
Edge-Region Integration for Segmentation of MR Images

Gavin J. Brelstaff \ Michael C. Ibison fc Peter J. Elliott

IBM UK Scientific Centre,

Athelstan Ho, St Clement St,

Winchester, Hants, SO23 9DR

A data-driven segmentation scheme is described that

integrates edges and smooth regions. Edges are de-

tected first and then used to guide the action of a dual-

resolution agglomeratine •parametric region detector. The

scheme is applied to a variety of MR images. A compar-

ison is made of segmentations produced by the scheme

and by medical experts. The results are better than

those obtained from the edge detection process alone.

This paper is a summary of recent work on edge-region

based segmentation with particular application to mag-

netic resonance (MR) images of the brain. The objec-

tive to produce a model-free (or data-driven) segmen-

tation useful for clinical diagnosis and treatment is one

of our goals as a participant in an EEC funded project:

Computer Vision in Radiology (COVIRA), which is part

of the Advanced Informatics in Medicine (AIM) pro-

gramme 1
. As part of this programme we have been

provided with a set of MR images manually segmented

by medical experts (diagnostic radiologists) with which

we can compare our results.

The aim of this paper is to demonstrate a method for

integration of two particular low-level primitives: Edges

foiind by the Canny algorithm [2], and smooth regions

found by the Silverman and Cooper algorithm [18]. MR

images serve as a useful, i.e. particularly testing, domain

upon which to demonstrate our method.

Literature Survey
Below is a brief survey of existing algorithms for data-

driven image segmentation. More extensive surveys are

available [7]. Most existing algorithms are either edge

detectors which mark discontinuities in the image inten-

sity, or region detectors which mark homogeneous areas

in the image.

In practice neither edge detection nor region detection
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provides an entirely satisfactory segmentation alone. We

follow others [12,16,19] by integrating the two processes

in an attempt to improve the overall segmentation. The

two processes are in a sense complementary: edge de-

tection exploits the local spatial support around each

potential edge point while regions can be detected using

the semi-global support across each potential region.

Traditionally edge detection has been a process of locat-

ing points of maximum grey-level gradient [8,17]. We

use the Canny operator to do this [2]. It provides the

optimal trade off of the signal to noise ratio and the ac-

curacy in locating edges. It leaves gaps at 2D features

such as corners and junctions. Sometimes these gaps can

be filled [11,9], otherwise it is our region detector's job

to fill them.

Many region detection algorithms are based on his-

togram splitting—see [7]—but these fail if any two re-

gions to be distinguished contain the same grey-levels.

If the two regions do not abut then spatially adap-

tive histogram splitting can work [3,20,13]. Patch fit-

ting [21,1,18] provides a way to detect such regions even

when they abut. Regions are detected on the basis

of how well they fit to parameterised patches, each of

which models an area of smoothly varying grey-level.

We use a patch fitter that permits constant, planar

or bi-quadratic fits [18]. It merges small regions into

large ones using a maximum likelihood criterion. Al-

ternative patch fitting strategies have been investigated:

split and merge [15,10], parallel pixel growth [1], and

searches for the M.A.P. segmentation using Gibbs ran-

dom fields [4,14]. In all these schemes the spatial support

for the detection of a region increases as the region grows.

This contrasts with the purely local support exploited by

Haralick's facet fitting edge detector [5,6].

Broad Outline of Method

Our approach to integration is to use the results from an

edge detection process to guide the action of an agglom-

erative clustering process.

Edge detection
Edge detection is accomplished through an implementa-

tion of the Canny algorithm, with non-maximal suppres-
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sion, hysteresis [2] and junction completion [11].

Serial Clustering
The Silverman and Cooper method for growth of smooth

grey-level patches has been adapted as follows:

lated to fill the tessellation tile they occupy so that ag-

glomeration, inhibition (at edges), seeding, and termina-

tion (at new edges) can all take place at tile resolution.

Thus the method described so far yields coarse bound-

aries with a spatial granularity equal to that of the tile

• Following the initial tessellation (into 'tiles'), ag-

glomerative clustering is serial rather than parallel:

each patch is grown from a seed point to completion,

one patch at a time.

• Completion is determined by the likelihood ratio

stopping criterion described in [18].

• The current patch is constrained during growth to

agglomerate only adjacent tiles which do not strad-

dle a Canny edge, or an edge as inferred by the

extent of a previously completed patch.

Motivation: The idea here is to encourage the detec-

tion of closed regions which are largely bounded by cred-

ible but incomplete Canny edges. The support for edges

added by the agglomerative method is thereby one-sided,

giving rise to an improved signal to noise ratio.

Seeding
The completion of a patch triggers a fresh cycle which

begins with the determination of the next seed point un-

til every tile is a member of a patch. Seed points are

chosen according to the following method:

• Edge termination points found by the Canny process

are recorded prior to all patch growth.

• A record is updated at the beginning of each cy-

cle of all 'free' edge points (originating from Canny

or from a previoiisly completed region boundary)

which are eight-way connected to at least one unas-

signed tile.

• The next seed is (any) unassigned tile adjacent to

a free edge point which is furthest from its nearest

termination point.

Motivation: Areas near edge terminals are the most

likely to yield plausible new edges not found by the

Canny edge detector. The hope is that the growing

patch will approach this area with a low variance for

the parametric fit, and therefore a high sensitivity for

the detection of a difficult edge. The low variance is a

consequence of getting off to a good start in a relatively

(parametrically) homogeneous area, which should be as

large as possible, before (one sidedly) encountering the

piitative edge.

High resolution (extrapolation)
Prior to serial patch growing, Canny edge points are di-

The next stage assigns pixels within the boundary tiles

to patches according to the following recipe:

• Assignment takes place only to adjacent patches.

• Only those unassigned pixels which are not adjacent

to two different patches are considered.

• The order of assignment is determined by a best fit

calculation for each unassigned pixel to its adjacent

patch.

• The best fit minimises the difference between the

pixel grey-level, and that implied by an extrapola-

tion of the parametric grey-level surface of the ad-

jacent patch.

• Patch parameters and adjacency are updated after

each assignment.

Motivation: Single pixel resolution for the final seg-

mentation is obviously desirable. However, there is a sig-

nal to noise advantage from patch growth using enhanced

local support, and therefore single pixel manipulations

must be delayed as long as possible. Note that the sec-

ond ingredient ensures that a one pixel wide boundary of

unassigned pixels remains between different patches. We

denote these as the new ('high resolution') edge points.

Merging similar patches
A patch-patch merging process can be performed as fol-

lows:

• A goodness of fit is calculated for all possible (be-

tween adjacent patches) pair-wise merges.

• The best merge is performed, and the patch param-

eters and adjacencies updated.

• The cycle is repeated until a stopping criterion (a

threshold on the similarity) is met.

Motivation: It is possible that a (parametrically) ho-

mogeneous patch of the image is split up into two or more

patches even though there exists no unbroken Canny

edge between them. This can arise when Canny edges

conspire to form a bottle-neck through which the growing

Silverman and Cooper patch cannot pass. For this rea-

son, following the high resolution stage of patch growing,

patches thereby brought into contact across (single pixel
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width) edges can be tested for similarity and merged ac-

cordingly.

Merging dissimilar patches
Although parametrically dissimilar, two patches may be

considered for merging based on other contextual infor-

mation. It is our future intention to partition such ac-

tions into a separate process, wherein the rules governing

such merges are made explicit. Meanwhile, we currently

merge adjoining patches which have less than some small

number of Canny edge points separating them.

Summary of Algorithm

relating optimal thresholds to global image parameters

(noise, SNR) and (c) numerical: multidimensional con-

jugate gradient minimisation with objective: the total

number of non-coincident edge points between the man-

ual and automatic segmentations. We hope shortly to

report both on the sensitivity of the objective around the

minimum with respect to changes in threshold and image

parameters, and the sensitivity of the optimal thresholds

with respect to changes in global image parameters.

Application to MRI

• Edge detection

- CANNY and HYSTERESIS

- JUNCTION COMPLETION

• Region detection

- SERIAL CLUSTERING / SEEDING

- EXTRAPOLATION

- PARALLEL CLUSTERING

(The last stage codes for clustering of both similar and

dissimilar patches.)

Thresholds
The various thresholds/parameters for controlling the

processes described above can be manipulated in favour

of the desired segmentation. To this end, we consider

only:

t The standard deviation of the Gaussian smooth per-

formed by CANNY.

• The upper and lower thresholds required by HYS-

TERESIS.

• The degree of polynomial used to parameterise the

patches for SERIAL CLUSTERING.

• The percentage type 1 error expected (Silverman

ans Cooper) on completion of the SERIAL CLUS-

TERING.

• The acceptable fitting error for EXTRAPOLA-

TION.

• The minimum number of Canny edge points re-

quired to prevent PARALLEL CLUSTERING.

Some work has been done on the optimal choice of

thresholds which minimise the difference between the

automatic and manual segmentations. Our approach

has been (a) empirical (trial and error), (b) theoretical:

Image data
Our MR images are 256x256x8 bits Tt and T2 weighted

transaxial slices of the brain: Fig. 1, 2. The SNR is about

15dB. At present, our method is single channel, 2 dimen-

sional. Therefore we consider each slice independently,

and work with either Ti, T2 or the mean (Ti +T 2) /2 im-

age, which is often better. We have been provided with

a set of manual segmentations by diagnostic radiologists

with which we can compare our results: Fig. 7. Broadly

speaking, we would like our results to be as close as pos-

sible to these.

Application notes
The criterion of diagnostic usefulness demands that the

segmented MR image be largely composed of closed re-

gions which correspond to clinically distinct regions of

the brain. Where we are likely to fail in this task, we

err on the side of over-segmentation, mindful of possible

future work on automatic interpretation with the seg-

mentation results as an input.

Examination of the MRI grey-level surface reveals few

clinically distinct regions which would benefit from a bi-

quadratic parameterisation of patches. Indeed, so far we

have been unable to show the benefit of using a bi-linear

parameterisation rather than constant patches, despite

in some cases an obvious partial volume effect near re-

gion boundaries. At least for our data set, we conclude

that it is better to \ise the grey-level data within a tile to

increase the SNR for detection of simple grey-level dis-

continuities, rather than use it to establish a higher-order

parameterisation and therefore sensitivity to higher or-

der discontinuities.

Results and discussion
Fig. 1 shows a transaxial Tj slice taken from a patient

with a temporal astrocytoma. The patient was treated

with Gadolinium to enhance the outline of the tumour,

which shows up as a bright ring. The tumour is sur-

rounded by edema (swelling) which is not very well dif-

ferentiated from the surrounding tissue. Fig. 3 gives the

result of edge detection showing that the tumour bound-

ary is found, but only part of the edema boundary. Fig. 4

is the result after region growing, showing that the region
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grower has successfully completed the edema boundary.

Note also that the outlines of the skin, skull and brain

are well defined, since they produce strong edges that

are easily detected.

Fig. 2 is the [T\ + Tz)/2 image from, a transaxial slice of

another patient (without the use of Gadolinium). In this

case there is a frontal solid astrocytoma, with very little

edema. Fig. 5 shows the results of edge detection, with

the same thresholds as in the previous example. Fig. 6

shows the completed edges after region detection. For

this image, a manual segmentation was performed by

diagnostic radiologists, with a criterion of clinical useful-

ness. This is shown in Fig. 7, and enables us to get a

measure of how well the computer algorithms have per-

formed. In the manual segmentation, there are 3959 edge

points, compared to 5440 in the computer segmentation

(recall that over-segmentation is preferred to an under-

segmentation). Of these, 1591 edge points or 40% of the

total in the manual segmentation are coincident. There

are only 658 of the manual edge points which are more

than one pixel from a computer generated edge point

i.e. 84% of the manual segmentation has been identified,

within 1 pixel, by the computer segmentation. This is

shown in Fig. 8.

It can be seen that in addition to the skin, skull and brain

outlines, a large part of the grey/white matter bound-

ary has been correctly identified (this is often difficult

to detect). Also the boundary of the tumour has been

found correctly. In the centre of the image, the ventricu-

lar area, the overall outline of the structure is quite well

defined. However, the separation of the ventricles from

the nucleus caudatus has been lost, as can be seen from

the manual segmentation. Note that the radiologists iise

their anatomical knowledge when performing the seg-

mentation, in contrast with our piirely data-driven ap-

proach.

Using the same value for the thresholds, so far we have

apphed our technique for segmentation to 25 images from

6 patients with good results.

In summary, the edge-region, based scheme described

above has performed useful segmentations in the par-

ticularly difficult domain of MR images. The results ob-

tained by integrating the edge and region detection pro-

cesses are better than those that are achieved by edge

detection alone.
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Figure 1: MR image of the brain: transaxial
Tx slice exhibiting a temporal astrocytoma ( the
bright ring), enhanced by Gadolinium treatment.

Figure 3: Canny edges from Fig. 1.

Figure 2: MR image: transaxial slice exhibiting a
frontal solid astrocytoma (bright blob)-the aver-
age of Ti and T5 weighted images.

Figure 4: Seeded region growing on Fig. 1 guided
by the Canny edges (Fig. 3).
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Figure 5: Canny edges from Fig. 2. Figure 7: Manual segmentation performed by a
diagnostic radiologist—to be compared with the
computed segmentation in Fig. 6.

Figure 6: After region growing on Fig. 2 using
edges in Fig. 5.

Figure 8: Image showing the 84% of the manual
segmentation (Fig. 7) identified by the computed
segmentation in Fig. 6.
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