
Eurographics Symposium on Geometry Processing (2003)

L. Kobbelt, P. Schröeder, H. Hoppe (Editors)

© The Eurographics Association 2003.

Edge-Sharpener: Recovering sharp features in

triangulations of non-adaptively re-meshed surfaces

Marco Attene†, Bianca Falcidieno†, Jarek Rossignac‡, Michela Spagnuolo†

† Istituto per la Matematica Applicata e Tecnologie Informatiche, CNR, Genova, ITALY.
‡ College of Computing, Georgia Institute of Technology, Georgia, USA.

Abstract

3D scanners, iso-surface extraction procedures, and several recent geometric compression schemes sample

surfaces of 3D shapes in a regular fashion, without any attempt to align the samples with the sharp edges and

corners of the original shape. Consequently, the interpolating triangle meshes chamfer these sharp features

and thus exhibit significant errors. The new Edge-Sharpener filter introduced here identifies the chamfer

edges and subdivides them and their incident triangles by inserting new vertices and by forcing these vertices

to lie on intersections of planes that locally approximate the smooth surfaces that meet at these sharp features.

This post-processing significantly reduces the error produced by the initial sampling process. For example, we

have observed that the L2 error introduced by the SwingWrapper9 remeshing-based compressor can be

reduced down to a fifth by executing Edge-Sharpener after decompression, with no additional information.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – geometric algorithms;

1. Introduction

Due to the focus of popular graphic accelerators, triangle

meshes remain the primary representation for 3D surfaces.

They are the simplest form of interpolation between surface

samples, which may have been acquired with a laser

scanner 1,2,3, computed from a 3D scalar field resolved on a

regular grid 4,5, or identified on slices of medical data 6,7.

Most acquisition techniques restrict each sample to lie on a

specific curve whose position is completely defined by a

pre-established pattern. For example, a laser-scanner

measures distances along a family of parallel or concentric

rays that form a regular pattern or grid. One may argue that

an iso-surface extraction uses three such patterns, aligned

with the principal directions. Because the pattern of these

rays or stabbing curves is not adjusted to hit the sharp edges

and corners of the model, almost none of the samples lie on

such sharp features. Therefore, the sharp edges and corners

of the original shape are lost by the sampling process and

replaced in the resulting triangulation by irregular chamfers.

The size of these chamfers may decrease if a finer sampling

step is used, but, as observed by Kobbelt et al. 8, the

associated aliasing problem will not be solved by

over-sampling, since the surface normals in the

reconstructed model will not converge to the normal field of

the original object.

Similar aliasing artifacts can be observed on models

produced by remeshing, which forms the basis of three of

the most effective compression techniques published

recently 9,10,11. Basically these methods create a new mesh

that approximates the original one. Vertices of the new

mesh are placed on the original surface or at quantized

locations near the surface, so that their position can be

predicted more accurately and encoded with fewer bits.

Unfortunately, almost none of the new vertices fall on sharp

edges or corners. As a consequence, the sharp features are

not captured in the new mesh. An exception in this class of

algorithms is described in 12, where the remeshing process

aligns samples on sharp edges.

In this paper we present a novel algorithm that

automatically identifies these aliasing artifacts and replaces

them with refined portions of the mesh that more accuratley

approximate the original shape. This edge-sharpening

process works well for meshes generated by various kinds

of uniform samplings and does not introduce undesirable

sideffects away from sharp features. In Figure 1, for

example, the same model was resampled with two different

approaches, and sharp features were correctly restored in

both the cases.

The remainder of the paper is organized as follows:

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

section 2 outlines how existing methods tackle the problem

of extracting or maintaining sharp features; in section 3 the

new edge-sharpener filter is described and several particular

cases are discussed; section 4 reports the results of our tests

and discusses how the method behaves in various

application fields; finally, in section 5 we summarize our

contributions and conclude.

(a) (b)

(c) (d)

Figure 1. An aliased model (a) generated with Marching
Cubes is improved automatically (b) by EdgeSharpener. A
version (c) of the original model was generated through the
lossy SwingWrapper compression 9. An improved version
(d) was obtained with no additional information by running
EdgeSharpener after decompression.

2. Related Work

When a point cloud is dense enough, sharp features may be

inferred by analyzing the neighborhood of each point 13,14.

However, in most situations, surface samples are sparse and

their interpolation defined by a triangle/vertex incidence

graph. The loss of sharp features during the triangulation of

implicit surfaces has been addressed in 15,16, where the

standard marching-cubes algorithm is improved by moving

the sample points to optimized locations. In 17, the

identification of perceptually salient curvature extrema was

used to guide mesh simplification 18. This method can be

coupled with a proper skeletonization procedure to extract

actual creases or sharp feature lines approximating small

radius blends in the model. In order to avoid the alising

problem during the remeshing of a surface, some of the

evenly distributed vertices may be attracted to sharp feature

lines, as described in 19. During the creation of an

iso-surface, an extended marching cubes (EMC) algorithm 8

derives vertex normals from the original scalar field and

uses them to decide whether a voxel contains a sharp

feature and, if so, to estimate the location of additional

vertices on these features. One year later, a new solution to

the iso-surface polygonization problem was presented in 20,

where sharp features are preserved using fewer samples.

All the methods discussed above use some information

about the original surface to reconstruct or to preserve the

features. In contrast, the Edge-Sharpener filter introduced in

this paper recovers sharp features when no information

about the original surface is available, except for the

regularly sampled triangle mesh that approximates it.

3. The Edge-Sharpener algorithm

The errors produced by a feature-insensitive sampling are

concentrated in what we call chamfer triangles, which cut

through the solid near sharp convex edges or through the

solid’s complement near sharp concave edges. Our

objective is to identify these chamfer triangles and to

replace them with a finer triangle mesh that better

approximates the sharp features of the solid.

In order to preserve the integrity of the triangle mesh, we

will subdivide the chamfer triangles by inserting new

vertices inside chamfer triangles or on edges between two

chamfer triangles, but not on edges between chamfer and

non-chamfer triangles. Hence our task involves three parts:

1. Identify the chamfer triangles that must be processed,

2. Decide how to subdivide them,

3. For each newly inserted vertex, estimate the sharp edge

or corner that we are trying to restore and move the

vertex onto that edge or corner.

We have explored three approaches (global, local and filter)

for identifying the chamfer triangles. They produce nearly

equivalent results, but offer different compromises between

elegance of the formulation, code simplicity, and running

time efficiency. We outline all three before providing the

details of the filter approach that we have chosen. All three

approaches identify what we call chamfer edges, which are

shown in blue in Figure 2.

In the remainder of the paper, the term smooth edge will

denote an edge whose dihedral angle approaches π within a

prescribed tolerance.

The global approach that we have explored processes the

entire mesh and identifies clusters of triangles that are

connected by smooth edges and tessellate portions of

smooth surfaces. Chamfer edges are those connecting two

different clusters. Triangles bounded by three chamfer

edges are the corner triangles. The clustering of the

triangles is delicate 21 and unnecessary for our purpose.

Specifically, we must differentiate between smooth surfaces

and thin corridors (generalized triangle strips) of smoothly

connected triangles, which although smooth, may

correspond to the actual chamfers that we wish to replace.

The local approach that we have investigated examines

the neighborhood of each edge formed by its two incident

triangles and by all their neighbors. It attempts to organize

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

the ordered ring of neighbors into two or three strips of

nearly coplanar and contiguous triangles, separated by

chamfer triangles. If it succeeds, the edge is a chamfer edge.

Although the process is local for each edge, its formulation

is rather inelegant and its execution involves redundant

steps. Furthermore, using only one ring of neighbors may

wrongly identify chamfers in noisy regions that do not

separate smooth portions of a surface.

We have finally opted for the filter approach, which is

significantly faster, more robust and easier to implement

than the others. This approach is based on the initial

identification of all nearly flat edges and on a succession of

six simple filters, which each colors the edges, vertices, or

triangles, based on the colors of their adjacent or incident

elements.

The first step of the filter approach is to paint brown all

the smooth edges (we assume that all vertices, edges, and

triangles are initially gray). An edge is said to be smooth if

the angle between the normals to its two incident triangles

is less than twice the average of such angles for the entire

mesh. Then, we apply the following sequence of six filters:

1. Paint red each vertex whose incident edges are all

brown.

2. Paint red each triangle that has at least one red vertex.

3. Paint red (recursively) each triangle that is adjacent to a

red triangle through a brown edge.

4. Paint red the edges and vertices of the red triangles.

5. Paint blue each non-red edge joining two red vertices.

6. Paint green each triangle with three blue edges.

Initial Input Smooth Edges

1 2 3

4 5 6

Figure 2: Selection of the smooth edges in the original
model (top row) and the six steps of the filter (mid and
bottom rows).

The six steps are illustrated in Figure 2. Filter 1 identifies

the interior vertices of smooth regions. Filter 2 identifies the

core triangles of smooth regions. These are incident upon at

least one interior vertex. Filter 3 extends the smooth regions

to include all of the triangles that are adjacent to a core

triangle by a smooth edge. Note that we do not distinguish

between the different components of the smooth portion of

the mesh. Filter 4 marks the edges that bound the smooth

regions to ensure that they are not mistaken for chamfer

edges in step 5. Note that these edges are not smooth. Filter

4 also identifies the vertices that bound the smooth regions.

Filter 5 identifies the chamfer edges as those that connect

vertices on the boundary of smooth regions but do not,

themselves, bound a smooth region. Note that chamfer

edges may, but need not, be smooth. Also note that some

edges may still be gray and that some edges may neither be

part of a smooth region nor be chamfer edges (Figure 3).

Finally, filter 6 identifies the corner triangles that are

bounded by three chamfer edges and have all of their

vertices on the boundary of smooth regions. Thus, they are

at the junction of at least three portions of smooth regions.

Figure 3: Chamfers identified by Edge-Sharpener on a
model remeshed through the marching intersections
algorithm 22. Some edges are still gray or brown.

To subdivide the chamfer triangles, including the corner

ones, we insert a new vertex in the middle of each chamfer

edge and in the middle of each corner triangle. Then we

re-triangulate the resulting polygons. We may have three

cases (see Figure 4):

a) A triangle with a single chamfer edge is split in two

triangles.

b) A triangle with two chamfer edges is split into three

triangles.

c) A corner triangle, which has three chamfer edges and an

interior vertex is split into six triangles forming a fan

around the interior vertex.

a b c

Figure 4: Subdivision of a chamfer triangle with one (a)
two (b) or three (c) chamfer edges.

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

Finally, we must find the proper position for each new

vertex for chamfer edges and for corner triangles. We use an

extrapolation of the smooth surfaces that are adjacent to

these elements, as shown in Figure 5 and Figure 6.

To find the position of a new vertex V inserted in a

chamfer edge E, we consider the two original vertices, A

and B, of E. We compute the weighted sum N of the

normals to all of the red triangles incident upon A,

normalize it, and define a plane P that is orthogonal to N

and passes through A. As weights, we use the angle

between the two edges of the incident triangle that meet at

A. Similarly, we compute the weighted sum M of the

normals to all of the red triangles incident upon B,

normalize it, and define a plane Q that is orthogonal to M

and passes through B. Finally, we move V to the closest

point on the line of intersection between planes P and Q.

More specifically, V is (A+B)/2+(h/k)H, where

H=AB×(M×N), which is also (AB�N)M+(BA�M)N,

h=AB�N and k=2(M�N)(AB�N)–2(AB�M). The process is

shown in Figure 5.

A

B L

Figure 5: Insertion of a new vertex to split a chamfer edge.

To find the position of a new vertex W inserted in a

corner triangle with vertices A, B, and C, we proceed as

follows. We first compute the weighted sum N of the

normals to all of the red triangles incident upon A,

normalize it, and define a plane P that is orthogonal to N

and passes through A. Similarly, we define the plane Q

through B with normal M and the plane R through C with

normal L. Then, we move W to the intersection of planes P,

Q, and R, which is the solution of the system of three linear

equalities: W�N=A�N, W�M=B�M, W�L=C�L (see Figure

6).

Figure 6: Insertion of a new vertex to split a corner
triangle.

For simplicity, we have omitted in the previous two

paragraphs the discussion of degenerate cases. Such cases

include situations where the pairs of planes are parallel or

when the triplets of planes do not intersect at a single point,

because their normals are coplanar. Moreover, since the

algorithm is tailored for nearly uniform triangulations, we

have chosen to avoid the creation of edges which are longer

than the longest edge of the input mesh (see Figure 7). Thus,

if the extrapolated position would require the creation of

such a long edge, or if the position itself is not defined

because of a linear dependency between the planes, we

simply leave the newly inserted vertex in the middle of the

chamfer edge or of the corner triangle.

Figure 7: In the top row the chamfer edges (middle) of an
initial model (left) were split without moving the new
vertices (right). The model in the bottom was obtained by
skipping the edge-length check.

In some cases, a portion of a strip of triangles that forms

a chamfer is bordered by a concave edge on one side and by

a convex edge on the other. These situations are easily

detected by analyzing the configuration of the triangles

incident to the end-points of the chamfer edge or triangle.

We treat these cases as the ones discussed above, and

simply do not move the newly inserted vertices.

Finally, in extremely rare cases, the alias corresponding

to a feature that blends smoothly into a flat area may be

painted red, preventing the detection of some “desired”

chamfer triangles. This situation, however, may happen

only if the strip of such triangles is not aliased, which is

very unprobable in practical cases. Figure 14, for example,

shows the correct reconstruction of such a blended feature.

The last degeneracy to be discussed includes all the

configurations in which the original model has more than

three sharp edges meeting at a corner. Provided that the

sampling is dense enough, a corresponding aliased model

has a strip of chamfer edges for each original sharp edge,

and these strips meet at a region made of corner triangles

(see Figure 8). The new points that split these adjacent

corners (and the chamfer edges inbetween) are moved to

the same position, resulting in the creation of degenerate

triangles. Therefore, when the sharpening is complete, it

may be necessary to eliminate some degenerate faces 23. We

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

have tuned our implementation by considering degenerate a

triangle having at least one angle smaller than 1 degree.

Figure 8: A pyramid was remeshed using the marching
intersections (top-left). Edge-Sharpener detected two
adjacent corner triangles (top-right). After the subdivision,
the degenerate triangles have been removed (bottom row).

4. Results and Discussion

We have tested Edge-Sharpener extensively in conjunction

with the SwingWrapper compression algorithm 9. In order

to reduce the number of bits to encode the vertex locations,

SwingWrapper performs a remeshing of the original mesh,

constraining the position of the vertices to follow a

prescribed scheme. Specifically, the method grows the new

mesh by attaching one new triangle at a time following an

EdgeBreaker-like traversal order 24. When the new triangle

has a new tip vertex, the location of this tip is computed as

the intersection of a circle orthogonal to the gate with the

original surface, forcing the two new edges to have a

prescribed length L. This scheme allows to encode the

location of the tip vertices using a few bits that quantize the

dihedral angle at the gate. The sequence of quantized angles

is further compressed using an arithmetic coder. The

SwingWrapper compression is lossy, since an error is

introduced by the remeshing. Most of the discrepancy

between the original and the re-sampled models is

concentrated near the sharp edges and corners.

We have also tested EdgeSharpener on the models

produced by the Piecewise Regular Meshes (PRMs)

compression approach 10, which performs a different

remeshing. Based on their orientation, it splits the triangles

into 6 sets. The set of triangles whose normal is closest to

the positive x-direction is sampled using a regular grid in

the y-z plane. The other five sets are sampled similarly

using the appropriate grids. The results are connected into a

valid mesh.

The connectivity of the meshes produced by

SwingWrapper and by PRM is encoded using modified

versions of the EdgeBreaker compression scheme 24.

In both the cases, we have observed that EdgeSharpener

significantly reduces the error between the original shape

and the one recovered after decompression. An example of

this improvement is shown if Figure 9, where the fandisk

model was compressed using SwingWrapper. When no

sharpening is applied, the maximum distance between the

decoded mesh and the original model is 0.89% of the

bounding box diagonal. It decreases down to 0.43% after

the application of our new filter. The colored models have

been produced by the Metro tool 25 that we used to measure

the distortion. Metro uses a color spectrum to show the

distribution of the error. Such spectrum is normalized to fit

the whole range of errors, so that the blue color corresponds

to the minimum error while the red indicates the maximum.

Thus, the light color in the cylindrical side of the sharpened

model must not be interpreted as an increase of the error,

because it comes from a renormalization of the color

spectrum in a more narrow range.

Figure 9: The maximum error in the fandisk encoded with
SwingWrapper is 0.89% of the bounding-box diagonal.
After the filtering such error is 0.43%.

The following Figure 10 shows how the reduction of the

L2 distortion becomes more effective as the SwingWrapper

remeshing becomes denser.

0,00

5,00

10,00

15,00

20,00

25,00

0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00

Initial Model

Sharpened Model

b/v

L
2

Figure 10: Reduction of the L2 error for various remeshed
models. Bit-per-vertex rates are relative to the # of vertices
(6475) of the original fandisk model. Errors are expressed
in units of 10-4 of the bounding-box diagonal.

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

We have tested our filter on a number of meshes

generated through the Marching-Cubes algorithm, through

the SwingWrapper remesher and through the remeshing

strategy of PRMs, and we have found that in all the cases,

when the original model was sampled with a sufficiently

high density, most of the sharp features can be completely

recovered, while the parts of the mesh that correspond to

regions of the original model without sharp features are not

modified by Edge-Sharpener. Clearly, Edge-Sharpener can

miss features that are smaller than the inter-sample spacing

and may produce sharp edges where the original model has

a feature that has been smoothed with a small-radius blend

(Figure 11). There is simply not enough information in the

sampling to recover such small features or blends.

Coarse Mesh Fine Mesh

Chamfer Detection Chamfer Detection

Chamfer Split Chamfer Split

Original

Surface

Figure 11: Unwanted creases may be produced if an
original surface has blends whose radius is smaller than the
inter-sample spacing (middle column). If the sampling step
is small compared to the blend radius, the blends are not
modified by Edge-Sharpener (right column).

Another important application of Edge-Sharpener is the

post-processing of laser-digitized models. Most surface

reconstruction approaches, in fact, are not able to correctly

reconstruct sharp features. In Figure 13 some sharpening

results are shown. In the top row, we have simulated a

marching-cubes output using the marching intersections

algorithm presented in 22. In the third row, the original

model was sampled using a regular grid, and the samples

were interpolated using the surface reconstruction method

described in 1. In all of the examples, we have observed a

significant reduction of both the maximum and the mean

square distortions. Further results are shown in Figure 14.

In 8, an application of the extended Marching-Cubes to

polygonal meshes (i.e. a remeshing), is described. In fact,

such an application is useful to improve the quality of

meshes having degenerate elements or other bad

characteristics. In some cases, the information at the

edge-intersections makes it possible to reconstruct sharp

features in an Edge-Sharpener like manner. For example, if

a cell contains an aliased part that does not intersect the

cell’s edges, the normal information at the intersections is

used to extrapolate planes and additional points are created

on the inferred sharp feature. If, on the other hand, the cell’s

edges do intersect the aliased part, the normal information

becomes noisy, and nothing can be predicted about any

possible feature reconstruction. Conversely, the use of the

red neighborhood to extrapolate a plane makes

EdgeSharpener less sensitive to such problems. Moreover,

while a remeshing on the whole model can introduce an

additional error on the regions without sharp features, the

local modification we propose only affects the aliased

zones.

Our experiments on a variety of meshes indicate that

Edge-Sharpener is extremely fast and robust. For example,

the sharpening of the models presented in this paper took

less than 0.4 seconds each on a PC equipped with a 1.7Ghz

CPU (precise timings are shown in Figure 13). In order to

test the robustness of the proposed approach in presence of

noisy data, we have perturbed some models with various

amounts of noise and we have observed that the sharpening

does not produce unwanted side-effects. Clearly, if the

amount of noise becomes comparable with the inter-sample

spacing, its influence on the dihedral angles prevents the

algorithm to identify some chamfer elements, but the results

are still very good (Figure 12).

Moreover, we have concluded that the effectiveness of

the proposed method is not restricted to uniformly sampled

meshes. For example, Edge-Sharpener correctly restores the

sharp features of typical meshes generated through

interpolation of laser-captured point sets or through

iso-surface polygonization procedures which exhibit a fair

amount of variation in edge-length.

The last issue to be discussed is our definition of smooth

edge. As we said in section 3, an edge is said to be smooth

if the angle between the normals to its two incident

triangles is less than twice the average of such angles for

the entire mesh. This choice is motivated by the following

consideration: when an original piecewise smooth model is

sampled with a nearly infinite density, the dihedral angle at

edges not belonging to chamfer triangles is nearly π.

Furthermore, the number of such non-smooth edges is

negligible with respect to the total number of edges, thus

the average dihedral angle remains close to π or,

equivalently, the average angle, ε, between the normals of

two adjacent triangles remains close to 0. The influence of

non-smooth edges on ε is small but not null, thus the actual

angle for smooth edges is slightly smaller than ε. In practice

we do not have infinite samplings, so taking ε as threshold

makes the algorithm too sensitive to small amounts of noise.

We have experienced that doubling ε is a good compromise

between theoretical correctness in the ideal case and

robustness in the practical case.

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

Figure 12: Sharpening of a model with various amounts of
noise. The amplitude of the noise in the normal direction
ranges from 0% (top row) to 100% (bottom row) of the
maximum length of an edge in the mesh.

5. Conclusions

We have introduced a simple, automatic, and efficient

edge-sharpening procedure designed to recover the sharp

features that are lost by reverse engineering or by

remeshing processes that use a non-adaptive sampling of

the original surface. The procedure starts by identifying

smooth edges. Then, it performs six trivial filters that

identify chamfer edges, which in turn define chamfer and

corner triangles. The chamfer edges and triangles are

subdivided by inserting new vertices and moving them to

strategic locations where the sharp feature is estimated

through extrapolation of abutting smooth portions of the

surface.

We have run numerous tests on models coming from

uniform remeshing, marching-cubes iso-surface generation,

and surface reconstruction from nearly uniform clouds of

points. In all the cases, in addition to the correct

reconstruction of sharp features, we have observed that the

distortion between the mesh and the original model was

significantly reduced by our sharpening process, while the

parts of the mesh not corresponding to sharp features in the

original model were not modified.

Acknowledgements

This work is part of the bilateral research agreement

“Surface Analysis” – GVU/GATECH and IMATI-GE/CNR.

IMATI-GE was partially supported for this work by the

national FIRB project MACROGeo. Rossignac's work on

this project was partly supported by a DARPA/NSF

CARGO grant #0138420. The authors thank all the

members of the Shape Modeling Group of the

IMATI-GE/CNR and the reviewers for their helpful advice.

References

1. M. Attene and M. Spagnuolo, “Automatic surface
reconstruction from point sets in space”. Computer
Graphics Forum (Procs. EUROGRAPHICS ‘00), 19(3):
pp.457-465, 2000.

2. N. Amenta, S. Choi and R. Kolluri, “The power crust”.
Sixth ACM Symposium on Solid Modeling and
Applications, pp. 249-260, 2001.

3. J. Giesen and M. John, “Surface reconstruction based
on a dynamical system”. Computer Graphics Forum
(Procs. EUROGRAPHICS ‘02), 21(3): pp.363-371,
2002.

4. W. Lorensen and H. Cline, “Marching Cubes: a high
resolution 3D surface construction algorithm”,
Computer Graphics (Procs. SIGGRAPH ’87), pp.
163-169, 1987.

5. J. Bloomenthal, “Polygonization of implicit surfaces”,
Computer Aided Geometric Design, Vol. 5, pp. 341-355,
1988.

6. S. W. Cheng and T. K. Dey, “Improved construction of
Delaunay based contour surfaces”. Proc. ACM Sympos.
Solid Modeling and Applications 99, pp. 322-323,
1999.

7. G.Cong and B. Parving, “Robust and Efficient Surface
Reconstruction from Contours”, The Visual Computer,
Vol. 17, pp. 199-208, 2001.

8. L. P. Kobbelt, M. Botsch, U. Schwanecke and H-P.
Seidel, “Feature Sensitive Surface Extraction from
Volume Data”, Computer Graphics (Procs.
SIGGRAPH ’01), pp. 57-66, 2001.

9. M. Attene, B. Falcidieno, M. Spagnuolo and J.
Rossignac, “SwingWrapper: Retiling triangle meshes
for better EdgeBreaker compression”, To appear on
ACM Transactions on Graphics, 22(4), (temporarily
available at http://www.acm.org/tog/Upcoming.html),
October 2003.

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

10. Szymczak, D. King, J. Rossignac, “Piecewise Regular
Meshes”, Graphical Models 64(3-4), pp. 183-198, 2002.

11. Guskov, K. Vidimce, W. Sweldens and P. Schröder,
"Normal Meshes“, Computer Graphics (Procs.
SIGGRAPH ’00), pp. 95-102, 2000.

12. Khodakovsky, P. Schroder, W. Sweldens, “Progressive
Geometry Compression”, Computer Graphics (Proc.
SIGGRAPH’00) , pp. 271-278, 2000.

13. S. Gumhold, X. Wang and R. MacLeod, “Feature
Extraction from Point Clouds”, Proceedings of the 10th
International Meshing Roundtable, Sandia National
Laboratories, pp.293-305, 2001.

14. G. Guy and G. Medioni, “Inference of Surfaces, 3D
Curves and Junctions from sparse, noisy, 3D data”,
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 19(11), pp. 1265-1277, 1997.

15. Y. Ohtake and A.G. Belyaev, “Dual/Primal Mesh
Optimization for Polygonized Implicit Surfaces”, Procs.
of Solid Modeling ’02, pp. 171-178, 2002.

16. Y. Ohtake, A.G. Belyaev and A. Pasko, “Dynamic
Meshes for Accurate Polygonization of Implicit
Surfaces with Sharp Features”, Procs. of Shape
Modeling and Applications ’01, pp. 74-81, 2001.

17. K. Watanabe and A.G. Belyaev, “Detection of Salient
Curvature Features on Polygonal Surfaces”. Computer
Graphics Forum (Procs. EUROGRAPHICS ‘01), 20(3):
pp.385-392, 2001.

18. M. Garland and P.S. Heckbert, “Surface Simplification
using Quadric Error Metrics”, Computer Graphics

(Procs. of SIGGRAPH ’97), pp. 209-216, 1997.

19. J. Vorsatz, C. Rossl, L.P. Kobbelt and H.-P. Seidel,
"Feature Sensitive Remeshing“, Computer Graphics
Forum (Procs. EUROGRAPHICS ‘01), 20(3):
pp.393-401, 2001.

20. T. Ju, F. Losasso, S. Schaefer and J. Warren, “Dual
Contouring of Hermite Data”, ACM Transactions on
Graphics, 21(3) , (Proc. SIGGRAPH’02), pp. 339-346,
2002.

21. M. Garland, A. Willmott, P.S. Heckbert, “Hierarchical
face clustering on polygonal surfaces”, Procs. of the
2001 symp. on Interactive 3D graphics, pp. 49-58,
2001.

22. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi,
R. Scopigno, “Marching Intersections: an efficient
resampling algorithm for surface management”, Procs.
of Shape Modeling and Applications ’01, pp. 296-305,
2001.

23. M. Botsch and L. P. Kobbelt, “A Robust Procedure to
Eliminate Degenerate Faces from Triangle Meshes”,
Vision, Modeling and Visualization (VMV01), Stuttgart,
Germany, November 21 - 23, 2001.

24. J. Rossignac, "Edgebreaker: Connectivity compression
for triangle meshes", IEEE Transactions on
Visualization and Computer Graphics, 5(1), 47-61,
Jan-Mar 1999.

25. P. Cignoni, C. Rocchini and R. Scopigno, “Metro:
measuring error on simplified surfaces”, Proc.
Eurographics ’98, vol. 17(2), pp 167-174, June 1998.

Attene et al / Edge-Sharpener

© The Eurographics Association 2003.

 Original (9768 faces) Original Triangulation (M.Cubes) Sharpened Model (0.08s)

 Original (42367 faces) Original Remesh (SwingWrapper) Sharpened Model (0.39s)

 Max = 0.82%, L2 = 0.11% Max = 0.11%, L2 = 0.035%

 Max = 0.30%, L2 = 0.033% Max = 0.16%, L2 = 0.008%

 Original (10946 faces) Reconstruction from point cloud Sharpened Model (0.11s)

 Max = 0.34%, L2 = 0.042% Max = 0.14%, L2 = 0.009%

Max = 0.29%, L2 = 0.030% Max = 0.21%, L2 = 0.013% Max = 0.67%, L2 = 0.081% Max = 0.19%, L2 = 0.026%

Original (14832 faces) Sharpened Model (0.13s)

Sharpened

(0.17s)

Original
(18454 faces)

Figure 13: First row: sharpening of a marching-cubes generated model. Second row: sharpening of a SwingWrapper
remeshed model. Third row: sharpening of a model reconstructed from a point cloud. Fourth row: two further examples
showing that the sharpening does not introduce undesirable side effects away from sharp features. The maximum and mean
square errors have been computed using the Metro tool and are in percents of the bounding-box diagonal. Processing time (in
seconds) and the number of faces of each original model are reported. All the models are flat shaded.

© The Eurographics Association 2003.

Original

Original

Figure 14: First row: Recovering of (part of) a sharp feature that blends smoothly into a flat face. Second row: sharpening of
a model with severe alias artifacts. Last row: Improvement of the mouth line on an actual laser digitized model.

