

EdgeComputing:
Extending Enterprise Applications

to the Edge of the Internet
Andy Davis

Akamai Technologies
1400 Fashion Island Blvd

San Mateo, CA 94404

Jay Parikh
Akamai Technologies

1400 Fashion Island Blvd
San Mateo, CA 94404

William E. Weihl
Akamai Technologies

1400 Fashion Island Blvd
San Mateo, CA 94404

ABSTRACT
Content delivery networks have evolved beyond traditional
distributed caching. With services such as Akamai's
EdgeComputing it is now possible to deploy and run enterprise
business Web applications on a globally distributed computing
platform, to provide subsecond response time to end users
anywhere in the world. Additionally, this distributed application
platform provides high levels of fault-tolerance and scalability on-
demand to meet virtually any need. Application resources can be
provisioned dynamically in seconds to respond automatically to
changes in load on a given application.
In some cases, an application can be deployed completely on the
global platform without any central enterprise infrastructure.
Other applications can require centralizing core business logic and
transactional databases at the enterprise data center while the
presentation layer and some business logic and database
functionality move onto the edge platform.
Implementing a distributed application service on the Internet’s
edge requires overcoming numerous challenges, including
sandboxing for security, distributed load-balancing and resource
management, accounting and billing, deployment, testing,
debugging, and monitoring. Our current implementation of
Akamai EdgeComputing supports application programming
platforms such as Java 2 Enterprise Edition (J2EE) and
Microsoft’s .NET Framework, in large part because they make it
easier to address some of these challenges. In the near future we
will also support environments for other application languages
such as C, PHP, and Perl.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Systems
– distributed applications, distributed databases, Web services;
D.2.11 [Software Engineering]: Software Architectures – Java,
languages, .NET, patterns; D.2.5 [Software Engineering]: Testing
and Debugging – debugging aids, diagnostics, distributed
debugging.

General Terms
Management, Performance, Design, Reliability, Security,
Standardization, Languages

Keywords
Edge computing, grid computing, distributed applications, split-
tier applications, web applications, N-tier applications, utility
computing, Internet applications, Web services

1. Introduction
The Web has evolved dramatically from its beginnings as a global
publication mechanism. Businesses and other organizations are
increasingly using the Web for online business processes, ranging
from supply chain management to product configurators to
customer and partner portals. The key technological shift
underlying this is an increasing reliance on interactive Web
applications in a strategy to grow business and/or increase
operational efficiency by reaching more customers and partners.
These applications serve many of the same functions as older
“green-screen” applications or client-server applications, but users
now interact with them via the Web.
The Internet, and by extension, the Web, is a far from optimal
delivery vehicle for interactive applications. Businesses use the
Internet because it is better than doing nothing: they can reach
more users more cheaply than with alternatives such as private
networks, dial-up, phone, or fax.
But many applications delivered over the Web still suffer from
performance, reliability, and scalability problems. These
problems are not new; they motivated the first wave of Content
Delivery Networks (CDNs) in the late 1990’s. However, the
problems may be more severe now than in the early days of the
Web, because the business processes implemented by many of the
Web-facing applications in use today are often more mission-
critical to businesses.
CDNs solved the problems of the Web for static content by
delivering content from caches at the edge of the Internet, close to
end users. The large scale and distributed nature of CDNs permits
greater reliability. Also, delivering content from edge servers
ensures faster download times, particularly if those servers are
carefully chosen based on network conditions and other factors.
Further, the ability to allocate resources dynamically and
automatically permits enormous scalability in response to
marketing successes, news events, and other events leading to
“flash crowds”.
As web sites have moved to greater use of interactive applications,
CDNs have continued to evolve. Caching static content provides
little help for an interactive application. The embedded images
and other objects may be delivered from an edge cache, but if the
base HTML page is generated by an application, user requests
must still travel a long distance on the Internet to contact the
origin application that generates the content. Congestion and

Copyright is held by the author/owner(s).
WWW 2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

180

outages on networks cause some users to see download times for a
page in the 10’s to 100’s of seconds – enough to make a site
virtually unusable for those users. Additionally, capacity
limitations on the enterprise data center infrastructure limit the
number of users that an application can support; for consumer-
facing applications the load is particularly hard to predict,
resulting in money spent on excess capacity that remains idle
much of the time but still insufficient to support peak loads.
We have developed a distributed application service, Akamai
EdgeComputing, to address these problems. EdgeComputing
brings to applications the same advantages that CDNs provide for
static content. Akamai’s EdgeComputing distributed application
service is a form of utility or grid computing (see the Global Grid
Forum [3] and the Globus alliance [4] for information on many
current grid computing efforts). Unlike most grid computing
systems, however, it is focused on interactive business
applications. It is also globally distributed to ensure that
applications run close to their end users, automatically providing
capacity both when and where it is needed.
Using EdgeComputing, parts of a Web application – and in some
cases the entire application – can be distributed across the Akamai
network. Many client requests can be processed completely at the
edge, avoiding wide area network communication altogether. For
requests that require communication with the enterprise data
center (e.g., to talk to a transactional database, or to interact with
legacy systems), only the raw data needs to be exchanged, not the
entire HTML page, reducing the amount of data sent long-haul by
one to two orders of magnitude. In addition, the same network of
servers can be used to optimize the path taken over the Internet
between the edge and the enterprise, avoiding congestion and
outages in real-time and further reducing response time.
At its core, our EdgeComputing service requires the ability to
virtualize server resources. There are many ways to do this,
including virtual machine monitors (e.g., VMware [10], Xen [1]),
user-mode Linux [9], and binary code rewriting (e.g., Etch [8],
ATOM/OM [11]). For performance and manageability reasons,
we chose not to provide each customer with a set of virtual
machines for its applications. Instead, we run each customer’s
applications in separate application server processes, relying on
kernel and operating system functionality to isolate customers
from each other and to prevent runaway use of server resources.
We then provide a customer application console through which a
customer can view a summary of all of his running application
instances, and when necessary drill down to a detailed look at
individual instances. Initially, we have implemented
EdgeComputing for J2EE and .NET, which provide standard
programming environments that simplify the deployment and
management of clustered Web applications. Our current
implementation supports Apache’s Tomcat server and IBM’s
WebSphere Application Server; support for Microsoft’s .NET
framework will be available later in 2004, followed by support for
“native” application language environments (C, Perl, etc.).
Our original motivation for a distributed application service was
to solve the performance, reliability, and scalability problems
plaguing Web applications. As we discuss below,
EdgeComputing has enabled our customers to ensure truly
interactive sub-second response time to all users, with far greater
reliability and scalability than they could cost-effectively achieve
on their own. In addition, EdgeComputing has resulted in
unexpected benefits, though viewed in retrospect the benefits are
not so surprising. “Time to market” has been greatly reduced for

many applications because customers no longer have to deal with
capacity planning, acquiring, and provisioning infrastructure, thus
eliminating significant risk, cost, headaches, and delays. If an
enterprise still maintains a central infrastructure, they need less.
Customers can focus on what they want the application to do and
on building it. Deployment then involves simply publishing the
application to Akamai, which manages the application
infrastructure within an on-demand environment. Customers also
can worry less about optimizing applications for scale, although
they (and we) still need to worry about performance issues
overall.

2. The EdgeComputing Model
Our EdgeComputing distributed application service is not a new
programming model or a new set of programming APIs; it is a
new deployment model for Web applications. Today, most Web
applications are deployed within a single data center, perhaps in a
cluster of machines connected by a high-speed LAN. To use
EdgeComputing, a site developer typically must split the
application into two components: an edge component and an
origin component. The code in the edge component is deployed
onto Akamai’s network of servers distributed around the world
(more on how this is done below); the origin part is deployed in
the traditional manner within the central data center.
Some applications naturally and easily divide into edge and origin
components; others require some redesign. We discuss this issue
in more detail later in the paper.
We have implemented a replication subsystem for session state,
permitting an application’s edge components to maintain per-user
state that remains available even when users are mapped to
different servers; more detail on session management is in Section
6. Edge components can also use our NetStorage facilities (a
distributed collection of storage silos that provides automatic
replication of data) to store information submitted by users for
later processing by the origin components.
Our management interfaces support staged deployment for
applications. Typically, a site developer tests an application
internally on test machines before deploying it to Akamai. After
the application passes internal testing, the developer deploys it
across the Akamai network in stages, watching for problems at
each stage. More specifically, deployment involves several steps.
(For concreteness, we focus here on J2EE applications.)

1. A site developer packages the edge part as a WAR (Web
ARchive) file.

2. The developer publishes the WAR file to Akamai
through the Akamai portal (via a Web page or Web
service).

3. The Akamai portal “scrubs” the WAR file to ensure that
it can run on our edge application servers. Akamai
validates the WAR file and makes sure the components
are compiled for the correct application server platform.

4. The developer uses the Akamai portal to control the
deployment of the application, first deploying it to a test
network of Akamai machines that are identical to our
production machines except that they do not serve live
traffic, then to a few machines serving live traffic, then
to a small but significant percentage of the network, and
finally to the entire network. At each stage of the
process, the developer can drive test load against the

181

application and watch for errors, alerts, and other
indications that there are problems with the application.

5. If problems are found, the developer can abort the
deployment and revert back to the older application.

Deployment occurs in stages such that multiple versions of an
application may be live simultaneously, a process that limits the
impact of errors to as few users as possible.
Applications belonging to different customers may run
simultaneously on the same machine. We have implemented a
security “sandbox” to ensure that applications cannot interfere
with one other or with the underlying operation of our servers.
Security sandboxes are discussed in Section 4.1.
Server resources on the Akamai network are managed
automatically. When the load on an application increases,
additional instances of the application are started on additional
servers near the users making the requests, and requests are
directed to those servers. When the load drops, application
instances may be stopped automatically. This automatic resource
management and load balancing system is discussed in Section
4.2.
Logically, a site developer can view the Akamai system as a large
virtual cluster, distributed around the world. Server resources can
be added or removed from the distributed cluster at any time,
dynamically and automatically. To enable debugging in such a
system, our portal provides a comprehensive view of all running
instances of an application. Debugging is discussed in more
detail in Section 4.3.
Finally, billing for our EdgeComputing service is based on usage,
measured in requests per month. Applications are allocated a
certain amount of bandwidth, memory, CPU, and other resources.
Applications can be given more than the standard allocation,
typically for an additional application resource fee. An alternative
would be to allow unlimited resource usage, and to bill for what is
used. However, most customers have indicated a preference for a
model in which usage per request is limited in order to avoid
receiving an enormous bill at the end of the month because of an
infinite loop or some other bug that creates runaway usage.

3. Example Edge Applications
We launched EdgeComputing as a service in early 2003. As of
this writing, we have a large number of customers running a wide
range of applications on the service. Those applications fall into
several categories, summarized in the following subsections.

3.1 Content Aggregation
The simplest category of applications involves applications that
have no internal databases, but simply aggregate and format
content from other sources. This category includes portals, which
aggregate news, search, and other data sources to present a unified
interface. This content can be transformed depending on the end
user device. These applications are simple to run on the edge;
data can be retrieved from the various sources using HTTP or
Web services, formatted on the edge, and then returned to the
user. If the data from the various sources is cacheable, most user
requests can be processed completely on the edge without any
long-haul communication.
Note that some portals today permit customization based on a user
profile kept in a database. Today, that database would be
maintained in our customer’s data center. User profiles can be
retrieved from the database over the Internet (typically through a

proxy servlet or similar mechanism running at the origin in front
of the database), and then used to customize the page returned to
the user. With some care, user profiles can also be cached on the
edge, allowing most communication with the origin to be avoided
altogether.
Another application in this category found on many sites is a store
locator application, which allows a user to enter a location, for
example, by city or zip code, and find out what stores are near that
location. In many cases, the real work of this application is done
by a Web service such as MapPoint [7]; the application on the
customer site simply formats the results returned by the service.
This is really a special case of portals, requiring only a single data
source.

3.2 Static Databases
Applications with static databases can often be run entirely at the
edge. Applications today are limited to databases of moderate
size (100’s of megabytes). Examples include:

- Store locator – the part often done by MapPoint, where
the database involves the actual stores and their
locations as well as the geographical information
needed to determine proximity.

- Product catalogs – except for real-time inventory
information, the information in most product catalogs is
relatively static and can easily be cached on the edge
servers. For J2EE applications, we are working with
IBM to deploy Cloudscape [5], a pure Java relational
database, to enable these kinds of databases to be run
alongside the edge application, accessed using JDBC.
Note, that the Cloudscape edge database technology is
applicable to many other types of edge applications, not
just product catalogs.

- Site search – the index for searching a site can typically
be cached on the edge.

- Product configurators – again, the database containing
product information and the business rules controlling
allowable configurations and associated pricing can
often be cached on the edge.

Configurators are a little different from the other applications in
this category, since they often require client session state to keep
track of the configuration selections already made by the user.
We replicate session state across multiple servers in order to
handle when a user gets mapped to different machines over time
without losing the user’s session.

3.3 Data Collection
Some applications, such as registration (for products, college
courses, etc.), online applications (where one applies for
something, such as college or a credit card, not in the sense of
computer “applications”), and customer service (submitting a
question via a web form) involve collecting data from forms filled
in by users. If the application is a single-page form, the data can
be collected on the edge and sent via HTTP POST (or a Web
service call) directly to the origin, or the POST data could be sent
to our NetStorage system. The NetStorage system replicates the
data in files on disk for later retrieval by the customer.
If the application form involves multiple pages, the information
entered progressively can be kept in session state on the edge.
The choice of which form to present next – a choice perhaps
based on the data entered so far – can be made on the edge, and

182

the final data can again be stored on NetStorage or sent to the
origin. Data validation can also be done at each step to filter out
nonsensical data.
As another option, if the data is only needed for later offline
“batch” processing, the edge application server can log some data
for each request. This logged data is collected from all servers.
Later, the collated log files are made available for processing by
the origin.
Some news and portal sites, among others, use voting or polling
applications to allow their users to express their opinion or
preferences on various issues. This data can be collected and
buffered for short periods on the edge and then sent to the origin.
This allows the origin to service a small number of medium-to-
large requests instead of a very large number of small requests.
This reduction in turn enables the application to scale to larger
loads without significant dedicated central infrastructure. The
origin can then publish the aggregated data to the edge, where the
application can refresh its view every few seconds to give users
virtually real-time polling results. Loads on this kind of
application can be particularly hard to predict and thus
prohibitively expensive to provision dedicated infrastructure for
peak loads.

3.4 Two-Way Data Exchange
A slightly more complex version of the data collection application
involves data flowing in both directions withthe behavior of the
application depending on the aggregated data published in real-
time by the origin. One example is online ad serving in which the
ad to be served depends on the available ad inventory and which
ads have been served so far. Another example is contests, in
which the probability of winning may depend on the number of
people who have already won. As with the voting or polling
application, buffering and aggregating data in the network for
brief periods can reduce the central infrastructure required by
several orders of magnitude, enabling a site to handle much higher
peak loads at lower expense. In the case of one customer, a
contest application was designed and developed to run on Akamai
EdgeComputing; it used virtually no central infrastructure, but
still supported over 70 million requests during the 5-hour contest.
Without EdgeComputing, a great deal of time would have been
required to procure and provision the infrastructure, and it is
likely that the load would have exceeded the capacity in any
event, since the actual load exceeded the expected load by roughly
a factor of 7.

3.5 Complex Applications
The final category is the catchall of more complex applications,
including full e-commerce engines, supply chain management,
customer relationship management, online banking, etc. Many of
these applications have pieces that fall into the other categories
above (e.g., e-commerce engines include product search, store
locators, and other pieces that can be moved to the edge), but they
also include pieces that rely on transactional databases. In such
cases, the application must be split, typically to put the
presentation layer on the edge and leave the business logic and
data access layers at the origin. Even though some central
infrastructure is still required, there can still be significant
advantages in performance because only raw data needs to be
retrieved from the origin, rather than full HTML pages. More
information on best practices for how to handle these types of
applications is provided in Section 5.

4. Technical Challenges
In this section we discuss a number of technical challenges faced
in implementing the EdgeComputing distributed application
service, including security, debugging, accounting and billing,
load balancing, resource management, and monitoring, and
session state replication.

4.1 Security
Customers’ EdgeComputing applications run on machines within
the Akamai network, and multiple applications from different
customers may run simultaneously on a machine. For this reason,
each EdgeComputing customer application is executed within a
security sandbox that prevents EdgeComputing applications from
accessing unauthorized server resources and data, and also keeps
each application from over-utilizing granted server resources.
Our primary concern in isolating applications from each other is
to protect against buggy code, not against malicious users; we
have a business relationship with our customers that makes the
deployment of malicious code unlikely.
The security sandbox performs access control checks each time an
application tries to access a resource and checks limits on
resource usage. For example, if an EdgeComputing application is
allowed access to an area on disk, the sandbox prevents the
application from reading or writing data outside the allotted disk
area, limits the rate of disk access, and enforces a limit on the total
amount of data stored on disk. The sandbox also limits the hosts
to which the application can communicate, and it limits the
number of network connections the application can have open at
any given time.
To provide access control and resource management, the security
sandbox makes use of facilities from the operating system such as
file system quotas, user/group id permissions, and custom
sandbox modules. In addition to these facilities, the sandbox can
be extended with finer granularity of access control and
sandboxing by making use of security capabilities provided by the
application server, such as the J2EE Security Manager and
policies.
To achieve better isolation, each customer’s EdgeComputing
application is run in a separate process on each machine. This
isolates any ill effects from a misbehaving application and
prevents that misbehaving application from hampering the
performance of other applications running on the system. Before
an EdgeComputing application is launched, libraries and
configuration files needed by the process are stored in an area of
disk allocated to the process, and permissions and quotas are set
up as necessary. Also, the application’s process is configured
such that it cannot access files or directories outside of the
allocated area on disk.
Once a process is launched for an application, the custom sandbox
modules track system calls made by the server process. The
sandbox modules are used to throttle access to resources and to
report resource usage information to an external monitoring
process that monitors all EdgeComputing applications running on
the machine. The monitor process may restart, throttle, or
terminate a process that tries to access forbidden resources or
over-utilizes resources on the machine. It also monitors the time
used by the process for each user request, and it may terminate or
restart the process if requests take longer than a configurable
threshold.

183

Since edge applications can also use session data (managed and
replicated by the Akamai EdgeComputing systems), the sandbox
also enforces limits on session object size to prevent over-
consumption of disk and memory for storing and replicating
session data. Further, the security sandbox ensures that
application session objects are accessible only from the
appropriate customer application by encrypting the session data
using separate customer specific keys.

4.2 Load Balancing, Resource Management,
and Monitoring

The problem of preventing overload of any particular server or
application can be challenging enough within a single data center.
In a globally distributed system, the problem is magnified. The
Akamai system automatically monitors client traffic, network
conditions, and application performance and automatically
distributes traffic and applications as needed to prevent overload
of any particular server or application instance.
Logically, the Akamai network can be viewed as a single virtual
multi-computer that can run multiple EdgeComputing processes.
At a more detailed level, the Akamai network is made up of many
individual Akamai edge servers. Each edge server is capable of
starting, stopping, and monitoring the execution of an
EdgeComputing process.
Load balancing is done hierarchically, first among edge server
groups (ESGs), and then within ESGs. Within an ESG, load
balancing focuses on ensuring that each application is running on
enough servers in the ESG to handle the load for that application
directed at the ESG. Among ESGs, load balancing focuses on
distributing load for different applications to ensure that no ESG
runs out of capacity, at the same time optimizing for network
conditions and end user performance.
At the top-level, load is dynamically mapped among ESGs using
DNS, much as in the original Akamai CDN. Within an ESG, load
is redistributed both using DNS (by returning more or fewer IP
addresses in response to DNS requests) and by tunneling requests,
as needed, from one server to another to ensure a relatively even
distribution of load among instances of an application.
Within an ESG, the load-balancing algorithm uses detailed
information about resource consumption by each EC application
instance. Within the ESG, load-balancing agents aggregate load
and capacity data and report the summarized data to the top-level
load-balancing agents. In addition, the agents analyze the local
ESG data to determine how many instances of each application
should be running in the ESG and whether load should be shifted
within the ESG.
As mentioned previously, each edge server runs a monitor process
that monitors all EdgeComputing applications running on the
server. The monitor process gathers resource usage, health and
event information from the OS as well as from Akamai
components running in-process with each EdgeComputing
application. This data is fed to the load-balancing system as well
as to the Akamai reporting system. The reporting system
aggregates data from all machines in the network, providing a
real-time monitoring data view.
The CPU, disk, and memory usage of each application is
monitored and reported. Periodic checks are made to each
EdgeComputing process to make sure that it is functioning
properly. Some EdgeComputing processes can be deployed to
provide a periodic “heartbeat” message to be sent to the monitor

process as a proactive indication that it is alive. Events generated
by the EdgeComputing process (perhaps in response to a message
from the Akamai network) are also monitored and reported.
For J2EE applications, a finer granularity of resource monitoring
is possible. Because these application servers use Java blocking
I/O APIs and a thread-per-request model, we can track and report
the CPU used for each request. In addition, the memory free and
total memory used inside the JVM is also monitored and reported.
All of the aggregated monitoring data is reported from each
EdgeComputing process running across the entire Akamai
network. This data can trigger sophisticated alerts for the Akamai
NOCC. The data related to the customer’s application is also
presented to the customer through an application console. Many
types of alerts can be generated; examples include memory
utilization inside a customer’s JVM, EdgeComputing process
restarts because of resource over-utilization, failed customer
application installs, and failed application delivery. Our customer
application console also contains real-time information for each
running instance of the customer’s applications, showing the
current state of the process, memory and CPU usage, and the
number of client requests served by the process.

4.3 Debugging
Each EdgeComputing process can write logs to disk that can then
be accessed through the customer application console/portal. This
allows the EdgeComputing application developer to write
diagnostic information such as stack traces and event messages to
a log file that can be viewed through the Akamai portal.
Customers can see data for each instance of their applications
running on the Akamai network. They can drill down on a specific
instance on a specific machine and retrieve log files from that
machine.
Many JVMs allow programmatic generation of diagnostic
information about the JVM and the application running inside it.
This information includes thread dumps and JVM heap dumps.
Our EdgeComputing implementation for J2EE allows this
information to be requested through the customer application
console for a specific application instance; the JVM writes the
information to a file that can then be accessed by the customer in
the same manner as standard debug log files. A customer could
retrieve this information from an application instance to diagnose
a problem flagged by alerts or by other information available
through the portal.
Akamai provides a staging test network that replicates the
production environment, except that it does not service live load.
This permits functional and load testing of applications to be done
in a safe environment that is as close as possible to the production
environment.

4.4 Application Session State
End user session state is a common aspect of Web applications
developed using J2EE or .NET (and others). This application
state is conventionally stored in-memory in the application server
process that is handling the end user request. By default, most
application servers will not replicate or persistently store this
session data, so it is not made available to other application
instances in a clustered environment. This introduces a single
point of failure for users mapped to a particular application
instance, since if the server goes down, the client session data
would be lost. In clustered enterprise environments, one can
make use of in-memory replication sub-systems or a database to

184

replicate and store the created session state. This can provide a
higher level of fault tolerance to the application.
Akamai EdgeComputing dynamically maps end users to the
appropriate application instance across the entire network. This
introduces an interesting problem of session affinity, since we can
move end-user traffic from server to server. Having one
centralized database to provide persistent session storage would
add unnecessary latency in servicing the request and might even
render worthless the benefits of moving an application to the
edge.
EdgeComputing provides an edge session replication system that
allows for client session objects to be replicated across servers in
an ESG as well as across ESGs. This system provides the
application server session interface with an in-memory cache to
reduce latency. The locally cached session object is checked with
the system replicated session object to validate that the session
object is “current”, and if so, the object can be used by the
EdgeComputing application (thus, avoiding the deserialization of
the object data). If the end user is mapped to another server, the
application server on that server checks its local cache.
Remapping occurs when machines suffer hardware or software
failures, when the network between a user and a machine becomes
congested, and when load needs to be redistributed to prevent
machines from becoming overloaded. However, remapping is
relatively infrequent, so it is likely that consecutive requests in a
user’s session will contact the same server. In the common case,
the user’s session object will be found in the local cache. The
first time the user has been mapped to this machine, the
application server must retrieve the user’s session object from the
session replication system. If the application modifies the session
object, the updated object is sent asynchronously to the edge
session replication system.

5. Edge Application Best Practices
The EdgeComputing development model remains the same as for
centralized applications; it does not require the use of any
proprietary APIs. The deployment model changes, not the
programming model. If an existing application follows well-
known component programming best practices, adapting it for
EdgeComputing is easier. For example, EdgeComputing for J2EE
enables the execution of J2EE Web tier application components
— JSPs, servlets, tag libraries, and JavaBeans.
In order to provide more context, this section focuses on
describing the best practices specifically related to development
for EdgeComputing for J2EE using Tomcat or IBM’s WebSphere
Application Server. These best practices have been established
working jointly with IBM and described in detail in [2]. In
general, EdgeComputing applications are architected as two
cooperating sub-applications: an edge-side application running on
Akamai and a corresponding origin-side application.

5.1 Presentation Components on the Edge
The most common EdgeComputing model is to deploy the
presentation components of an application onto the Akamai edge
servers and to cache access to origin data via the Java Web
services client model. Typically, the Web application will be
developed using a framework based on the Model-View-
Controller (MVC) architecture.
Jakarta’s Struts framework [6], a common open-source framework
for building Web applications based on the MVC pattern, is well
suited for EdgeComputing. Struts provides its own Controller

component via a servlet. For the View, Struts-based applications
often leverage JSPs to create the end user response. The Model
component is commonly represented by JavaBeans. These Model
JavaBeans may be self contained or represent façades for other
components like JDBC or EJB.
The View and Controller components of a Struts application are
good candidates for distributing on EdgeComputing. These
components run on the Akamai edge servers and can interact with
Model components running at the origin (EJBs). Depending on
the functionality of your application, the extent to which these
applications can move onto EdgeComputing will vary. The edge
View and Controller components are bundled, along with other
Java classes, into a Web application archive (WAR) and deployed
onto the EdgeComputing network.
With EdgeComputing today, EJBs commonly remain running at
the origin and are made accessible to the edge application via
Web services interfaces. A session bean façade can be used to
expose the necessary business logic as a Web service to the edge
application. The edge application makes a Web service call back
to the origin to invoke the appropriate logic through a session
bean façade, perhaps made visible through a servlet running on
the origin application servers. An edge application can and
should cache the results of SOAP/HTTP(S) requests to minimize
interactions with the origin.
In addition to Web services as a communication channel, our
EdgeComputing distributed application service supports other
standard communication protocols, including the following:

- HTTP(S) – An edge application can make HTTP(S)
requests to the origin to request content or data objects.
HTTP responses from the origin should be cached on
the edge when possible, so content or data objects can
be persisted on the edge across user requests to further
reduce the load on the origin. A developer could
leverage Akamai’s content caching system for content
objects (HTML fragments). Akamai provides an
invalidation control mechanism (via a Web service) to
customers, so that customer can control the invalidation
of any content objects cached on the Akamai edge
servers. Additionally, an edge application can leverage
caching Java objects in the edge JVM instance.

- JDBC – Akamai provides a JDBC driver that allows
edge applications to tunnel JDBC queries to the origin
via HTTP(S). If an application has already been
developed using JDBC for data transaction with a
database, the JDBC/HTTP mechanism will make it
easier to adapt an application for the edge. Further,
JDBC query responses can be configured to be cached
on the Akamai edge servers similar to HTTP responses.

- RMI – Edge application components can use RMI
tunneled over HTTP(S) to communicate with the origin
component. In this configuration, a servlet runs at the
origin, intercepts the RMI request from the edge, and
translates the request into the appropriate method calls
to the business tier.

Rather than using RMI, JDBC, and other protocols in their native
mode to communicate from the edge to the origin, we tunnel them
over HTTP(S) to avoid problems with firewall configurations and
to avoid requiring that enterprises make their databases and legacy
systems directly accessible on the Internet.

185

5.2 Data Access on the Edge
Any of the HTTP-based protocols above are useful interfaces that
allow you to “bridge” your applications from the edge to the
origin, but it is still important to avoid excessive communication
for edge-origin requests, as otherwise end-user latency and origin
utilization will increase. Because there is an absolute cost for
every roundtrip from the edge to the origin, calls should be as
“coarse-grained” as possible. Multiple requests to the origin that
are required to service a single end-user request should be
bundled, if possible, and edge caching should be used to store
data and other objects across requests.
The Akamai EdgeComputing platform provides caching
mechanisms to persist application data to minimize the interaction
and load on the origin infrastructure on a request-by-request basis.

- Client Session – EdgeComputing supports replicated
client sessions. Session objects are most commonly
used to keep per-user state information. Akamai
enforces a size limit to the actual serialized object data
for performance reasons.

- Client Cookies – An edge application can store some
user specific data in user cookies or URL tokens.
Privacy and security concerns, however, may prohibit
an enterprise from using this mechanism.

- Object Caching – As previously mentioned, an edge
application can make requests for data or content (using
HTTP, Web Services, or JDBC) and these objects can
be stored in the edge node’s cache.

Another powerful edge data capability employs IBM’s 100% pure
Java Cloudscape DBMS to host infrequently changing, read-only
data in an edge database. In this model, application data is
exported as part of the application WAR file. By installing
Cloudscape on the edge, even the Model components of an MVC
application can be run on EdgeComputing. An edge application
can make use of JavaBeans and JDBC as Model components with
Cloudscape as the DBMS to further reduce the communication to
the backend enterprise systems. One current limitation of this
model is that any time the application data changes, the
application must be redeployed to the EdgeComputing network.

6. Future Work
At its core, EdgeComputing involves virtualizing system
resources and allocating them dynamically to different
applications. Simple virtualization, however, is not enough; for
more than a few customers to be willing to use EdgeComputing, it
must be easy to manage applications running on it. Our goal has
been to make it as easy to manage an application running on
EdgeComputing as it is to manage an application running on a
cluster of machines in a central data center. This includes support
for testing, monitoring, and debugging, as well as support for
splitting an application into “edge” and “origin” pieces and
orchestrating communication between the edge and the origin.
We are currently working on a number of areas to simplify the
management of distributed applications on our EdgeComputing
service, including:

- Further simplifying management of multiple versions of
applications.

- Providing deeper insight into the performance of
applications on our edge servers to make it easier for
customers to tune the performance of their applications.

- Handling multiple versions of application servers.
- Supporting the full J2EE specification, including EJBs

and JMS.
- Synchronizing session state between the edge

component and the origin component of an application.
- Making data caching and replication on the edge

transparent for more patterns of data access.
- Providing pre-integrated access to key services required

by business applications (e.g., identity management,
access control, and payment processing).

7. Summary and Conclusions
Akamai’s EdgeComputing service allows enterprises to deploy
and run Web applications on a globally distributed computing
platform. Running applications on servers at the edge of the
Internet in our distributed application service provides many
advantages for an enterprise including capacity on demand, better
end user performance, higher application availability, and faster
time-to-market.
Development of this distributed application platform presented
several new and interesting challenges. For example, customers
need visibility into the behavior of their running applications,
even though the machines that run a given application might
change from day to day or even minute to minute. Similarly,
applications must be sandboxed to ensure that one customer’s
application does not interfere with that of another customer.
There are several types of applications that can benefit from this
distributed application platform. By following some basic edge
application best practices, such as minimizing communication
with the origin and caching data on the edge, many important
business applications can leverage Akamai’s EdgeComputing
distributed application service.

8. ACKNOWLEDGMENTS
Akamai’s EdgeComputing service would not exist without the
incredible efforts of the many people who have contributed to it,
including Andy Berkheimer, Annie Boyer, James Chalfant, Eddy
Chan, Andy Ellis, Liz Greene, Dan Hang, Marty Kagan, Nate
Kushman, Erik Nygren, Nicole Peill, Vasan Pichai, M. C.
Ramesh, Eddie Ruvinsky, Sudesh Saoji, Alex Sherman, Danner
Stodolsky, Ashis Tarafdar, and Kieran Taylor. Our partners at
IBM have also contributed enormously to the service by helping
integrate IBM’s WebSphere Application Server into our
EdgeComputing service and by working with us on numerous
sample applications and customer engagements. In addition, we
are grateful to Gerry Cuomo, Michael Jacob, and Raymie Stata for
helpful comments on this paper. Finally, we must acknowledge
the early contributions of the late Danny Lewin, who believed
from the beginning that EdgeComputing would be valuable to our
customers.

9. REFERENCES
[1] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,

Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and
the Art of Virtualization. ACM Symposium on Operating

186

Systems Principles, Bolton Landing, NY, October 19-22,
2003.

[2] Cuomo, G., Martin, B., Smith, K., Ims, S., Rehn, H.,
Haberkorn, M., and Parikh, J. WebSphere Capacity - On
Demand: Developing EdgeComputing Applications. October
2003. (http://www7b.software.ibm.com/wsdd/library/
techarticles/0310_haberkorn/haberkorn.html)

[3] Global Grid Forum. http://www.gridforum.org.
[4] The Globus Alliance. http://www.globus.org.
[5] IBM Cloudscape. http://www-

306.ibm.com/software/data/cloudscape/.
[6] Jakarta Struts. http://jakarta.apache.org/struts/.

[7] MapPoint service. http://mappoint.msn.com.
[8] Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W.,

Levy, H., and Bershad, B. Instrumentation and Optimization
of Win32/Intel Executables Using Etch. 1997 Usenix NT
Conference.

[9] User-Mode Linux. http://www.usermodelinux.org.
[10] VMware. http://www.vmware.com.
[11] Wall, D. W. Systems for late code modification. In Robert

Giegerich and Susan L. Graham, eds, Code Generation -
Concepts, Tools, Techniques, pp. 275-293, Springer-Verlag,
1992. Also available as HP/Compaq WRL Research Report
92/3, May 1992.

187

