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Abstract 

3D scanners, iso-surface extraction procedures, and several recent geometric compression schemes sample 

surfaces of 3D shapes in a regular fashion, without any attempt to align the samples with the sharp edges and 

corners of the original shape. Consequently, the interpolating triangle meshes chamfer these sharp features 

and thus exhibit significant errors. The new Edge-Sharpener filter introduced here identifies the chamfer 

edges and subdivides them and their incident triangles by inserting new vertices and by forcing these vertices 

to lie on intersections of planes that locally approximate the smooth surfaces that meet at these sharp features. 

This post-processing significantly reduces the error produced by the initial sampling process. For example, we 

have observed that the L2 error introduced by the SwingWrapper9 remeshing-based compressor can be 

reduced down to a fifth by executing Edge-Sharpener after decompression, with no additional information. 

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling – geometric algorithms; 

 

 

 

1. Introduction 

Due to the focus of popular graphic accelerators, triangle 

meshes remain the primary representation for 3D surfaces. 

They are the simplest form of interpolation between surface 

samples, which may have been acquired with a laser 

scanner 1,2,3, computed from a 3D scalar field resolved on a 

regular grid 4,5, or identified on slices of medical data 6,7. 

Most acquisition techniques restrict each sample to lie on a 

specific curve whose position is completely defined by a 

pre-established pattern. For example, a laser-scanner 

measures distances along a family of parallel or concentric 

rays that form a regular pattern or grid. One may argue that 

an iso-surface extraction uses three such patterns, aligned 

with the principal directions. Because the pattern of these 

rays or stabbing curves is not adjusted to hit the sharp edges 

and corners of the model, almost none of the samples lie on 

such sharp features. Therefore, the sharp edges and corners 

of the original shape are lost by the sampling process and 

replaced in the resulting triangulation by irregular chamfers. 

The size of these chamfers may decrease if a finer sampling 

step is used, but, as observed by Kobbelt et al. 8, the 

associated aliasing problem will not be solved by 

over-sampling, since the surface normals in the 

reconstructed model will not converge to the normal field of 

the original object. 

Similar aliasing artifacts can be observed on models 

produced by remeshing, which forms the basis of three of 

the most effective compression techniques published 

recently 9,10,11. Basically these methods create a new mesh 

that approximates the original one. Vertices of the new 

mesh are placed on the original surface or at quantized 

locations near the surface, so that their position can be 

predicted more accurately and encoded with fewer bits. 

Unfortunately, almost none of the new vertices fall on sharp 

edges or corners. As a consequence, the sharp features are 

not captured in the new mesh. An exception in this class of 

algorithms is described in 12, where the remeshing process 

aligns samples on sharp edges. 

In this paper we present a novel algorithm that 

automatically identifies these aliasing artifacts and replaces 

them with refined portions of the mesh that more accuratley 

approximate the original shape. This edge-sharpening 

process works well for meshes generated by various kinds 

of uniform samplings and does not introduce undesirable 

sideffects away from sharp features. In Figure 1, for 

example, the same model was resampled with two different 

approaches, and sharp features were correctly restored in 

both the cases. 

The remainder of the paper is organized as follows: 
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section 2 outlines how existing methods tackle the problem 

of extracting or maintaining sharp features; in section 3 the 

new edge-sharpener filter is described and several particular 

cases are discussed; section 4 reports the results of our tests 

and discusses how the method behaves in various 

application fields; finally, in section 5 we summarize our 

contributions and conclude. 

(a) (b) 

(c) (d)  

Figure 1. An aliased model (a) generated with Marching 
Cubes is improved automatically (b) by EdgeSharpener. A 
version (c) of the original model was generated through the 
lossy SwingWrapper compression 9. An improved version 
(d) was obtained with no additional information by running 
EdgeSharpener after decompression. 

 

2. Related Work 

When a point cloud is dense enough, sharp features may be 

inferred by analyzing the neighborhood of each point 13,14. 

However, in most situations, surface samples are sparse and 

their interpolation defined by a triangle/vertex incidence 

graph. The loss of sharp features during the triangulation of 

implicit surfaces has been addressed in 15,16, where the 

standard marching-cubes algorithm is improved by moving 

the sample points to optimized locations. In 17, the 

identification of perceptually salient curvature extrema was 

used to guide mesh simplification 18. This method can be 

coupled with a proper skeletonization procedure to extract 

actual creases or sharp feature lines approximating small 

radius blends in the model. In order to avoid the alising 

problem during the remeshing of a surface, some of the 

evenly distributed vertices may be attracted to sharp feature 

lines, as described in 19. During the creation of an 

iso-surface, an extended marching cubes (EMC) algorithm 8 

derives vertex normals from the original scalar field and 

uses them to decide whether a voxel contains a sharp 

feature and, if so, to estimate the location of additional 

vertices on these features. One year later, a new solution to 

the iso-surface polygonization problem was presented in 20, 

where sharp features are preserved using fewer samples. 

All the methods discussed above use some information 

about the original surface to reconstruct or to preserve the 

features. In contrast, the Edge-Sharpener filter introduced in 

this paper recovers sharp features when no information 

about the original surface is available, except for the 

regularly sampled triangle mesh that approximates it. 

3. The Edge-Sharpener algorithm 

The errors produced by a feature-insensitive sampling are 

concentrated in what we call chamfer triangles, which cut 

through the solid near sharp convex edges or through the 

solid’s complement near sharp concave edges. Our 

objective is to identify these chamfer triangles and to 

replace them with a finer triangle mesh that better 

approximates the sharp features of the solid.  

In order to preserve the integrity of the triangle mesh, we 

will subdivide the chamfer triangles by inserting new 

vertices inside chamfer triangles or on edges between two 

chamfer triangles, but not on edges between chamfer and 

non-chamfer triangles. Hence our task involves three parts:  

1. Identify the chamfer triangles that must be processed,  

2. Decide how to subdivide them,  

3. For each newly inserted vertex, estimate the sharp edge 

or corner that we are trying to restore and move the 

vertex onto that edge or corner. 

We have explored three approaches (global, local and filter) 

for identifying the chamfer triangles. They produce nearly 

equivalent results, but offer different compromises between 

elegance of the formulation, code simplicity, and running 

time efficiency. We outline all three before providing the 

details of the filter approach that we have chosen. All three 

approaches identify what we call chamfer edges, which are 

shown in blue in Figure 2. 

In the remainder of the paper, the term smooth edge will 

denote an edge whose dihedral angle approaches π within a 

prescribed tolerance. 

The global approach that we have explored processes the 

entire mesh and identifies clusters of triangles that are 

connected by smooth edges and tessellate portions of 

smooth surfaces. Chamfer edges are those connecting two 

different clusters. Triangles bounded by three chamfer 

edges are the corner triangles. The clustering of the 

triangles is delicate 21 and unnecessary for our purpose. 

Specifically, we must differentiate between smooth surfaces 

and thin corridors (generalized triangle strips) of smoothly 

connected triangles, which although smooth, may 

correspond to the actual chamfers that we wish to replace. 

The local approach that we have investigated examines 

the neighborhood of each edge formed by its two incident 

triangles and by all their neighbors. It attempts to organize 
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the ordered ring of neighbors into two or three strips of 

nearly coplanar and contiguous triangles, separated by 

chamfer triangles. If it succeeds, the edge is a chamfer edge. 

Although the process is local for each edge, its formulation 

is rather inelegant and its execution involves redundant 

steps. Furthermore, using only one ring of neighbors may 

wrongly identify chamfers in noisy regions that do not 

separate smooth portions of a surface. 

We have finally opted for the filter approach, which is 

significantly faster, more robust and easier to implement 

than the others. This approach is based on the initial 

identification of all nearly flat edges and on a succession of 

six simple filters, which each colors the edges, vertices, or 

triangles, based on the colors of their adjacent or incident 

elements. 

The first step of the filter approach is to paint brown all 

the smooth edges (we assume that all vertices, edges, and 

triangles are initially gray). An edge is said to be smooth if 

the angle between the normals to its two incident triangles 

is less than twice the average of such angles for the entire 

mesh. Then, we apply the following sequence of six filters: 

1. Paint red each vertex whose incident edges are all 

brown. 

2. Paint red each triangle that has at least one red vertex. 

3. Paint red (recursively) each triangle that is adjacent to a 

red triangle through a brown edge. 

4. Paint red the edges and vertices of the red triangles.  

5. Paint blue each non-red edge joining two red vertices. 

6. Paint green each triangle with three blue edges. 

Initial Input Smooth Edges 

1 2 3 

4 5 6 

 

Figure 2: Selection of the smooth edges in the original 
model (top row) and the six steps of the filter (mid and 
bottom rows). 

 

The six steps are illustrated in Figure 2. Filter 1 identifies 

the interior vertices of smooth regions. Filter 2 identifies the 

core triangles of smooth regions. These are incident upon at 

least one interior vertex. Filter 3 extends the smooth regions 

to include all of the triangles that are adjacent to a core 

triangle by a smooth edge. Note that we do not distinguish 

between the different components of the smooth portion of 

the mesh. Filter 4 marks the edges that bound the smooth 

regions to ensure that they are not mistaken for chamfer 

edges in step 5. Note that these edges are not smooth. Filter 

4 also identifies the vertices that bound the smooth regions. 

Filter 5 identifies the chamfer edges as those that connect 

vertices on the boundary of smooth regions but do not, 

themselves, bound a smooth region. Note that chamfer 

edges may, but need not, be smooth. Also note that some 

edges may still be gray and that some edges may neither be 

part of a smooth region nor be chamfer edges (Figure 3). 

Finally, filter 6 identifies the corner triangles that are 

bounded by three chamfer edges and have all of their 

vertices on the boundary of smooth regions. Thus, they are 

at the junction of at least three portions of smooth regions. 

 

 

Figure 3: Chamfers identified by Edge-Sharpener on a 
model remeshed through the marching intersections 
algorithm 22. Some edges are still gray or brown. 

 

To subdivide the chamfer triangles, including the corner 

ones, we insert a new vertex in the middle of each chamfer 

edge and in the middle of each corner triangle. Then we 

re-triangulate the resulting polygons. We may have three 

cases (see Figure 4): 

a) A triangle with a single chamfer edge is split in two 

triangles. 

b) A triangle with two chamfer edges is split into three 

triangles. 

c) A corner triangle, which has three chamfer edges and an 

interior vertex is split into six triangles forming a fan 

around the interior vertex. 

 
a b c 

 

Figure 4: Subdivision of a chamfer triangle with one (a) 
two (b) or three (c) chamfer edges. 
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Finally, we must find the proper position for each new 

vertex for chamfer edges and for corner triangles. We use an 

extrapolation of the smooth surfaces that are adjacent to 

these elements, as shown in Figure 5 and Figure 6. 

To find the position of a new vertex V inserted in a 

chamfer edge E, we consider the two original vertices, A 

and B, of E. We compute the weighted sum N of the 

normals to all of the red triangles incident upon A, 

normalize it, and define a plane P that is orthogonal to N 

and passes through A. As weights, we use the angle 

between the two edges of the incident triangle that meet at 

A. Similarly, we compute the weighted sum M of the 

normals to all of the red triangles incident upon B, 

normalize it, and define a plane Q that is orthogonal to M 

and passes through B. Finally, we move V to the closest 

point on the line of intersection between planes P and Q. 

More specifically, V is (A+B)/2+(h/k)H, where 

H=AB×(M×N), which is also (AB�N)M+(BA�M)N, 

h=AB�N and k=2(M�N)(AB�N)–2(AB�M). The process is 

shown in Figure 5. 

 

A 

B L 

 

Figure 5: Insertion of a new vertex to split a chamfer edge. 

 

To find the position of a new vertex W inserted in a 

corner triangle with vertices A, B, and C, we proceed as 

follows. We first compute the weighted sum N of the 

normals to all of the red triangles incident upon A, 

normalize it, and define a plane P that is orthogonal to N 

and passes through A. Similarly, we define the plane Q 

through B with normal M and the plane R through C with 

normal L. Then, we move W to the intersection of planes P, 

Q, and R, which is the solution of the system of three linear 

equalities: W�N=A�N, W�M=B�M, W�L=C�L (see Figure 

6). 

 

Figure 6: Insertion of a new vertex to split a corner 
triangle. 

 

For simplicity, we have omitted in the previous two 

paragraphs the discussion of degenerate cases. Such cases 

include situations where the pairs of planes are parallel or 

when the triplets of planes do not intersect at a single point, 

because their normals are coplanar. Moreover, since the 

algorithm is tailored for nearly uniform triangulations, we 

have chosen to avoid the creation of edges which are longer 

than the longest edge of the input mesh (see Figure 7). Thus, 

if the extrapolated position would require the creation of 

such a long edge, or if the position itself is not defined 

because of a linear dependency between the planes, we 

simply leave the newly inserted vertex in the middle of the 

chamfer edge or of the corner triangle. 

 

 
Figure 7: In the top row the chamfer edges (middle) of an 
initial model (left) were split without moving the new 
vertices (right). The model in the bottom was obtained by 
skipping the edge-length check. 

 

In some cases, a portion of a strip of triangles that forms 

a chamfer is bordered by a concave edge on one side and by 

a convex edge on the other. These situations are easily 

detected by analyzing the configuration of the triangles 

incident to the end-points of the chamfer edge or triangle. 

We treat these cases as the ones discussed above, and 

simply do not move the newly inserted vertices. 

Finally, in extremely rare cases, the alias corresponding 

to a feature that blends smoothly into a flat area may be 

painted red, preventing the detection of some “desired” 

chamfer triangles. This situation, however, may happen 

only if the strip of such triangles is not aliased, which is 

very unprobable in practical cases. Figure 14, for example, 

shows the correct reconstruction of such a blended feature. 

The last degeneracy to be discussed includes all the 

configurations in which the original model has more than 

three sharp edges meeting at a corner. Provided that the 

sampling is dense enough, a corresponding aliased model 

has a strip of chamfer edges for each original sharp edge, 

and these strips meet at a region made of corner triangles 

(see Figure 8). The new points that split these adjacent 

corners (and the chamfer edges inbetween) are moved to 

the same position, resulting in the creation of degenerate 

triangles. Therefore, when the sharpening is complete, it 

may be necessary to eliminate some degenerate faces 23. We 
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have tuned our implementation by considering degenerate a 

triangle having at least one angle smaller than 1 degree. 

 

 
Figure 8: A pyramid was remeshed using the marching 
intersections (top-left). Edge-Sharpener detected two 
adjacent corner triangles (top-right). After the subdivision, 
the degenerate triangles have been removed (bottom row). 

 

4. Results and Discussion 

We have tested Edge-Sharpener extensively in conjunction 

with the SwingWrapper compression algorithm 9. In order 

to reduce the number of bits to encode the vertex locations, 

SwingWrapper performs a remeshing of the original mesh, 

constraining the position of the vertices to follow a 

prescribed scheme. Specifically, the method grows the new 

mesh by attaching one new triangle at a time following an 

EdgeBreaker-like traversal order 24. When the new triangle 

has a new tip vertex, the location of this tip is computed as 

the intersection of a circle orthogonal to the gate with the 

original surface, forcing the two new edges to have a 

prescribed length L. This scheme allows to encode the 

location of the tip vertices using a few bits that quantize the 

dihedral angle at the gate. The sequence of quantized angles 

is further compressed using an arithmetic coder. The 

SwingWrapper compression is lossy, since an error is 

introduced by the remeshing. Most of the discrepancy 

between the original and the re-sampled models is 

concentrated near the sharp edges and corners. 

We have also tested EdgeSharpener on the models 

produced by the Piecewise Regular Meshes (PRMs) 

compression approach 10, which performs a different 

remeshing. Based on their orientation, it splits the triangles 

into 6 sets. The set of triangles whose normal is closest to 

the positive x-direction is sampled using a regular grid in 

the y-z plane. The other five sets are sampled similarly 

using the appropriate grids. The results are connected into a 

valid mesh. 

The connectivity of the meshes produced by 

SwingWrapper and by PRM is encoded using modified 

versions of the EdgeBreaker compression scheme 24. 

In both the cases, we have observed that EdgeSharpener 

significantly reduces the error between the original shape 

and the one recovered after decompression. An example of 

this improvement is shown if Figure 9, where the fandisk 

model was compressed using SwingWrapper. When no 

sharpening is applied, the maximum distance between the 

decoded mesh and the original model is 0.89% of the 

bounding box diagonal. It decreases down to 0.43% after 

the application of our new filter. The colored models have 

been produced by the Metro tool 25 that we used to measure 

the distortion. Metro uses a color spectrum to show the 

distribution of the error. Such spectrum is normalized to fit 

the whole range of errors, so that the blue color corresponds 

to the minimum error while the red indicates the maximum. 

Thus, the light color in the cylindrical side of the sharpened 

model must not be interpreted as an increase of the error, 

because it comes from a renormalization of the color 

spectrum in a more narrow range. 

 
Figure 9: The maximum error in the fandisk encoded with 
SwingWrapper is 0.89% of the bounding-box diagonal. 
After the filtering such error is 0.43%. 

 

The following Figure 10 shows how the reduction of the 

L2 distortion becomes more effective as the SwingWrapper 

remeshing becomes denser. 
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Figure 10: Reduction of the L2 error for various remeshed 
models. Bit-per-vertex rates are relative to the # of vertices 
(6475) of the original fandisk model. Errors are expressed 
in units of 10-4 of the bounding-box diagonal. 
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We have tested our filter on a number of meshes 

generated through the Marching-Cubes algorithm, through 

the SwingWrapper remesher and through the remeshing 

strategy of PRMs, and we have found that in all the cases, 

when the original model was sampled with a sufficiently 

high density, most of the sharp features can be completely 

recovered, while the parts of the mesh that correspond to 

regions of the original model without sharp features are not 

modified by Edge-Sharpener. Clearly, Edge-Sharpener can 

miss features that are smaller than the inter-sample spacing 

and may produce sharp edges where the original model has 

a feature that has been smoothed with a small-radius blend 

(Figure 11). There is simply not enough information in the 

sampling to recover such small features or blends. 

Coarse Mesh Fine Mesh 

Chamfer Detection Chamfer Detection 

Chamfer Split Chamfer Split 

Original 

Surface 

 

Figure 11: Unwanted creases may be produced if an 
original surface has blends whose radius is smaller than the 
inter-sample spacing (middle column). If the sampling step 
is small compared to the blend radius, the blends are not 
modified by Edge-Sharpener (right column). 

 

Another important application of Edge-Sharpener is the 

post-processing of laser-digitized models. Most surface 

reconstruction approaches, in fact, are not able to correctly 

reconstruct sharp features. In Figure 13 some sharpening 

results are shown. In the top row, we have simulated a 

marching-cubes output using the marching intersections 

algorithm presented in 22. In the third row, the original 

model was sampled using a regular grid, and the samples 

were interpolated using the surface reconstruction method 

described in 1. In all of the examples, we have observed a 

significant reduction of both the maximum and the mean 

square distortions. Further results are shown in Figure 14. 

In 8, an application of the extended Marching-Cubes to 

polygonal meshes (i.e. a remeshing), is described. In fact, 

such an application is useful to improve the quality of 

meshes having degenerate elements or other bad 

characteristics. In some cases, the information at the 

edge-intersections makes it possible to reconstruct sharp 

features in an Edge-Sharpener like manner. For example, if 

a cell contains an aliased part that does not intersect the 

cell’s edges, the normal information at the intersections is 

used to extrapolate planes and additional points are created 

on the inferred sharp feature. If, on the other hand, the cell’s 

edges do intersect the aliased part, the normal information 

becomes noisy, and nothing can be predicted about any 

possible feature reconstruction. Conversely, the use of the 

red neighborhood to extrapolate a plane makes 

EdgeSharpener less sensitive to such problems. Moreover, 

while a remeshing on the whole model can introduce an 

additional error on the regions without sharp features, the 

local modification we propose only affects the aliased 

zones. 

Our experiments on a variety of meshes indicate that 

Edge-Sharpener is extremely fast and robust. For example, 

the sharpening of the models presented in this paper took 

less than 0.4 seconds each on a PC equipped with a 1.7Ghz 

CPU (precise timings are shown in Figure 13). In order to 

test the robustness of the proposed approach in presence of 

noisy data, we have perturbed some models with various 

amounts of noise and we have observed that the sharpening 

does not produce unwanted side-effects. Clearly, if the 

amount of noise becomes comparable with the inter-sample 

spacing, its influence on the dihedral angles prevents the 

algorithm to identify some chamfer elements, but the results 

are still very good (Figure 12). 

Moreover, we have concluded that the effectiveness of 

the proposed method is not restricted to uniformly sampled 

meshes. For example, Edge-Sharpener correctly restores the 

sharp features of typical meshes generated through 

interpolation of laser-captured point sets or through 

iso-surface polygonization procedures which exhibit a fair 

amount of variation in edge-length. 

The last issue to be discussed is our definition of smooth 

edge. As we said in section 3, an edge is said to be smooth 

if the angle between the normals to its two incident 

triangles is less than twice the average of such angles for 

the entire mesh. This choice is motivated by the following 

consideration: when an original piecewise smooth model is 

sampled with a nearly infinite density, the dihedral angle at 

edges not belonging to chamfer triangles is nearly π. 

Furthermore, the number of such non-smooth edges is 

negligible with respect to the total number of edges, thus 

the average dihedral angle remains close to π or, 

equivalently, the average angle, ε, between the normals of 

two adjacent triangles remains close to 0. The influence of 

non-smooth edges on ε is small but not null, thus the actual 

angle for smooth edges is slightly smaller than ε. In practice 

we do not have infinite samplings, so taking ε as threshold 

makes the algorithm too sensitive to small amounts of noise. 

We have experienced that doubling ε is a good compromise 

between theoretical correctness in the ideal case and 

robustness in the practical case. 



Attene et al / Edge-Sharpener 

© The Eurographics Association 2003.  

 

 
Figure 12: Sharpening of a model with various amounts of 
noise. The amplitude of the noise in the normal direction 
ranges from 0% (top row) to 100% (bottom row) of the 
maximum length of an edge in the mesh. 

 

5. Conclusions 

We have introduced a simple, automatic, and efficient 

edge-sharpening procedure designed to recover the sharp 

features that are lost by reverse engineering or by 

remeshing processes that use a non-adaptive sampling of 

the original surface. The procedure starts by identifying 

smooth edges. Then, it performs six trivial filters that 

identify chamfer edges, which in turn define chamfer and 

corner triangles. The chamfer edges and triangles are 

subdivided by inserting new vertices and moving them to 

strategic locations where the sharp feature is estimated 

through extrapolation of abutting smooth portions of the 

surface. 

We have run numerous tests on models coming from 

uniform remeshing, marching-cubes iso-surface generation, 

and surface reconstruction from nearly uniform clouds of 

points. In all the cases, in addition to the correct 

reconstruction of sharp features, we have observed that the 

distortion between the mesh and the original model was 

significantly reduced by our sharpening process, while the 

parts of the mesh not corresponding to sharp features in the 

original model were not modified. 
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 Original (42367 faces) Original Remesh (SwingWrapper) Sharpened Model (0.39s)
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Figure 13: First row: sharpening of a marching-cubes generated model. Second row: sharpening of a SwingWrapper 
remeshed model. Third row: sharpening of a model reconstructed from a point cloud. Fourth row: two further examples 
showing that the sharpening does not introduce undesirable side effects away from sharp features. The maximum and mean 
square errors have been computed using the Metro tool and are in percents of the bounding-box diagonal. Processing time (in 
seconds) and the number of faces of each original model are reported. All the models are flat shaded. 

 



 

© The Eurographics Association 2003. 

 

Original 

Original 

 

Figure 14: First row: Recovering of (part of) a sharp feature that blends smoothly into a flat face. Second row: sharpening of 
a model with severe alias artifacts. Last row: Improvement of the mouth line on an actual laser digitized model. 

 


