives in resp. x
and y direction, in which the Gaussian regularization
function has a size �g . Since this tensor is a quadratic
form the tensor elements may be averaged without
having cancellation problems. This averaging is im-
plemented as Gaussian smoothing (�T ) over a win-
dow. Applying tensor averaging has three advantages:

1. rapid changes in the orientation estimation due
to noise on the gradient vector are suppressed,
yielding a smooth result

2. having only responses on edges no longer consti-
tutes a problem, since on a line the tensor aver-
aging combines the gradients from both slopes,
without cancellation of opposite vectors

3. The smoothed tensor allows information about
the energy in the dominant and the perpendicular
orientation

The local orientation estimation is given by the orien-
tation of the eigenvector corresponding the the largest
eigenvalue.

4.2 Anisotropy estimation

The certainty of the orientation estimation is pro-
portional to the anisotropy, which describes to what
extend one orientation dominates. The anisotropy can
be measured from the ratio of the energy in the dom-
inant and perpendicular orientation. We define the
anisotropy A as

A =
�1 � �2

�1 + �2
; (4)

with �1; �2 the eigenvalues of the GST. With this def-
inition the anisotropy takes values between 0 and 1,
indicating the range from completely isotrope to per-
fectly anisotrope.

4.3 Improved orientation estimation at
orientation borders

Since the GST is based on the assumption that
there is locally only one dominant orientation, the
corresponding orientation measurement will fail as
soon as it crosses an orientation border. The result-
ing orientation estimation is a weighted average of
the two dominant orientations at both sides of the bor-
der, causing unsharp or blurred orientation borders. A
powerful solution for allowing multiple orientations
in one neighborhood in the image, is to add orienta-
tion as a new dimension [5]. This can be realized by
applying multiple directionally selective filters. The
drawback of this approach is the higher computational
complexity and will therefor be skipped in this paper.

However, it is possible to allow only one orienta-
tions in one neighborhood in the image and also pre-
serve sharp edges. This can be achieved by applying

the generalize Kuwahara filter. Calculate the GST in
each window and use the anisotropy as the certainty
measure. The idea of this method is to prevent that
the GST overlaps a border as depicted in fig.2. With
the anisotropy measure we can detect an orientation
border, since the anisotropy drops if the region over
which the GST is smoothed contains an orientation
border.

(a) (b)

Figure 2: a) standard GST, b) Improved orientation
estimation. The circles denote the regions �t in which
the orientation is estimated, the black dots are the po-
sitions the result is written to.

4.4 Limitations of anisotropy as border
detector

The success of the method described above, de-
pends very much on the estimation of the anisotropy,
since this parameter is used to locate the borders. It
can be derived that:

A / cos(��) (5)

with A the anisotropy and �� the difference between
the orientation at both sides of the border. As a con-
sequence, for small values of ��, the anisotropy will
decrease only a few percent, e.g. if �� = 30deg
the anisotropy will decrease 10 %. We experimen-
tally verified this angular dependency and the results
are depicted in fig.3. We measured the anisotropy
at a border applying the GST with �g = 1:0 and
�T = 5:0. The measured anisotropy differs slightly
from a cosine but is well described by a cosine, as can
be seen in fig.3.

5 Adaptive filtering

Adaptive filtering means that the filter can be con-
trolled by parameters. For example, an orientation
adaptive filter given by

Fadap = F (�;A) (6)



(a) (b) (c) (d)

Figure 4: a) test image, b) adaptive filter steered with orientation from fig.2b, c) same as b but with improved
orientation estimation fig.2d, d) same as c but with edge preserving property.

(a) (b) (c) (d) (e)

Figure 5: a) test image, b) orientation estimation GST, c) anisotropy estimation GST, d) improved orientation
estimation, e) ground truth for orientation.
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Figure 3: The anisotropy obtained from the GST as
a function of the angular difference at an orientation
border.

with � the orientation and A the anisotropy, is used
in [2]. The idea of this filter is to use the estimated
shape and orientation of the tensor T to adapt the fil-
ter behaving in the same way as the signal. The filter
can also be made scale adaptive, which is discussed
in sec.3. For now we assume that the signal is narrow

banded and can be described as single scale signal.
Noise reduction in oriented textures can be achieved
by steering an elongated filter with the orientation es-
timation as steering parameter. The orientation of the
filter should be perpendicular to to dominant orienta-
tion from eq.1. However, sharp domain edges will be
blurred by this filter.

5.1 Edge preserving filtering

We have shown that it is possible to correctly esti-
mate the orientation near borders, so the filter can cor-
rectly be directed along the texture orientation. Still
we have to make sure that the adaptive filter does not
overlap borders. This is in fact the same problem we
encountered during the orientation estimation. The
difference is that we only allow displacement along
the layers, as depicted in fig.6. This is a one di-
mensional version of the generalized Kuwahara fil-
ter. However, since the orientation can be different
for each point in the image, it is not possible to effi-
ciently implement this one dimensional version of the
generalized Kuwahara filter. Therefore we chose to
allow only 5 windows evenly spread over the neigh-
borhood.



Figure 6: Top filter: the orientation adaptive filter is
correctly oriented along the layers, but overlaps a bor-
der. Bottom filter: allowing displacement along the
layers

6 Experiments and Results

6.1 Synthetic images

To test our filtering method, we created a test im-
age which contains three domains that contain a one
dimensional sinusoidal signal, so that they are charac-
terized by their orientation, see fig.5a. The period of
the sinusoidal signal is approximately 6 pixels. Fur-
thermore we added some noise, SNR = 10db, where

SNR = 20 log10

�
A

�n

�
(7)

with A the amplitude of the signal and �n the stan-
dard deviation of the Gaussian noise. First we applied
the GST with �g = 1:0 and �T = 5:0, and calculated
the orientation and anisotropy, which are depicted in
fig.5b and c. The result of the generalized Kuwa-
hara filter combined with the GST is shown in fig.5d,
where the windows have a diameter of 11 pixels. The
ground truth of the orientation is given in fig.5e for
comparison. We applied an orientation adaptive fil-
ter that uses the orientation estimation derived from
the gradient square tensor as a steering parameter. We
also applied the this filter steered with the improved
orientation estimation as described in section 4.3 and
finally we enhanced this filter with the edge preserv-
ing property as described in section 5.1. The filter
type we used is the Gaussian filter, with � = 7:0 in
a 29*1 pixel window. A comparison of fig.4b and
c, shows that the improvement in orientation estima-
tion yields a clear improvement in filtering near a bor-
der. From fig.4d can be seen that the edge preserving
method works and yields sharp orientation borders.

To show that our method still gives good results
when there is more than one scale present, we re-
peated the measurement described above on a second
test image, see fig.7a. The SNR of this image is 13
db. The filter type we used on this image is a Gaus-
sian filter, with � = 6:0 in a 25*1 pixel window.

6.2 Natural images

To test our method on natural images we ob-
tained a seismic image that contains a lot of faults,

(a) (b)

(c) (d)

(e)

Figure 7: a) test image, b) Improved orientation esti-
mation, c) adaptive filter steered with orientation es-
timation from GST, d) same as c but with improved
orientation estimation, e) same as d but with edge pre-
serving property.

fig.8. Again we applied our edge-preserving orien-
tation adaptive filter. The filter type we used is the
Gaussian filter, with � = 6:0 in a 25*1 pixel win-
dow. Furthermore, the effect of allowing the filter to
decide whether or not to select is shown by applying
the filter to a bore-hole image, fig.9. This image has
larger homogeneous areas than the seismic image, so
we expect more false contours. As a first test we im-
plemented the extra decision as a binary decision. The
criterium is that the ratio of the highest and the low-
est local variance should be larger than three to enable
selection. The result is depicted in fig.9d.



(a) (b) (c) (d)

Figure 9: a) bore-hole image, b) orientation adaptive filtered version of a), c) same as b with edge preserving
property, d) same as c with threshold decision (factor 3).

(a)

(b)

Figure 8: a) seismic image containing many faults, b)
edge preserving filtered version of a.

7 Discussion

We have shown that it is possible to correctly
estimate the orientation near borders by combining
the GST with the generalized Kuwahara filter. This
makes it possible to correctly steer an orientation
adaptive filter in the whole image. Furthermore, this
filter is made edge preserving by again applying a one
dimensional version of the generalized Kuwahara fil-
ter.

Our method yields good results when applied on
a single scale in narrow banded image such as seis-
mic images, where narrow banded means that the fre-

quencies present in the image do not span more than
two octaves. Compared with multi-scale [2] or ori-
entation space [5] approaches, our method has a low
computational complexity. Furthermore, our method
gives a constant improvement in the SNR, where as a
multi-scale approach would apply smaller filters near
the borders which gives less SNR improvement near
these borders. The generalized Kuwahara filter may
introduce a slight bias in the edge location due to the
fact that it uses decentralized orientation estimation.
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