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Abstract. Video streams are ubiquitous in applications such as surveillance, ga-

mes, and live broadcast. Processing and analyzing these data is challenging be-

cause algorithms have to be efficient in order to process the data on the fly. From a

theoretical standpoint, video streams have their own specificities – they mix spa-

tial and temporal dimensions, and compared to standard video sequences, half of

the information is missing, i.e. the future is unknown. The theoretical part of our

work is motivated by the ubiquitous use of the Gaussian kernel in tools such as

bilateral filtering and mean-shift segmentation. We formally derive its equivalent

for video streams as well as a dedicated expression of isotropic diffusion. Building

upon this theoretical ground, we adapt a number of classical algorithms to video

streams: bilateral filtering, mean-shift segmentation, and anisotropic diffusion.

1 Introduction

This paper proposes a coherent approach to analyzing and filtering video streams. We

develop tools that process video frames as soon as they are available and broadcast the

result immediately. This scenario encompasses a wealth of practical applications such

as surveillance, live preview, interactive simulations, and games. A major constraint

imposed by these tasks is the requirement for instant results. For instance, latency can-

not be tolerated in games – the displayed video must instantaneously follow the player

inputs. This motivates our strict assumption that no future data are known when we

process a frame; only the current and past data are available. In this context, we focus on

edge-preserving smoothing and image segmentation because they are two techniques at

the core of widely used applications such as vignetting correction [1], noise estimation

and removal [2, 3, 4], object selection [5, 6], and stylization [7, 8, 9, 10].

Many video-processing tools are inherently off-line because they require the entire

video sequence to be provided as input to the algorithm [2, 3, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20]. Nonetheless, a few on-line methods exist [9, 10] but they often resort

to a frame-by-frame approach. As a consequence, these techniques can be used only

on high-quality data with stable filters such as the bilateral filter. Otherwise, tempo-

ral incoherence may appear. Intuitively, the frame-by-frame methods under-exploit the

available information because they process each frame separately although all the pre-

vious frames are known. We address this issue by using past data when processing the

current frame.

Our paper is based on a theoretical study that explicitly focuses on data smooth-

ing. Although it is of limited interest when applied to pixel values because it blurs the

image, smoothing is the basis of powerful tools. Bilateral filtering has been shown to
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be a Gaussian convolution in a higher-dimensional space [21]. Mean-shift segmenta-

tion is known to be driven by a Gaussian kernel [22, 14] while anisotropic diffusion

based on partial differential equations (PDE) can be seen as a refinement over isotropic

diffusion [23]. These results motivate and structure our work: we first derive smooth-

ing operators for video streams and then build upon them to obtain a set of new tools

adapted to video streaming.

Overview and Contributions. First, we review related work and describe how isotropic

diffusion and Gaussian convolution can be derived from gradient minimization in image

space (Section 2). Then, we formally study video streams and characterize the specificity

of the time axis as mixed boundary conditions. We build upon this study to extend two

fundamental operators to video streams: isotropic diffusion and Gaussian convolution.

We show that a first-order PDE in the temporal domain is the equivalent of the second-

order PDE that defines isotropic diffusion in image space. We also demonstrate that an

exponential decay over time corresponds to the Gaussian kernel classically used in image

space. The theoretical contribution of our paper is the relationship between the temporal

PDE and kernel, and their spatial counterpart (Section 3). With this result, we naturally

extend a number of algorithms to video streams. We demonstrate anisotropic diffusion,

bilateral filtering, and mean-shift segmentation (Section 4). These algorithms run in real

time with low memory consumption and achieve temporal coherence on par with off-line

methods (Section 5).

2 Background

2.1 Theoretical Scale-Space Studies

A few articles analyze spatio-temporal data from a scale-space standpoint [24, 25, 26,

27]. These papers define multiscale representation of images from various axioms such

as non-enhancement of local extrema. Our theoretical results are related and we will

discuss the links as they appear. But from an application perspective, these studies are

concerned by the intrinsic structure of the data whereas we focus on typical computer

vision objectives such as edge-preserving smoothing and image segmentation.

2.2 Video Applications

In this section, we review practical applications and categorize them according to how

they deal with the temporal axis t.

Frame-by-Frame Techniques. These methods filter each frame as an isolated image.

Formally, they use a Dirac peak centered on the current frame as temporal kernel. If the

processing time is shorter than the delay between frames, then real-time video process-

ing can be achieved as demonstrated by Winnemöller et al. [9] and Chen et al. [10] with

bilateral filtering implemented on graphics hardware. The downside is that temporal co-

herence is not ensured because the filter has no knowledge of the adjacent frames. Only

data with limited noise can be processed this way.
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Spatio-Temporal Techniques. To ensure temporal coherence, spatio-temporal meth-

ods filter along the time axis in addition to the x and y dimensions. Omniscient ap-

proaches process a given frame assuming past and future data to be known whereas

causal techniques rely only on past data.

Omniscient methods process a frame using both past and future data. One approach

is to handle the t axis as another spatial dimension and process the data as a video vol-

ume [17] (also known as video cube [28]). These techniques involve a 3D Gaussian ker-

nel [12,14] or a PDE [17] dealing similarly with space (xy) and time (t). Another option

is to differentiate space and time. This strategy is often used for denoising [2, 3, 20, 16]

to favor temporal filtering over spatial smoothing in order to preserve image sharpness.

All omniscient techniques are inherently limited to off-line processing since the last

frame must be known before the algorithm starts. Moreover, with long sequences, the

amount of data to handle can be arbitrarily large, requiring specific memory manage-

ment techniques such as tiling and out-of-core processing.

Causal methods are the most related to ours since they filter a given frame using

only past data. Kim and Woods [29], and Patti et al. [30] use Kalman filtering to aggre-

gate data over time. But, because of the ordering imposed by the Kalman filter, pixels

have an asymmetric spatial neighborhood which can incur visible defects. Bennett and

McMillan [31] use an exponential decay over time to display motion trails in time-

lapse videos. For bilateral filtering, Chen et al. [10] also apply an exponential decay to

remove artifacts due to their sampling strategy.

A contribution of our paper is to motivate the temporal exponential decay in a general

context and to apply it to several applications. In comparison, previous work [31, 10]

introduces it as a heuristic for specific cases and limit its use to a single task.

2.3 Background on Image Processing

Smoothing an image I aims for reducing its variations. This can be expressed as re-

ducing the norm of the gradients of I , that is, as minimizing the integral
∫ (

I2
x + I2

y

)

where Ix = ∂I/∂x. Isotropic diffusion and Gaussian convolution are two classical and

equivalent ways to achieve this minimization.

Isotropic Diffusion. One option to minimize
∫ (

I2
x + I2

y

)

is to apply an iterative de-

scent scheme. That is, I evolves such that the gradients are progressively reduced. The

“evolution time” is represented by a variable e. Intuitively, each iteration transforms

I(e) into I(e + δe) which gradients are smaller. This process can be formalized by

considering infinitesimal steps δe. The image evolution is then defined by the derivative

Ie = ∂I/∂e. Assuming this quantity known, a possible implementation of the filter is

iterating I(e + δe) = I(e) + δe × Ie. The rest of this section explains how to use the

Euler-Lagrange formula to define Ie.

For an energy of the form
∫

Φ (α, f, fα) dα where α is a scalar, f a function of α, and

Φ a function of α, f , and fα = ∂f/∂α, the following partial derivative equation (PDE)

is satisfied at stationary points: ∂Φ
∂f

− ∂
∂α

(

∂Φ
∂fα

)

= 0. Using this property, an evolution

scheme is defined to progressively transforms f to minimize
∫

Φ. The variable e denotes

the “evolution time”. At e = 0, f is not transformed, and f evolves as e increases. The
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evolution is defined by the derivative of f with respect to e:

fe =
∂

∂α

(

∂Φ

∂fα

)

− ∂Φ

∂f
(1)

For multiple independent variables α1, α2..., the equation is extended by adding corre-

sponding second-order terms.

The above Euler-Lagrange formula is applied with Φ (..., fα1
, fα2

) = f2
α1

+ f2
α2

and

f(α1, α2) ≡ I(x, y). Only the second-order terms are non-zero, leading to isotropic

diffusion (a.k.a. the heat equation): Ie = Ixx + Iyy .

Gaussian Convolution. Using G(σ) =
(

2πσ2
)−1

exp
(

−(x2 + y2)/2σ2
)

for the

Gaussian kernel and ⊗ for the convolution operator, G(
√

2e) ⊗ I is known to be the

only solution of the heat equation [23, 32]. As a consequence, Gaussian convolution is

equivalent to isotropic diffusion and also minimizes the gradient norms.

Summary. The following equation summarizes the relationship between gradient min-

imization, Gaussian convolution, and the heat equation.

minimize
∫ (

I2
x + I2

y

)

(2a)

G(σ) ⊗ I with: σ =
√

2e (2b)

Ie = Ixx + Iyy (2c)

Equations 2b and 2c are equivalent and are derived from 2a. In practice, a finite value

of σ and e is selected in order not to produce a constant (i.e., infinitely smooth) im-

age, thereby not fully minimizing (2a). One of our contributions is to derive a similar

relationship for video streams.

3 Isotropic Diffusion and Gaussian Convolution for Video Streams

Gaussian convolution and isotropic diffusion are classical image-space operators upon

which a number of powerful tools are built. For instance, anisotropic diffusion is an

extension of isotropic diffusion and the bilateral filter has been shown to be a Gaussian

convolution in the intensity-space domain [21]. In this section, we derive equivalent

operators for video streams. First, we discuss the specificity of the time axis and then

derive new operators that minimize the video-stream gradients.

3.1 Time Axis in Video Streams

We consider a frame of a video stream V at time t0. All the previous frames have already

been processed, that is, we know V (t) for all t < t0. In the video-streaming context,

data are displayed or broadcast immediately after being processed and thus cannot be

modified. We use the notation V (t) for these processed, fixed data at t < t0. Conversely,

future frames at t > t0 are unknown and cannot be accessed. These properties make

the time dimension fundamentally different from the x and y axes. For instance, when

processing a pixel V (x), both V (x − ǫ) and V (x + ǫ) can be accessed and modified.
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Mixed Boundary Conditions. When processing the current data V (t), we treat the

past data V (t0 − ǫ) with ǫ > 0 as hard constraints, that is, we have Dirichlet boundary

conditions on the negative side. On the positive side, we cannot compute any derivative

since V (t0 + ǫ) is unknown. It means that right derivatives will never appear, or equiv-

alently, be set to 0. Thus, we have Neumann boundary conditions on the positive side.

Discrete Modeling. A continuous model in which t is continuous variable and V a

smooth variable is not a suitable approach to cope with the streaming setting. By con-

tinuity of V , we could write V (t) = limǫ→0 V (t − ǫ) that would enforce the current

frame to be always equal to the previous frame which is already known. In a contin-

uous setup, we would always process data on the domain boundary where constraints

are expressed. Therefore, although continuous modeling can be useful for image-space

analysis [23], we prefer a discrete approach that lets us work at a distance from the

domain boundaries. Such a choice has also been done in scale-space studies [26, 27].

3.2 Minimizing the Gradients

Gaussian convolution (Eq. 2b) and isotropic diffusion (Eq. 2c) cannot be applied di-

rectly to video streams because they do not take the temporal structure of video streams

into account. For instance, we cannot use a Gaussian kernel along the time axis because

it requires the use of future frames which are not available. Nevertheless, we can still

formulate our goal as minimizing variations, i.e. gradient norms. We seek a scheme that

minimizes
∫ (

V 2
x + V 2

y + cV 2
t

)

where c is a constant that weights the temporal metric

versus the spatial metric. The x and y components are not affected by the video-stream

structure, i.e. Equation 2 still holds. In the following discussion, we omit these terms

for clarity and focus on the temporal term.

As discussed in the previous section, we use a discrete formulation for the time di-

mension, i.e. we minimize
∑

c [V (t) − V (t − 1)]2 where t ∈ Z is an integer indexing

the frames and V (t) − V (t − 1) is a backward difference, the discrete equivalent to a

left derivative with the major difference that it involves the data V and the boundary

constraint V . The forward difference cannot be computed since the frame t + 1 is un-

known at time t. Recall also that at a given time t, the past data V (t − 1) are fixed and

that only the current frame V (t) is processed.

Discrete Euler-Lagrange. With α ∈ Z an integer variable, f a function of the vari-

able α, Δαf(α) = f(α + 1)− f(α) the discrete derivative of f , and Φ a function of α,

f , and Δαf , the Euler-Lagrange formula becomes:

fe = Δα

(

∂Φ

∂(Δαf)

)

− ∂Φ

∂f
(3)

This discrete formula is known to be equivalent to the continuous one (Eq. 1). We refer

to the work of Guo et al. [33] for a detailed formal proof.

Minimizing Temporal Variations. The temporal term V (t) − V (t − 1) is not a stan-

dard discrete derivative because it involves V which is a boundary condition, only V (t)
is unknown and can vary. We use the notation ΔtV (t − 1) = V (t) − V (t − 1). As

a consequence,
∑

c [ΔtV (t − 1)]2 is a zeroth-order term, and the Euler-Lagrange for-

mula (Eq. 3) results in a first-order scheme Ve = −c ΔtV .
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Diffusion in Video Streams. With the spatial terms and using Δ2 for the discrete sec-

ond derivative, we obtain the equivalent of the heat equation (Eq. 2c) for video streams:

Ve = Δ2
xV + Δ2

yV − c ΔtV (4)

This formula defines isotropic diffusion for video streams. The structure of the t axis

induces a major change in the diffusion process with a first-order term instead of the

second-order term classically found along spatial dimensions.

Intuition The temporal term acts as an attachment term. It adds to current values a por-

tion of the difference with the previous data. The more we apply the diffusion equation,

the more it moves the current data closer the values of the previous frame.

3.3 Integrating the Diffusion Equation

To obtain the equivalent of the Gaussian kernel, we integrate the diffusion equation (4)

against the evolution time e. For clarity, we use the notation V (t, e) from now on. For

instance, V (t, 0) is the input frame at time t.

Spatial Dimensions. The spatial part of Equation 4 is similar to the image-space heat

equation (Eq. 2c). As a consequence, the spatial component of the video-stream kernel

is a Gaussian G(
√

2e) similarly to the image-space case.

Temporal Dimension. We focus on the temporal part: Ve = −c [V (t, e)−V (t−1, e)]
(Eq. 4). It is a first-order differential equation with V as unknown since V (t − 1, e) is

constant. By imposing the value at e = 0, the solution is:

V (t, e) = V (t − 1, e) + exp(−c e)[V (t, 0) − V (t − 1, e)] (5)

With q = 1 − exp(−c e), we rewrite Equation 5 to express the output at t as a function

of the input at t and the output at t − 1:

V (t, e) = (1 − q)V (t, 0) + q V (t − 1, e) (6)

We recursively apply Equation 6 at time t − s for s > 0 to remove the dependency on

the past output frames. Since q < 1 when e > 0, we have lims→+∞ qs = 0 and:

V (t, e) = (1 − q)
∑

s≥0

qs V (t − s, 0) (7)

Equation 7 corresponds to a convolution between the input frames V (·, 0) and a trun-

cated exponential decay D:

V (t, e) =
[

D ⊗ V (·, 0)
]

(t) (8a)

with D : t �→ k exp(−t/λ)H(t) (8b)

where k = 1 − q = exp(−c e) is a normalization constant, H the Heaviside function

(H(t) = 1 if t ≥ 0 and 0 otherwise), and λ obtained by comparing two successive

frames: λ = −1/ log
(

1 − exp(−c e)
)

.
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Fig. 1. Spatial and temporal sca-

les as functions of the evolution

time e for c = 1.

Fig. 2. Variation of the kernel shape with the evolution

time e. Without adjustment, the temporal scaling is more

important than the spatial one (top row). We can enforce a

uniform scaling by adapting the metric parameter c (bot-

tom row).

Scale. The σ and λ parameters respectively control the spatial and temporal scales of

the kernel. Their behavior with the respect to the evolution time e is different as illus-

trated in Figure 1. When using the diffusion operator (Eq. 4), varying e does not uni-

formly scale the spatio-temporal kernel: the t dimension is more altered than the xy axes

(Fig. 2-top). Nonetheless, the metric constant c can be adjusted to obtain a uniform scal-

ing. For instance, one can define the scale σ and the aspect ratio γ = σ/λ. From Equa-

tion 2b, we get e = σ2/2, and from the definition of λ: c = −2 log(1 − exp(σ/γ))/σ2.

Using these settings, one can uniformly scale the kernel (Fig. 2-bottom).

Practical Recursive Algorithm. The spatio-temporal convolution can be made effi-

cient since it is separable. Several techniques such as Deriche’s recursive scheme [34]

exist for the spatial Gaussian part. For the temporal part, we use the recursive formula

(Eq. 6). It performs an exact computation based only on the current and last frames. This

aspect makes our approach practical since only the current frame V (t) and the previous

one V (t − 1) are needed at a given time. As a consequence, our algorithm has low

memory requirements and the data always fit in memory independently of the video

length. Figure 3 provides the pseudo-code for the convolution. In comparison, omni-

FASTSPATIOTEMPORALCONVOLUTION

· input: V (t, 0), V (t − 1, e), e, c

· internal variables: q, Ṽ

· output: V (t, e)

1. Decay computation: q = 1 − exp(−ce)
2. Space convolution: Ṽ = G(

√
2e) ⊗ V (t, 0)

3. Time recursion: V (t, e) = (1 − q)Ṽ + qV (t − 1, e)

Fig. 3. Pseudo-code of the spatio-temporal convolution
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scient methods are either limited to short sequences on the order of a few seconds or

resort to using complex memory management strategies such as tiling. The differential

formulation (Eq. 4) enjoys the same low-memory benefits.

3.4 Summary and Discussion

We have shown that gradients of video streams are minimized by a PDE that extends

the classical second-order heat equation with a first-order temporal term. After integra-

tion, this PDE is equivalent to a spatio-temporal kernel made of a spatial Gaussian and

a temporal exponential decay. The difference between the spatial dimensions and the

time axis stem from the previously processed frames and the missing future data which

impose boundary constraints onto the smoothing process. The following relationship

and Figure 4 summarize this result.

minimize
∑

[

(ΔxV )2 + (ΔyV )2 + (ΔtV )2
]

(9a)

G(σ)D(λ) ⊗ V (9b)

Ve = Δ2
xV + Δ2

yV − cΔtV (9c)

past

fr
am

es
te

m
p
o
ra

l

k
er

n
el

P
D

E

current

Ve = ∆x
2V + ∆y

2V + c∆t
2V Ve = ∆x

2V + ∆y
2V - c∆tV Ve = ∆x

2V + ∆y
2V

(a) omniscient volumetric processing (b) causal stream processing (c) frame-by-frame processing

all frames are known

and can be modified

past frames are known

but cannot be modified

future frames

are unknown

future frames

are unknown

past frames are

known but ignored

future

Gaussian Dirac
exponential

decay

time time time

past current future past current future

Fig. 4. Our approach (b) uses past data to ensure temporal coherence unlike frame-by-frame tech-

niques (c) that rely only the quality of the input and the stability of the filter to achieve coherence.

Compared to omniscient techniques (a), we do not assume that the future frames are known,

thereby enabling on-line processing.

Link to Existing Work. The spatio-temporal PDE and kernel has been described by

Lindeberg using scale-space axioms [26, 27]. Our contribution is to derive them from

a simple smoothing problem, i.e. gradient minimization. The other major aspect of our

work is to extend this result to edge-preserving smoothing and image segmentation as

described in the following section.

4 Applications

Using the previously defined PDE and kernel directly on the pixel values is of limited

interested because it blurs the video content. For instance, a naive approach would be
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to apply temporal smoothing as a post-process to an edge-preserving filter to enforce

temporal coherence. This produces blurry results as shown in the companion video.

Nonetheless, smoothing can be used to build several useful tools which demonstrate

the value of our theoretical study. Videos are provided in the supplemental material.

4.1 Bilateral Filtering

The bilateral filter [35, 36, 37] is an edge-preserving filter that has proven to be an

effective tool in computational photography [38]. For an image I , the output at a pixel p

is the normalized average of the adjacent pixels q weighted by two Gaussian functions,

G(σs, ·) and G(σi, ·), accounting for the spatial and intensity distances respectively:

1

W

∑

q

G
(

σs, ||p − q||)
)

G(σi, |I(p) − I(q)|) I(q)

Our adaption to video streams is based on the result by Paris and Durand who ex-

pressed this filter as a Gaussian convolution in the space-intensity domain [21]. We

build upon the result of the previous section and adapt the bilateral filter to video streams

by convolving with our spatio-temporal kernel instead of the original Gaussian. Figure 5

shows a sample result produced by our algorithm.

(a) sample noisy input frame (b) bilateral filter output

Fig. 5. Bilateral filter result. The companion video demonstrates the stability of our approach in

presence of noise.

4.2 Mean-Shift Segmentation

Mean shift is a method to segment images made popular by Comaniciu and Meer [22].

Each pixel is associated to a feature point and the produced segmentation can be seen

as the modes of the density of feature points estimated with a Gaussian kernel [22, 14].

We extend this approach to video streams by estimating the feature-point density with

our causal spatio-temporal kernel. With this approach, modes span space and time and

temporal coherence is naturally achieved (Fig. 6).

4.3 PDE-Based Anisotropic Diffusion

A large body of work exists on smoothing images with anisotropic diffusion using

PDEs [23]. From a high-level standpoint, one can interpret these filters as variants of
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Fig. 6. Mean-shift segmentation. The clusters are color-coded. The frame-by-frame approach pro-

duces new clusters at each frame (indicated by new colors). A heuristic to “link” clusters across

frames would not be satisfying since boundaries are not coherent. In comparison, our algorithm

achieves a coherent segmentation. This is better seen in the companion video.

the heat equation (Eq. 2c) that steer the diffusion to avoid blurring the main image con-

tours. We demonstrate our approach on the Perona-Malik filter [39]. In image space,

this filter is similar to the heat equation with the gradients weighted by a stopping func-

tion g(·): Ie = div(g(||∇I||)∇I) where div is the divergence Δx + Δy . Based on our

result (Eq. 9c), we propose the following equivalent for video streams:

Ve = div(g(||∇V ||)∇V ) − c g(||∇V ||)ΔtV

The divergence term is equivalent to the image-space case. The last term is specific to

video streaming. A sample output is shown in Figure 7.

(a) sample input frame (b) output

Fig. 7. Close-up on anisotropic diffusion results. We applied a strong smoothing effect to make it

more visible. The full sequence is provided in supplemental material.
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4.4 Possible Extensions

In the following sections, we discuss uses of our approach that requires studies beyond

the scope of this paper. We plan to pursue these directions as future work.

Poisson Reconstruction. This technique is commonly used to reconstruct in the least-

square sense an image from an approximated gradient field (u, v, w) [40, 41, 42]. For

video streams, the least-square problem is:
[

(ΔxV −u)2+(ΔyV −v)2+(ΔtV −w)2
]

,

which can be solved similarly to Equation 9a with the discrete Euler-Lagrange formula:

Ve = Δ2
xV − Δxu + Δ2

yV − Δyv − ΔtV + w. The first four terms correspond to the

standard Poisson equation while the last two are specific to video streaming.

We experimented with this equation on panorama stitching [42], pasting [41], and

Retinex [40]. At best, we found only minor improvements compared to frame by frame,

while the lack of motion compensation induces defects at moving boundaries with

Retinex. Unfortunately, optical-flow techniques have limitations that make them un-

suitable for video streaming as discussed in the following paragraph.

Optical Flow. In general, we could benefit from optical flow to account for the scene

motion. However, high-accuracy algorithms are computationally expensive and fast

methods such as the one used in MediaPlayer have limited precision [43]. Thus, the

current state of the art in motion estimation does not allow for stream processing yet.

However, we believe that it is a promising research direction for the future. Real-time

and accurate flow computation would have many applications. In our case, it would

allow for steering the temporal component ΔtV according to the optical flow, thereby

yielding results at boundaries as accurate as the ones in uniform areas.

5 Results

Setup. We have implemented the described applications in C++, compiled them with

GCC 4.0.1 with optimization turned on, and run the tests on an Intel Xeon 3GHz. The

Gaussian part of the kernel is implemented using a downsampled 5-tap approxima-

tion. The bilateral filter and the mean-shift segmentation are set with σs = 32 and

σi = 2.5 considering that the intensity range spans [0..100]. Anisotropic diffusion uses

axis-projected gradients as suggested by Perona and Malik [39]. Frame rates reported

in Table 1 are averaged over 100 frames, not including disk operations. Memory con-

sumption excludes system libraries. Videos are provided in the supplemental material.

Performance. Our approach yields memory efficient algorithms that achieves real-time

or near real-time performance on gray-level videos at DVD resolution while maintain-

ing temporal coherence (Table 1). There is no limit on the video length, the reported

Table 1. Frame rate and memory consumption. Input stream is 640 × 360 in gray levels.

frame-by-frame our approach

bilateral filter 29.1Hz (3.8MB) 28.4Hz (3.9MB)

mean shift 59.5Hz (1.1MB) 52.9Hz (1.3MB)

Perona-Malik 14.6Hz (8.8MB) 11.7Hz (9.7MB)
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Fig. 8. Temporal stability of the Perona-Malik filter. Our approach exhibits a transient start but

rapidly achieves more stable results than frame-by-frame and even omniscient methods because

it relies on the past frames which have already been smoothed. We added noise up to ±5% of the

intensity range. All filters have been applied with e = 2.

performance and memory usage can be sustained for an arbitrary duration. As future

work, we plan to leverage graphics hardware to process color data.

Stability. Temporal stability is a key issue, especially in uniform areas where incoher-

ence yields undesirable flickering. We evaluated the stability of our approach compared

to frame-by-frame and omniscient methods using the Perona-Malik filter. We processed

100 uniform frames with uncorrelated noise added and kept the evolution time e fixed

to ensure a fair comparison. Figure 8 shows the intensity plot of the center pixel. As ex-

pected, frame-by-frame results lack coherence. Our causal approach exhibits a transient

start because there is no past data available. Then, it becomes slightly more stable than

the omniscient output. This property stems from our use as hard constraints of the past

data which are already smoothed whereas the omniscient process exploits more data

but smoothes them at the same time, i.e. in the first iterations, past and future frames

are still noisy and not as useful as the smoothed past frame in our case.

Discussion. Compared to omniscient algorithms which are inherently limited to off-

line processing, our approach enables on-line tasks. Nonetheless, if on-line processing

is not required, omniscient approaches offer more flexibility such as multi-pass analy-

sis [12] since they work in a less constrained scenario. Compared to frame-by-frame

results, the computation and memory overhead is limited (Table 1). For bilateral fil-

tering and anisotropic diffusion, our tests showed that our approach yields more stable

results on noisy images. Chen et al. [10] used this property to further speed up their

hardware implementation of the bilateral filter. Our contribution is to formally motivate

the technique that Chen described as a heuristic. For mean-shift segmentation, unlike

other approaches, our method can coherently process arbitrary long videos.

6 Conclusions

We described a formal approach to processing video streams. We did not assume any

knowledge about the future data and relied on the past frames to ensure temporal co-

herence. This translates into boundary constraints on the time axis which we used to
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derive smoothing operators dedicated to video streaming. Based on this result, we revis-

ited bilateral filtering, anisotropic diffusion, and mean-shift segmentation, and demon-

strated that they can be applied on video streams in real time. Our tests show that our

causal approach is suitable for applications such as coherent denoising for surveillance

and real-time segmentation for on-line analysis. In particular, it should be preferred to

frame-by-frame methods for noisy data and segmentation tasks.
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41. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Transactions on Graphics 22

(2003); Proc. of the ACM SIGGRAPH conf.

42. Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain.

In: Proc. of the European Conf. on Computer Vision (2006)

43. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evalu-

ation methodology for optical flow. In: Proc. of the International Conf. on Computer Vision

(2007)


	Edge-Preserving Smoothing and Mean-Shift Segmentation of Video Streams
	Introduction
	Background
	Theoretical Scale-Space Studies
	Video Applications
	Background on Image Processing

	Isotropic Diffusion and Gaussian Convolution for Video Streams
	Time Axis in Video Streams
	Minimizing the Gradients
	Integrating the Diffusion Equation
	Summary and Discussion

	Applications
	Bilateral Filtering
	Mean-Shift Segmentation
	PDE-Based Anisotropic Diffusion
	Possible Extensions

	Results
	Conclusions


