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Abstract 12 

Understanding the interrelationships of brain function as measured by resting-state magnetic resonance imaging and 13 
neuropsychological/behavioral measures in Alzheimer’s disease is key for advancement of neuroimaging analysis 14 
methods in clinical research. The edge time-series framework recently developed in the field of network neuroscience, 15 
in combination with other network science methods, allows for investigations of brain-behavior relationships that are 16 
not possible with conventional functional connectivity methods. Data from the Indiana Alzheimer’s Disease Research 17 
Center sample (53 cognitively normal control, 47 subjective cognitive decline, 32 mild cognitive impairment, and 20 18 
Alzheimer’s disease participants) were used to investigate relationships between functional connectivity components, 19 
each derived from a subset of time points based on co-fluctuation of regional signals, and measures of domain-specific 20 
neuropsychological functions. Multiple relationships were identified with the component approach that were not found 21 
with conventional functional connectivity. These involved attentional, limbic, frontoparietal, and default mode systems 22 
and their interactions, which were shown to couple with cognitive, executive, language, and attention 23 
neuropsychological domains. Additionally, overlapping results were obtained with two different statistical strategies 24 
(network contingency correlation analysis and network-based statistics correlation). Results demonstrate that 25 
connectivity components derived from edge time-series based on co-fluctuation reveal disease-relevant relationships 26 
not observed with conventional static functional connectivity.  27 
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Introduction 41 

Various neuroimaging modalities can now capture multiple facets of Alzheimer's disease (AD), offering tools for 42 
characterization and understanding of disease impacts on brain and cognitive functions. Such understanding is 43 
important as over 6 million people are affected by AD in United States alone, a number that is projected to rise to over 44 
12 million by 2050 according to the 2022 Alzheimer’s Association Annual Report. Pathological hallmarks of AD, beta-45 
amyloid plaques and hyperphosphorylated tau tangles, have been imaged in vivo with positron emission tomography, 46 
showing increasing accumulation of both as disease severity progresses (Therriault et al. 2022). Accumulation of tau and 47 
its spread have also been shown to occur within the functional network organization of the brain (Franzmeier et al. 48 
2020; Franzmeier et al. 2019). These networks were identified in early functional magnetic resonance imaging (fMRI) 49 
studies of task-based and resting-state connectivity (Buckner et al. 2008; Fox et al. 2006; Yeo et al. 2011). Since then, 50 
numerous fMRI studies in AD have reported alterations in the properties of resting state networks (RSNs) such as their 51 
strength (Dai et al. 2019; Dai et al. 2015) and interconnectivity (Forouzannezhad et al. 2019). Changes in these network 52 
properties have also been related to cognitive function (Chumin et al. 2021; Contreras et al. 2019) and existing 53 
biomarkers (Smith et al. 2021; Veitch et al. 2019).  54 

In recent years, in parallel with the improvement in the temporal resolution of fMRI, studies of the temporal dynamics 55 
of the brain and its RSNs have emerged (Hutchison et al. 2013; Lurie et al. 2020). Even over the relatively short duration 56 
of a typical fMRI scan, brain functional networks exhibit significant dynamic fluctuations, and this observation raises the 57 
question whether time points differentially contribute/relate to neuropsychological outcomes of interest. This is 58 
supported by literature investigating brain states, where clustering algorithms were used to group functional 59 
connectivity (FC) patterns of activity (Calhoun et al. 2014; Cohen 2018). AD-related alterations in the dynamics of FC are 60 
marked by reduced internetwork connectivity (Schumacher et al. 2019), which is related to cognitive function 61 
(Franzmeier et al. 2017). Additionally, the emergence and duration of these states, as well as the transition between 62 
them, has been shown to be different in AD relative to other diagnostic groups (Schumacher et al. 2019). Such methods 63 
divide the data into non- or partially overlapping temporally continuous subsets (windows) to study FC-cognition 64 
relationships in AD. However, over the duration of a resting-state scan, it is likely that individual time points 65 
differentially relate to neurocognitive outcomes and behaviors. In this case, methods that assess functional properties at 66 
single repetition time (TR, a single fMRI time point) resolution are better suited to probe these relationships. To date, no 67 
methods have been employed in clinical AD that probe brain-behavior at single-TR resolution.  68 

A method to probe single-TR connectivity dynamics has recently been proposed by Faskowitz et al. (2020), which relies 69 
on ‘temporal unwrapping’ of the Pearson correlation conventionally used to estimate FC, to yield moment-to-moment 70 
co-fluctuations. Computed as the elementwise product of regional blood-oxygen-level-dependent (BOLD) signals, co-71 
fluctuations are represented as an edge (connection) by time matrix of edge time-series (ETS). This approach offers an 72 
intuitive interpretation of the ongoing dynamics in the brain and has been employed to probe modular/community 73 
structure (Faskowitz et al. 2020; Jo et al. 2021), individual variability (Betzel et al. 2022; Cutts et al. 2022; Sasse et al. 74 
2022), and disease-related alterations in brain function (Idesis et al. 2022; Zamani Esfahlani et al. 2022). Previous work 75 
on ETS in young healthy individuals from the Human Connectome Project (Van Essen et al. 2013) dataset has shown that 76 
FC can be approximated from a subset of scan time points with highest co-fluctuations (Zamani Esfahlani et al. 2020) and 77 
that identifiability of individuals was improved by focusing on subsets of time points of intermediate co-fluctuation 78 
magnitude (Cutts et al. 2022). We have previously shown a relationship between a time-varying measure of RSNs 79 
connectivity and cognitive function (using a sliding window approach) in a cross-sectional sample spanning the AD 80 
diagnostic continuum (Chumin et al. 2021). Here, we hypothesized that the application of ETS to group temporally 81 
dispersed time points into FC components (FCc), thus separating time points based on co-fluctuation magnitude, would 82 
reveal relationships between connectivity and neuropsychological measures that are not detectable and perhaps 83 
obscured in conventional ‘full FC’.    84 

 85 
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Methods 87 

Indiana Alzheimer’s Disease Research Center (IADRC) Sample. Data were collected at the IADRC, as part of the Indiana 88 
Memory and Aging Study, at the Indiana University School of Medicine. Valid datasets (as determined by quality control 89 
of image preprocessing) for 152 individuals were included in the present study (Table 1). The sample consisted of 53 90 
cognitively normal controls (CON; no cognitive concerns), 47 subjective cognitive decline participants (SCD; significant 91 
cognitive concerns despite normative test performance), 32 mild cognitive impairment participants (MCI; cognitive 92 
performance below the normal range), and 20 Alzheimer’s disease patients (ALZ). Demographics and neuropsychological 93 
domain group comparisons were carried out with a one-way analysis of variance with Tukey-Kramer post hoc tests or 94 
chi-squared tests, as appropriate. Informed consent was obtained from all participants or their representatives, and all 95 
procedures were approved by the Indiana University Institutional Review board in accordance with the Belmont report. 96 
Subsets of the sample have been described in previous publications (Chumin et al. 2021; Contreras et al. 2019).  97 

 98 

Table 1. Demographic and Neuropsychological Characteristics. Data are shown as counts or mean and standard 99 
deviation (std.). Age, years of education, and race distribution did not significantly differ among groups. There was a 100 
significant difference in distributions of sex (Χ2(3, N=152) = 14.6, p < 0.01). All six domains showed a significant effect of 101 
group (ANOVA, p < 0.0001). The four numbers in the right column next to domain names correspond to number of 102 
missing data points for each group. Domain scores were derived from the following: Cognitive – Montreal Cognitive 103 
Assessment (total score); Memory – Logical Memory (immediate and delayed), CERAD Word List Learning (immediate 104 
and delayed), Selective Reminding Test (delayed), 7/24 Spatial Recall Test (immediate & delayed), Rey Auditory Verbal 105 
Learning Test (RAVLT; immediate and delayed), Craft stories (immediate and delayed), and Benson Complex Figure 106 
(delayed recall); Executive – Digit Span (backwards), Trail Making B, Digit Symbol Substitution, Wisconsin Card Sorting 107 
Test (categories & perseverations), Controlled Oral Word Association (COWA), Stroop (Word, Color, and Color-Word 108 
scores), UDS3 Letter Fluency; Language - Animal Fluency, Vegetable Fluency, Boston Naming Test, IU Token Test, COWA, 109 
Multilingual Naming Test, UDS3 Letter Fluency; Attention and Processing Speed - Digit Span (forward & backward), Trail 110 
Making A and B, Digit Symbol, Stroop (Word, Color, & Word/Color); Visuospatial - Benson Complex Figure (copy), 111 
Judgement of Line Orientation, Block Design. 112 

Control (CON)
Subjective 
Cognitive 

Decline (SCD)

Mild Cognitive 
Impairment 

(MCI)

Alzheimer's 
Disease (ALZ)

N 53 47 32 20

Age (mean  ±  std. years) 68.2 ± 9.1 69.2 ± 10.8 72.3 ± 7.4 65.9 ± 10.6

Education (mean  ±  std. years) 16.4 ± 2.3 16.5  ±  2.6 15.8 ± 2.7 15.2 ± 2.5

Sex (Male/Female) 8/45 19/28 17/15 7/13

Race (Caucasian/African 
American/American Indian)

43/10/0 35/11/1 28/4/0 14/5/1

Cognitive Complaint Index 
(mean ± std.)

36.8 ± 15 40.2 ± 15.1 38.3 ± 17.8 40.1 ± 15.4

Cognitive 0.47 ± 1.06 -0.02 ± 1.06 -1.75 ± -1.18 -6.23 ± 3.45

Memory 0.00 ± 0.77 -0.13 ± 0.70 -2.04 ± 0.91 -2.99 ± 1.09

Executive 0.12 ± 0.63 0.04 ± 0.60 -0.74 ± 0.78 -1.97 ± 0.99

Language 0.07 ± 0.66 -0.06 ± 0.76 -0.85 ± 0.80 -2.17 ± 1.60

Attention and Processing Speed 0.17 ± 0.80 0.10 ± 0.61 -0.62 ± 0.87 -1.87 ± 1.10

Visuospatial 0.31 ± 1.01 -0.07 ± 1.11 -0.54 ± 1.60 -2.48 ± 4.74

Domain Scores (z-scored mean  ±  std.)
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IADRC Neuropsychological Scores. Participants completed neuropsychological testing as part of the Uniform Dataset 3.0 113 
(Weintraub et al. 2018), as well as site-specific additional tests. Six domain composite scores were calculated from the 114 
following: (1) Cognitive – Montreal Cognitive Assessment (total score) (Nasreddine et al. 2005), (2) Memory – Logical 115 
Memory (immediate and delayed) (Wechsler 1987), CERAD Word List Learning (immediate and delayed) (Petersen et al. 116 
1992), Selective Reminding Test (delayed), 7/24 Spatial Recall Test (immediate & delayed), Rey Auditory Verbal Learning 117 
Test (RAVLT; immediate and delayed) (Schmidt 1996), Craft stories (immediate and delayed) (Craft et al. 1996), and 118 
Benson Complex Figure (delayed recall) (Possin et al. 2011), (3) Executive – Digit Span (backwards) (Ivnik et al. 1992), 119 
Trail Making B (Steinberg et al. 2005), Digit Symbol Substitution, Wisconsin Card Sorting Test (categories & 120 
perseverations), Controlled Oral Word Association (COWA), Stroop (Word, Color, and Color-Word scores), UDS3 Letter 121 
Fluency (Weintraub et al. 2018), (4) Language - Animal Fluency, Vegetable Fluency, Boston Naming Test, IU Token Test, 122 
COWA, Multilingual Naming Test, UDS3 Letter Fluency, (5) Attention and Processing Speed - Digit Span (forward & 123 
backward), Trail Making A and B, Digit Symbol, Stroop (Word, Color, & Word/Color), (6) Visuospatial - Benson Complex 124 
Figure (copy), Judgement of Line Orientation, Block Design. To generate the composite scores, all scores were first 125 
adjusted for age, sex, and years of education, z-scored relative to a sample of independent (non-overlapping) cognitively 126 
normal controls, and then the z-scores were averaged within each domain as described previously (Chumin et al. 2021; 127 
Contreras et al. 2019). 128 

IADRC Image Acquisition and Processing. Both image acquisition and preprocessing have been described in detail 129 
previously (Chumin et al. 2021). Participants were scanned on a Siemens 3T Prisma Scanner (Siemens, Erlangen, 130 
Germany) with a 64-channel head coil. A T1-weighted, whole-brain magnetization prepared rapid gradient echo 131 
(MPRAGE) volume was acquired with parameters optimized for the Alzheimer’s Disease Neuroimaging Initiative (ADNI 1 132 
& 2; http://adni.loni.usc.edu): 220 sagittal slices, GRAPPA acceleration factor of 2, voxel size 1.1×1.1×1.2 mm3, duration 133 
5:12 minutes. Two spin-echo echo-planar imaging (12 sec each, TR = 1.56 sec, TE = 49.8 ms, flip angle 90°) volumes were 134 
acquired with reverse phase encoding directions for distortion correction. Resting-state functional MRI (rs-fMRI) data 135 
were acquired with a gradient-echo echo-planar imaging sequence with a multi-band factor of 3, 10:07 min scan time, 136 
and TR of 1.2 sec, resulting in 500 time points. Other relevant parameters were TE = 29 ms, flip angle 65°, 2.5×2.5×2.5 137 
mm3 voxel size, and 54 interleaved axial slices. During the scan, participants were instructed to remain still with eyes 138 
closed and to think of “nothing in particular.”  139 

Data were processed with a pipeline developed in-house, implemented in Matlab (MathWorks, version 2019a; Natick, 140 
MA), utilizing the Oxford Centre for Functional MRI of the Brain (FMRIB) Software Library (FSL version 6.0.1) (Jenkinson 141 
et al. 2012), Analysis of Functional NeuroImages (AFNI; afni.nimh.nih.gov), and ANTS (http://stnava.github.io/ANTs/) 142 
packages. This pipeline was developed and optimized for the Siemens scanner data acquired at Indiana University School 143 
of Medicine following recommendations in Lindquist et al. (2019); Parkes et al. (2018); Satterthwaite et al. (2013).  144 

All processing was carried out in each participant’s native space. T1 volumes were denoised (Coupé et al. 2008), bias 145 
field corrected (FSL), and skull stripped (ANTS). rs-fMRI data were first distortion corrected (FSL topup), motion 146 
corrected (mcflirt), and normalized to mode 1000. Nuisance regressors were removed from the data with use of ICA-147 
AROMA (Pruim et al. 2015), aCompCor (Muschelli et al. 2014), and global signal regression. Data were then demeaned, 148 
detrended, and bandpass filtered (0.009–0.08 Hz). Finally, 30 time points were removed from the beginning and end of 149 
the scan to remove edge artifacts introduced by bandpass filtering and ensure equal binning (see below). Relative frame 150 
displacement output by mcflirt was used as an index of in-scanner motion. 151 

Cortical Parcellation and Time-Series Extraction. A 200-cortical region brain parcellation was spatially aligned with each 152 
subjects’ rs-fMRI via the following: (1) linear (6 and 12 degrees of freedom; FSL flirt) and nonlinear (FSL fnirt) registration 153 
of T1 volume, with inverse transformation applied to the Schaefer et al. (2018) 200 node (cortical region) parcellation, 154 
(2) dilation and application of a gray matter mask, and (3) registration of T1 to the mean rs-fMRI volume with a linear 155 
white matter boundary-based registration (FSL flirt bbr cost function). Nodal time-series were then extracted as the 156 
mean time course across voxels in each region.  157 
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Edge Time-Series and FC Components. ETS were computed as the frame-by-frame product of the z-scored BOLD time-158 
series for all region pairs (19,900 unique edges) (Faskowitz et al. 2020; Jo et al. 2021), resulting in an edge by time matrix 159 
of moment-to-moment co-fluctuations (Figure 1A-B), which is analogous to temporally unwrapping the Pearson 160 
correlation (the mean over time of ETS is equal to the conventional “full FC” or “static FC”). The ETS matrix was then 161 
used to compute root-sum-square (RSS) at each time point as an index of global co-fluctuation amplitude (Figure 1C). 162 
RSS ranked time points were then divided into 5 equally sized bins (43 TRs per bin, ~52 second of noncontiguous data). 163 
The mean edgewise co-fluctuation within each bin was then computed and is referred to as an FC component (Figure 164 
1D). Each component is thought of as a representation of co-fluctuation within its RSS band, and we hypothesized that 165 
different FC components would differentially associate with neurocognitive domains. 166 

Network Contingency Correlation (NCC) Analysis Framework. To identify relationships between neuropsychological 167 
domains and FC (full and RSS components), a modified network contingency analysis (NCA) (Contreras et al. 2019; 168 
Sripada et al. 2014) was employed. The NCA framework uses a t-test to compute edge-level group differences, then 169 
counts the number of significant edges within blocks (i.e., RSNs) and determines block-level significance relative to a 170 
permuted data null. This method sidesteps the limitation of mass univariate testing, without averaging data and diluting 171 
potential effects. Here, in formulating NCC, the group inference via t-test was replaced by a Spearman correlation, 172 
quantifying the relationship between individual network edges and behavioral measures. The NCC procedure is applied 173 
as follows: (1) edgewise correlations are computed between FC (full or component) and a behavioral domain score, 174 
which yields a matrix of correlation coefficients and a binary significance matrix (here the edge-level threshold was set 175 
at p < 0.01; Figure 1E-F), (2) data are permuted (we tested two null models: a block permutation where RSNs assignment 176 
are scrambled and a score permutation where the behavioral scores are scrambled across subjects; Figure 1G) and a 177 
distribution of null significance matrices is generated (5,000 permutations, Figure 1H)), (3) the block structure is imposed 178 
on the empirical and null significance networks (here we used the 7 canonical RSNs described Yeo et al. (2011) (visual, 179 
somatomotor, dorsal and ventral attention, limbic, frontoparietal, and default mode) with node assignments provided in 180 
Schaefer et al. (2018)) and the number of significant edges is counted for all within- and between-RSN blocks, and (4) 181 
block-level significance p-value is defined as one minus the fraction of instances where the count of significant edges in a 182 
block exceeded the null, followed by a false discovery rate (FDR) adjustment for number of blocks (7 within and 21 183 
between RSN) at q < 0.05 (Figure 1I). An exploratory run of NCC was also performed without imposing a block structure 184 
(i.e., treating all nodes as belonging to one block) and using a network-based statistics largest connected component-185 
based correction with an initial edge-level threshold of p < 0.01 (Zalesky et al. 2010).  186 
 187 

Results 188 

Demographic group comparisons. No differences in age (ANOVA, F(3,148)=2.07, p > 0.05), education (F(3,148)=1.54, p > 189 
0.05), or race (Χ2(3, N=152) = 5.5, p > 0.05) were observed. There were proportionally more female participants in the 190 
CON and SCD groups (Χ2(3, N=152) = 14.6, p < 0.01). All neuropsychological domains showed a significant main effect of 191 
group (ANOVA: Cognitive F(3,142) = 87.9, Memory F(3,142) = 85.4, Executive F(3,140) = 39.6, Language F(3,140) = 30.1, 192 
Attention and Processing Speed F(3,141) = 28.7, and Visuospatial F(3,139) = 8.7, all p < 0.0001). Post hoc testing showed 193 
that for 4 domains (not including memory and visuospatial) only CON v. SCD comparisons were not significant (p > 0.05). 194 
For the memory domain CON v. SCD and MCI v. ALZ were not significant (p > 0.05). Finally, only the pairwise 195 
comparisons against the ALZ group were significant for the visuospatial domain (p < 0.05).  196 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.13.23289936doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.13.23289936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 197 

Figure 1. Edge time-series, functional connectivity (FC) components, and Network Contingency Correlation. (A) Blood-198 
oxygen-level-dependent (BOLD) time-series are z-scored and multiplied for all node pairs to yield (B) edge time-series 199 
that describe moment-to-moment co-fluctuation among regions. (C) Root-sum-square (RSS), an index of total co-200 
fluctuation magnitude, is computed at each time point and used to rank and parse time points into equally sized bins, 201 
with the mean within each bin corresponding to (D) an FC component. Additionally, full FC is computed as the mean of 202 
all time points and is equivalent to Pearson correlation. (E) FCC estimates are correlated at each edge with cognitive 203 
domain scores of interest to generate (F) a correlation and a p-value matrix. (G) A permutation null (either scrambling 204 
the network block structure or cognitive domain scores) is then employed to generate (H) a set of null matrices. (I) 205 
Network-block level significance is then computed as a permutation p-value (one minus the number of times the count 206 
of significant edges within a block in empirical data exceeded null data). p-value is then adjusted for number of blocks 207 
tested with false discovery rate (FDR) correction. VIS – visual, SOM – somatomotor, DAN – dorsal attention, VAN – 208 
ventral attention, LIM – limbic, FRP – frontoparietal, DMN – default mode network. 209 

 210 

Characterization of RSS quantile FCc. Group-averaged FC and FCc matrices are shown in Figure 2. FC (correlation 211 
matrices; Figure 2A) are bounded [-1 1], while FCc matrices of average co-fluctuation within RSS quantiles are not, as 212 
evident by increasing amplitude with increasing RSS quantile. To determine if there is unique information within each 213 
FCc, we cross-correlated all participants to assess their similarity (Figure 3A). Full FC showed highest correlation values 214 
approaching Pearson r values of +0.6. Subject cross-correlation qualitatively increased for increasing RSS quantile FCc; 215 
however, they stayed below full FC, suggesting greater relative inter-subject variability. No relationship to in-scanner 216 
motion (frame displacement) was found for single time point RSS values in this sample (Pearson r = 0.05, Figure 3B). 217 
Comparisons of group average FCc (visualized in Figure 2B-F) showed that ALZ group FCcs were least correlated with the 218 
other 3 diagnostic groups and that within group, FCcs from distant RSS quantiles had lower correlation values (Figure 219 
3C). Finally, as shown in previous work where top 5% RSS time points were highly correlated with FC (Zamani Esfahlani 220 
et al. 2020), when correlating quantile FCcs to full FC, components derived from greater RSS percentiles (higher co-221 
fluctuation time points) were more similar to full FC (Figure 3D).  222 
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 223 

Figure 2. Group averaged full functional connectivity (FC) and its components. (A) Average group full functional 224 
connectivity computed as Pearson correlation, which is equivalent to the average co-fluctuation of all time points. Each 225 
triangle within a matrix is a group averaged network of unique edges: Controls (CON) – top matrix lower triangle, 226 
subjective cognitive decline (SCD) – top matrix upper triangle, mild cognitive impairment (MCI) – bottom matrix lower 227 
triangle, and Alzheimer’s disease (ALZ) – bottom matrix upper triangle. (B-F) Group averaged FC components, each 228 
comprised of 20% of root sum square (RSS) ranked time points, with 0-20% corresponding to lowest RSS amplitude bin, 229 
and 80-100% to the highest amplitude.  230 

 231 

Figure 3. Similarity among FC and its components and relationship of root-sum-square (RSS) with in-scanner motion. 232 
(A) Cross-correlation among participants (ordered by diagnostic group) of full FC and the 5 RSS FC components. (B) 233 
Scatter correlation (Pearson r) of RSS and frame displacement (FD) shown in log scale and colored by diagnostic group. 234 
(C) Cross-correlation (Pearson r) of group averaged FC components ordered by increasing RSS bin and by group within 235 
each bin. (D) Correlation of group averaged full FC to each of the RSS FC components split by group. CON – Controls, SCD 236 
– subjective cognitive decline, MCI – mild cognitive impairment, ALZ – Alzheimer’s disease.  237 

 238 

Network Contingency Correlation. Analysis of FC/FCc relationships with neuropsychological domain scores showed that 239 
permutation of domain scores was a more conservative strategy compared to RSN block label permutation 240 
(Supplementary Figures 1, 2). While the purpose of the score permutation null is to destroy the subject connectivity-241 
behavior relationship to test if number of significant edges in a block is meaningful, the purpose of the block structure 242 
permutation null is to assess if the distribution of significant edges is clustered within a particular block. Therefore, by 243 
focusing only on RSN blocks that were identified in both strategies, we determine whether the number and the 244 
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distribution of significance in a block is robust. The cognitive domain was the only one to show significant relationships 245 
for both FC and FCc bins for the ventral attention network (RSS quantiles 40-60% and 60-80%, Figure 4A, D-E). 246 
Association between the visual system and the cognitive domain was also observed, but only for FC (Figure 4A). The 247 
remaining associations with the cognitive domain were identified in between system interaction blocks: limbic-dorsal 248 
attention (0-20% and 80-100% RSS FCc, Figure 4B, F), frontoparietal-default mode interaction (20-40% FCc, Figure 4C), 249 
and the frontoparietal-visual interaction blocks (60-80% FCc, Figure 4E). In addition, the executive function domain 250 
associated with the limbic-dorsal attention interaction block (0-20% FCc, Figure 4G), the language domain associated 251 
with the dorsal attention block (40-60% and 60-80% FCc, Figure 4H-I), and the attention and processing speed domain 252 
associated with the frontoparietal system (20-40% FCc, Figure 4J). Across both null strategies and all comparisons, the 253 
upper bound of the percent of significant edges (normalized by the size of the RSN block) was 8%. While this is a 254 
relatively small fraction of total edges within a network block, each edge passed the initial p < 0.01 significance 255 
threshold, with the blocks achieving FDR-adjusted significance of p < 0.05 (corrected for 7 within and 21 between RSN 256 
blocks tested for each domain). To assess the impact of number of bins, the analysis was repeated with 10 FCcs and 257 
similar results were obtained (Supplementary Figure 3), which largely identified the same RSS percentile components 258 
and neuropsychological domains.  259 

 260 

Figure 4. Network Contingency Correlation (NCC) resting state network block-level results. Matrices show percent of 261 
edges by block (normalized by size of block) that passed initial uncorrected edge-level significance of p < 0.001. Black 262 
boxes denote block-level significance of pFDR < 0.05, with 5,000 NCC permutations. Only blocks that were significant 263 
against both permutation nulls are shown. Upper and lower triangular of matrices are identical; significance is only 264 
shown on the upper triangle.  FC – functional connectivity, RSS – root sum squared. Attn & Proc Speed – attention and 265 
processing speed. Resting state networks: VIS – visual, SOM – somatomotor, DAN – dorsal attention, VAN – ventral 266 
attention, LIM – limbic, FRP – frontoparietal, DMN – default mode network.  267 

 268 

Exploratory Network-Based Statistics (NBS) Component Analysis. NBS employs permutation testing to identify connected 269 
clusters of nodes above a random null. Six clusters were identified: three associated with the cognitive domain, including 270 
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full FC (Figure 5A), 40-60% RSS range-derived FCc (Figure 5B), and 60-80% FCc (Figure 5C), one association between the 271 
executive domain and 60-80% FCc (Figure 5D), and two associations between the language domain and 40-60% FCc, as 272 
well as 60-80% FCc, edges (Figure 5E-F). Degree distributions show that these are extensively interconnected 273 
components with multiple neighbors to most nodes, while the matrices show that they are composed of both positive 274 
and negative correlations with behavior. These components differ in their composition depending on FC component and 275 
domains being compared and are largely characterized by positive within-RSN and negative between-RSN edges 276 
(although this is not ubiquitous; see Figure 5C and 5D for notable examples of positive associations between RSN 277 
connectivity and cognitive and executive domains, respectively).  278 

 279 

Figure 5. Block-free Network-Based Statistics significant FC component-neuropsychological domain correlations. For 280 
each of the six significant components identified across six neuropsychological domains and five FC components and full 281 
FC, (upper-left) histograms show nodal degree distributions, (lower-left) matrices show binary positively and negatively 282 
correlated edges within each component, (middle) Schaefer 200-node cortical parcellations show average positive and 283 
negative edge correlations for component nodes, (right) a force-directed diagram from component nodes colored by 284 
Yeo systems and edges colored as positively (red) or negatively (blue) correlated with the neuropsychological domain of 285 
interest, shown using an inverse weighting visualization, such that higher edge weights yield shorter distances. System 286 
labels are VIS-Visual, SOM-Somatomotor, DAN-Dorsal Attention, VAN-Ventral Attention, LIM-Limbic, FRP-Frontoparietal, 287 
DMN-Default Mode. Root-sum-square (RSS) percentiles refer to boundaries of RSS values from which FC components 288 
were computed. 289 

 290 
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Discussion 291 

The identification of robust and reproducible brain-behavior relationships has significant implications for neuroscience. 292 
Their reliable detection in noninvasive fMRI data presents a tremendous challenge, as their expression may be highly 293 
time and context dependent. Here, in the context of AD, we presented findings from application of a single time point 294 
fMRI framework (edge time-series), in order to assess whether certain moments in time (as indexed by root sum 295 
squared (RSS) ranked co-fluctuations), are preferentially correlated with neuropsychological performance in a cross-296 
sectional sample that spans the AD diagnostic spectrum. Employing block-level inference we identified RSNs and RSN 297 
interactions of FC components (FCcs) that correlated with neuropsychological function domains. Aside from full FC of 298 
the ventral attention network and its correlation with the cognitive function domain, the identified relationships were 299 
not significant when using conventional/static FC (cross-correlation of the full time-series). The appearance of the 300 
association between cognitive function and FC of the ventral attention system confirms previous findings obtained with 301 
sliding-window dynamic FC that its temporal properties are robustly related to cognitive function (Chumin et al. 2021).  302 

Single-TR decomposition of fMRI edge time series allows for many possible strategies to generate FCcs. Here we divided 303 
the fMRI time series into 5 equal bins based on ranking time points by their overall co-fluctuation amplitude (RSS), 304 
yielding 5 FCcs. We found that the cognitive domain showed the highest number of associations with FCc RSN blocks 305 
across all 5 RSS bins, with notable RSN blocks including the attentional systems (ventral and dorsal attention-limbic 306 
interaction). This is consistent with functional interactions of attentional systems and cognitive function, resource 307 
recruitment, and reserve (Anthony and Lin 2018; Bastin et al. 2012; Gordon et al. 2015; Zhang et al. 2015). Blocks that 308 
included the dorsal attention system were also identified to relate to executive and language domains. Additionally, the 309 
frontoparietal control system and its interactions with other RSNs appears for cognitive and attention domains at two 310 
RSS bins. These relationships are not found in the full FC matrix, ‘obscured’ by the high co-fluctuation time points that 311 
drive the RSN block structure observed in human rs-fMRI. 312 

There is a distinction between the broadly applied sliding window methods in AD and the ETS approach (Faskowitz et al. 313 
2022; Lurie et al. 2020). Both operate on subsets of data; however, ETS rely on a single time point decomposition of the 314 
Pearson correlation, making no assumptions about the duration of underlying dynamics. Operating on a shorter time 315 
scale with ETS is beneficial, as it better characterizes the ongoing dynamics and has a narrow autocorrelation structure. 316 
A second distinction between ETS and previous methodology is that here connectivity of specific systems is being 317 
investigated. To date, studies that have employed sliding window FC to study AD have relied on clustering of group 318 
connectivity patterns into states. This is a data reduction strategy, as properties of connectivity states (i.e., frequency 319 
and dwell time) are then used as predictors/outcomes for statistical analysis. While this is a reasonable approach, it tests 320 
whether a property of a state, which is a whole-brain descriptor, is related to behavior of interest. Systems within the 321 
brain are likely to differentially relate to behavior, so properties of states, which are whole network descriptors, are 322 
unlikely to robustly relate to behaviors. Therefore, a focus on subsystems within the brain, which share some intrinsic 323 
properties, may allow us to identify robust behavioral correlates.   324 

The strategy undertaken here (system/block level inference) is also one of data reduction, aimed at avoiding mass 325 
univariate tests in order to obtain interpretable outcomes. However, unlike sliding window, data reduction is caried out 326 
during inference through application of frequency statistics. The network contingency analysis proposed by Sripada et al. 327 
(2014) was developed to identify block-level group differences between networks, by testing whether the number of 328 
significantly different edges in a block exceeded the number expected to occur by chance (with permutation testing). 329 
Here we modified this framework for use with correlations, proposing two permutation null strategies for assessment of 330 
block-level brain-behavior relationships. The two strategies each permute one of two variables of interest (either FC or 331 
behavior), testing whether the observed edge relationships preferentially cluster within a block or if the number of 332 
edge-level correlation exceeds the null distribution, respectively. The joined significance against the two models then 333 
describes whether the relationships within an RSN block are significant both in number and spatial distribution within 334 
the network.    335 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.13.23289936doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.13.23289936
http://creativecommons.org/licenses/by-nc-nd/4.0/


A similar approach to linking fMRI to behavioral and/or neuropsychological measures as the one employed here is 336 
connectome-based predictive modeling (CPM), which relies on a cross-validation strategy to build behavior predictive 337 
models, by first selecting a subset of edges with the strongest relationship to the behavior of interest (Finn et al. 2015; 338 
Shen et al. 2017). These edges can then be qualitatively described in terms of which regions/systems they are comprised 339 
of. This strategy has been applied in AD (Lin et al. 2018; Svaldi et al. 2021). Svaldi et al. (2021) employed a dual approach 340 
whereby FC data were first subjected to a principal component analysis (PCA)-based procedure aimed at improving 341 
participant identifiability. They then showed that the new FC matrices resulted in improved CPM performance to predict 342 
AD-relevant cognitive measures. Interestingly, Mantwill et al. (2022) recently showed that (at least in the young and 343 
healthy Human Connectome Project cohort) identifiability and behavior prediction are reliant upon distinct functional 344 
systems. Given this evidence it is unclear how a PCA-based improvement of FC aimed at identifiability impacts 345 
behavioral prediction. Analogous to Svaldi et al. (2021), which posited that FC matrices from PCA component sets have 346 
more relevance to behavior than full FC, we hypothesized that particular time points may be more relevant, thereby 347 
parsing them into bins based on co-fluctuation magnitude to estimate FC components.  348 

We conducted an exploratory analysis where a RSN block structure was not imposed on FC components. Treating the 349 
whole network as a single block, we looked for connected components that significantly correlated with 350 
neuropsychological domains using the network-based statistics correction strategy (Zalesky et al. 2010). As with the NCC 351 
strategy only, the cognitive function domain was correlated with FC, composed of a component that included the 352 
ventral attention network and its interactions with frontoparietal and default mode networks. Upper middle RSS bin 353 
components revealed significant components that seem to differ in their spatial distribution for each neuropsychological 354 
domain (Figure 5 shows primarily (1) ventral attention, frontoparietal and default mode relationships with cognitive, (2) 355 
visual, somatomotor, and dorsal attention interactions with other systems for executive, and (3) dorsal attention for 356 
language neuropsychological domains).    357 

It is important to consider these findings within the constraints of the methodology and analyses employed. First, this is 358 
a cross-sectional investigation with the sample spanning the AD diagnostic continuum, aimed at investigating how FC 359 
components are altered in relation to disease-relevant neuropsychological domains. Future longitudinal follow-ups are 360 
necessary to assess whether this strategy reveals similar relationships in within-subject designs. Second, we chose a 200-361 
region functional cortical parcellation (Schaefer et al. 2018) stratified into seven canonical RSNs (Yeo et al. 2011). 362 
Whether the same or similar systems are implicated utilizing different parcellation and network stratifications can be a 363 
topic of future investigations, as node selection is often debated in network neuroscience and can be a source of 364 
variance in network data (Domhof et al. 2021). Additional inclusion of subcortical, cerebellar, and brainstem regions may 365 
shed light on relationships between neuropsychological function and interactions between cortical systems and the 366 
subcortex. Finally, because of the frequency statistic-based testing of block-level relationships employed by NCC, we 367 
cannot, or rather should not, conduct follow-up tests to isolate the significant edges within blocks. Therefore, this 368 
method is limited in its interpretation as to whether or not there is a coupling between FC and behavior for a set of 369 
subsystems (here RSNs) only.  370 

In summary, we hypothesized that a decomposition of FC into components derived from temporally discrete data points 371 
via an edge time series summary metric that indexes magnitude of co-fluctuation in a network will reveal brain-behavior 372 
relationships not observed with conventional full FC. Applied to a sample that spans the AD diagnostic spectrum, we 373 
show that discrete FC components are related to neuropsychological domain performance within and between specific 374 
RSN systems. This work can serve as a starting point for more targeted investigations of specific brain systems and how 375 
they relate to phenotypic changes as a consequence of AD and related dementias.  376 
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