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Recent numerical studies suggest that in pipe and related shear flows, the region of phase space

separating laminar from turbulent motion is organized by a chaotic attractor, called an edge state, which

mediates the transition process. We here confirm the existence of the edge state in laboratory experiments.

We observe that it governs the dynamics during the decay of turbulence underlining its potential relevance

for turbulence control. In addition we unveil two unstable traveling wave solutions underlying the

experimental flow fields. This observation corroborates earlier suggestions that unstable solutions

organize turbulence and its stability border.
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In most situations of practical interest fluid flows are

turbulent. Often transition to turbulence occurs despite

the linear stability of the laminar state [1,2] such as in

flows through pipes, ducts or even in astrophysical

Keplerian flows. In some other cases turbulence occurs

well below the critical point given by linear instability

analysis, such as in flows through channels. Moreover, it

has been shown for these shear flows that the turbulent

state has unstable characteristics [3–7] and that localized

turbulent patches eventually decay back to laminar. That

at higher Reynolds numbers turbulence is still the rule

rather than the exception is due to its invasive nature

which causes laminar gaps to be quickly consumed by

adjacent turbulent domains [8,9]. The observation that

localized turbulent domains are intrinsically unstable

[3,4,10,11] offers prospects to control and relaminarize

flows [12]. Such potential methods are of great practical

interest because the drag in turbulent flows is signifi-

cantly larger and this causes higher energy consumption

and limits transport rates.

From a dynamical point of view the stability boundary

separating laminar from turbulent motion plays a key role

in how flows transit to and from turbulence. This laminar-

turbulent boundary is highly convoluted and most likely

possesses a fractal structure as shown in simulations [13].

Some signatures of this have also been observed in experi-

ments [14]. Hence its complexity puts a complete descrip-

tion for transition in shear flows beyond reach in the

foreseeable future. However, using a tracking method first

proposed and applied to plane Poiseuille flow [15,16], it

has been possible to compute phase-space trajectories on

the laminar-turbulent boundary of pipe flow [17,18].

Surprisingly, the dynamics at this boundary, or edge, are

organized by a single state: This so-called ‘‘edge state’’

[13] is a chaotic attractor within the edge, whereas in the

full phase-space it is a repeller with a single unstable

direction pointing towards turbulence on one side and

towards laminar flow on the other.

According to dynamical systems theory the disordered

dynamics of turbulence as well as of its edge are organized

around unstable solutions of the Navier-Stokes equations

[19]. For pipe flow mainly traveling wave solutions have

been identified [1,20,21] and simulations have shown the

existence of at least two traveling waves embedded in the

edge state [22]. The purpose of the present Letter is to

explore if such dynamical systems concepts also play a role

in practical situations. In particular we aim to determine if

the edge state is relevant to control and relaminarization of

turbulence.

In order to study the turbulent-laminar boundary in an

experiment we apply a control method, which as recently

shown, leads to relaminarization of turbulent structures at

moderate Reynolds numbers [12]. Experiments were car-

ried out in a 12 m (400D) long pipe made of 1 metre

sections with an inner diameter of D ¼ 30� 0:01 mm.

The working fluid, water in our case, enters the pipe

from a reservoir using gravity as the driving force.

Before each experiment the Reynolds number is adjusted

to a value of 1900� 10. In pipe flow Re ¼ UD=�, where
U is the mean flow velocity and � the kinematic viscosity.

The continuous perturbation is generated by a syringe

pump that simultaneously injects and extracts the exact

same amount of fluid through a couple of mutually facing

holes. A relatively large perturbation amplitude was

chosen (1% of the mean flow in the pipe) and the flow

becomes turbulent directly at the perturbation point.

Downstream of this point the flow is highly turbulent and

for distances larger than 10D the turbulence intensity starts

to drop and then gradually goes to zero over the next 40D.

The velocity vector field is measured in two observation

planes in the decaying regime, one 27D and the other 33D
downstream from the perturbation. Measurement planes
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are perpendicular to the pipe axis and all three velocity

components within the planes are recorded using a

(Lavision GmbH) high-speed stereo PIV system (one for

each plane). Because of the fast downstream advection

structures change little while they move over short dis-

tances (order of 1D). To a first approximation the spatial

structure can be recovered from the temporally resolved

measurement by multiplication with the mean advection

speed of the flow structures (Taylor’s frozen turbulence

hypothesis). This speed is obtained from the velocity two-

planes correlation function (see supplemental material

(SM) Fig. 1, [23]).

An example of a velocity field sampled in decaying

turbulence is shown in Fig. 1(a). Here velocities were

averaged over t ¼ 1:1 s which based on the mean velocity

corresponds to a spatial average over 3:1D. Regions

slower than the parabolic laminar flow are shown in

blue and faster ones in red. The central part is dominated

by a low-speed streak (blue) which is positioned off-

center and flanked by two high-speed streaks (red).

These streaks are generated by streamwise vortices [see

velocity vectors in Fig. 1(a)] located between the high and

low-speed regions. This flow structure closely resembles

the edge state [Fig. 1(b)], which so far had only been

observed in numerical simulations [17,24]. Further inves-

tigations of the experimental data show that flow fields

are mildly chaotic with the dominant frequency corre-

sponding to a length of 3:1D. Two instantaneous snap-

shots spaced by 1:55D are shown in Figs. 1(c) and 1(e).

While in the first a strong streamwise vortex is located

between the low-speed streak and the lower high-speed

streak, in the second snapshot a strong streamwise eddy is

now above the low-speed streak. Such streak-vortex

dynamics are typical of traveling wave solutions

[20,21,25,26] and indicate that the flow may be dynami-

cally close to one of them. The corresponding snapshots

for the numerical edge state calculated for the same

parameter values are shown in Figs. 1(d) and 1(f) and

identical structural features can be observed. Edge state

simulations were carried out in a short periodic pipe of

L ¼ �D using the shoot and refine method described in

[17,18] and an accurate pipe flow code based on the

solenoidal Petrov-Galerkin formulation presented in

[27]. The spectral resolution was set to 33� 77�
27 axial� azimuthal� radial grid points. To establish

how frequently such close correspondence between the

experiment and the edge state occurs, we selected eight

instances of the edge simulations representative of the

mildly chaotic variations in its flow structure. These

were then correlated with the experimental data.

Following an identification method proposed for finding

traveling wave transients in numerical simulations of

turbulence [28] we defined two correlation functions:

one that accounts for all velocity components, Itot, and
another, Iuv, that is computed using solely the in-plane

(azimuthal and radial) velocity components. As proposed

in [28] for values of Itot > � and ðIuv þ ItotÞ> 2�, with
� ¼ 0:5 the structural resemblance is very high so that

such cases can be regarded as a visit to the particular state

in question (here the edge state). Following this procedure

we observe that for decaying turbulence the edge state

is visited during 17% of the experimental time (see

SM Fig. 2, [23]). While this is a considerable fraction

of time, the true value is likely to be even larger.

First because measurement noise reduces correlations

and second because the experimental data is obtained

at a fixed axial location only. Hence crossings of the

turbulent-laminar boundary which take place slightly

up- or downstream are not registered.

FIG. 1 (color online). Comparison of experimental and nu-

merical cross-sectional velocity fields. (a) Experimental mea-

surement averaged over �D in decaying turbulence.

(b) Snapshot of the numerical edge state averaged over the

numerical domain. Instantaneous cross sections of the experi-

mental and numerical edge state are shown in (c),(e) and (d),(f),

respectively. The instantaneous cross sections are spaced by

ð�=2ÞD. In-plane velocity components are indicated by arrows,

while axial velocity is color coded (blue for negative, red for

positive). The laminar parabolic profile has been subtracted.

Color ranges from �0:6U to 0:6U in (a)–(b) and from �0:7U
to 0:7U in (c)–(f), in steps of 0:1U. Maximum in-plane velocities

in (a)–(b), and (c)–(f) are 0:07U and 0:11U respectively. See SM

Video 1, [23] for a more detailed comparison.
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Further evidence of the dynamical similarity between

decaying turbulence and the edge state can be obtained by

a phase-space projection as the one shown in Fig. 2, de-

picting 3D energy ("3D) against pressure gradient (ðrpÞz).
The experimental trajectories (orange) have been calcu-

lated from the reconstruction of the velocity fields in a pipe

of length �D for each considered time instant. The chaotic

excursions of the experimental trajectory are clearly con-

fined to the area spanned by the numerical edge state

(shown in blue) and are well separated from the part of

the phase space where turbulence resides (red).

A characteristic feature of the edge state is that it is

organized around specific unstable solutions. In particular

an asymmetric traveling wave (S1 in the naming conven-

tion of [29]) and a mirror-symmetric traveling wave (M1)

have been found to be embedded in the edge state [22]. To

more stringently test the connection between the decaying

turbulence and the edge state we tested if traveling waves

could also be identified starting from experimental

data. In order to do so, one approximate wavelength of

the experiment was fed into a Newton-Raphson method

[30] after suitable preprocessing of the experimental

velocity field. This involved a conversion of a period of

the time-resolved experimental velocity field into a full

wavelength using Taylor’s frozen turbulence hypothesis,

followed by adequate smoothing and accurate projection

onto the solenoidal periodic basis of the numerics.

It should be noted that convergence to traveling wave

solutions had so far only been achieved from computed

velocity fields and even then the method only succeeded

for very close initial guesses. As shown in Fig. 2 (lower

green line) the experimental initial condition indeed con-

verged to S1. The same procedure was repeated using a

different experimental snapshot as initial condition. This

second initial condition converged to M1, as indicated by

the upper green line in Fig. 2. The three dimensional

structure of the flow fields before and after Newton con-

vergence is shown in Fig. 3. The overall arrangement of

the intertwined vortical structures closely agree. Before

convergence, structures are broader and have an unsteady

component. The Newton method smoothly transfers this

velocity field to the underlying traveling wave solution.

The convergence of the velocity fields in decaying turbu-

lence confirms earlier suggestions that such unstable so-

lutions provide the building blocks of fluid flow

turbulence [25,26]. While close resemblance between

coherent structures in turbulence experiments and exact

unstable solutions had been reported, the present study

provides further evidence of the connection and supports

it quantitatively.

To probe the distance of our decaying turbulence to the

actual laminar-turbulent boundary we initiated the numeri-

cal edge tracking method with the same preprocessed

experimental data set as used for the Newton scheme.

Only a small adjustment of around 6% in amplitude was

required to place the experimental flow field on the

laminar-turbulent boundary. Furthermore, as shown in

FIG. 2 (color online). Energy contained in streamwise-

dependent modes (3D Energy, "3D) vs driving pressure gradient

[ðrpÞz]. Represented are the numerical edge state evolution

(blue), a numerical turbulent run (red) and the experimental

results obtained from measurements of decaying turbulence

(orange). The down-pointing triangle indicates the asymmetric

shift-reflect traveling wave solution (S1) while the up-pointing

triangle represents the shift-reflect mirror-symmetric wave (M1)

from which S1 bifurcates [31]. The numerical edge state samples

used for correlation are indicated with open circles. The squares

indicate two close visits, the upper right corresponding to Fig. 1.

The green lines illustrate convergence from experimental fields

to S1 and M1 via Newton iteration.

(d)(a) (b) (c)

FIG. 3 (color online). Axial vorticity isosurfaces of (a) the

experimental snapshot of Fig. 1 and (b) the traveling wave

converged as a result of seeding the experimental snapshot to

the Newton iteration. A second experimental snapshot is shown

in (c), together with the traveling wave converged from it in (d).

The isosurfaces correspond to !z ¼ �0:8U=D (a), �0:4U=D
(b) and �0:5U=D (c and d), respectively. Blue for negative,

yellow for positive. Fluid flows from top to bottom.
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Fig. 4, the time evolution started from the experimental

field (red solid line) and the edge tracking (black solid

line), evolve together for over 15D=U time units (over 7

wavelengths of S1) before the former parts from the latter

and goes turbulent. In order to further substantiate the

proximity of the experimental realization of the edge to

the actual boundary, we started numerical evolution from

experimental fields corresponding to 0.57 and 1:14D up-

stream (dashed red) and downstream (dashed blue) shifts

of the original experimental snapshot. Adjacent initial

conditions have a split probability of relaminarizing or

transitioning to turbulence, indicating that the flow is in-

deed marginally close to the edge state.

Finally we compared the advection speed of the coher-

ent structures in decaying turbulence to that of the numeri-

cal edge as well as to the phase velocity of the S1 and M1

solutions. In the experiment the phase velocity is obtained

from the correlation between the velocity fields measured

in two different planes. We define the two-planes correla-

tion function as: cp1p2ðdtÞ ¼
P

visits

R

~up1ðtÞ � ~up2ðtþ

dtÞdV, where ~u is the in-plane velocity field reconstructed

in a volume of length 3:1D and the summation goes over

all approaches to the numerical edge state as defined above

(17% of the experimental time). The two-planes correla-

tion function presents a distinct maximum at dt ¼
4:11D=U. This corresponds to an advection velocity of

Uexp ¼ 1:46. In comparison the phase velocity of the trav-

eling waves with the same wavelength is US1 ¼ 1:525 and

UM1 ¼ 1:502. The advection velocity of the numerical

edge state, has a mean value of �Uedge ¼ 1:46 and hence

exactly matches the experimental value.

In summary we have verified the existence of the edge

state in a laboratory experiment. The dynamics displayed

during the relaminarization of turbulence follows the

laminar-turbulent border previously only predicted in

numerical simulations. The convergence of an experimen-

tal velocity field to nontrivial solutions of the Navier

Stokes equations substantiates recent claims that such

solutions provide the building blocks of turbulence. This

methodology will allow us in the future to search for

unstable solutions underlying coherent structures com-

monly observed in turbulence experiments at moderate

Reynolds numbers. We speculate that a better understand-

ing of the edge state and its stable and unstable manifolds

may play a crucial role in developing efficient turbulence

control schemes.
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