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Abstract 

In this paper we introduce the abacus model of a simplex 
and use it to subdivide a d-simplex into kd d-simplices 
all of the same volume and shape characteristics. The 
construction is an extension of the subdivision method 
of Freudenthal [4]. 

Keywords. Mesh generation, subdivision, tiling, simplex 

shape, symmetry. 

1 Introduction 

It is easy to subdivide a triangle into four similar tri- 

angles all of the same area: cut each edge into equal 
halves and connect the three dividing points. Since the 
triangles are similar we can repeat the operation and 
refine while preserving the triangle shape. Such a con- 
struction does not exist in general for tetrahedra and 
higher-dimensional simplices. 

Result. A subdivision of a d-simplex is a decomposi- 
tion into d-simplices such that each pair is either disjoint 
or meets along a common face. In other words, the 
d-simplices and their faces form a simplicial complex. 
Such complexes are used in engineering and science to 
represent geometric shapes and domains for the pur- 
pose of design, analysis, simulation and visualization. 
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Edgewise Subdivision of a Simplex * 

The main result of this paper is a generalization of the 
triangle 4-division mentioned above that preserves most 
of the symmetry found in the two-dimensional case. 

MAIN THEOREM. For every integer k 2 1 and every d- 
simplex u there is a subdivision into kd d-simplices 
oi with the following properties: 

(1) all ci have the same d-dimensional volume, 

(2) the oi fall into at most $ congruence classes, 

(3) the faces of (T are subdivided the same way, 

(4) repeated subdivision has the same effect as in- 
creasing k, 

(5) except for boundary effects the neighborhoods 
of vertices are translates of each other. 

Figures 4 through 7 show subdivisions satisfying the 
Main Theorem. Properties (1) through (5) are state- 
ments of symmetry. Observe that the number of congru- 
ence classes in Property (2) is independent of k, where 
two simplices belong to the same class iff one is ob- 
tained from the other by a combination of translations, 
rotations, and reflections. Property (3) means that the 
effect of the subdivision on a face of u is exactly the 
subdivision of that face with the same k and the same 
method. Property (4) says that instead of subdivid- 
ing each Ui into ed d-simplices we can subdivide ~7 into 
(kl?)d d-simplices and reach the same result. Property 
(5) implies that we can think of the subdivision as the 
intersection of (T with a periodic tiling of Rd that looks 
the same from every vertex. 

Previous and related work. For k = 2, the sub- 
divisions of the Main Theorem have been described by 
Freudenthal in 1942 [4]. In contrast to our algebraic ap- 
proach, his construction is geometric, as are the related 
triangulations of the d-dimensional cube by Coxeter [2] 
and Kuhn [6]. The 2-dimensional case of Freudenthal’s 
subdivision is the 4-division of the triangle illustrated 
in Figure 4. It is frequently used in the generation of 
2-dimensional grids as well as the modeling of surfaces 
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in space. The S-dimensional case is the 8-division of the 
tetrahedron; see Figure 5. It was studied by Bey [l] and 
by Liu and Joe [7] in the context of adaptive mesh re- 
finement for finite element analysis. F’reudenthal’s sub- 
division for general dimensions was also considered by 
Moore [8] who studied hierarchies for adaptive mesh- 
ing. The work in this paper takes its inspiration from 
the algebraic constructions of Grayson [5]. He subdi- 
vides simplices into Cartesian products of simplices in 
the context of K-theory. This approach leads to a simple 
and purely algebraic description of simplices and subdi- 
visions that is amenable to computer implementations. 

Apart from mesh refinement for finite element anal- 
ysis we see applications of our results in computer 
graphics. The combination of the 4-division of a tri- 
angle with a weighted averaging of vertex positions 
has emerged as a popular tool for surface modeling, 
see for example DeRose et al. [3]. The generalization 
of this method to the manipulation and display of 3- 
and higher-dimensional density distributions requires an 
easy to compute periodic subdivision that does not suf- 
fer from shape deterioration as the simplices get smaller. 
The Main Theorem offers a solution to this problem. 

Outline. Section 2 describes an algorithm that maps 
a point to a simplex containing the point. Section 3 
proves the Main Theorem by collecting the simplices 
generated by the algorithm. Section 4 illustrates and 
discusses sample subdivisions in dimensions 2, 3, 4. Sec- 
tion 5 concludes the paper. 

2 Abacus Model of a Simplex 

We think of a d-simplex primarily as a sequence of d + 1 
numbers in the unit interval. With the introduction 
of this idea we prepare an algebraic interpretation of a 
simplex that frees us from depending on our geometric 
intuition. 

Colored rectangle. Let PO, Pi,. . . , Pd be affinely in- 

dependent points that span a simplex (T in Rd. The 
ordering of the points is important, as it affects the fol- 
lowing construction. If bo, bl, . . . , bd are non-negative 

real numbers that sum to 1 then 

X = f: bi . Pi 
i=o 

is a point in 0. The bi are the burycentric coordi- 
nates of X. We may portray them graphically by 
drawing the unit interval as a rectangle with regions 
colored from 0 through d, making sure to arrange 
the colors from left to right, so that bi is the frac- 
tion of points with color i. Figure 1 illustrates this 
for d = 7 and the point with barycentric coordinates 

Figure 1: The rectangle represents the unit interval with 

points colored from 0 through 7. 

(0.26,0.11,0.07,0.11,0.19,0.08,0.04,0.14). The coordi- 
nates of the dividing lines are displayed above the rect- 
angle. They are provided by the partial sums 0 = 

BO, &, . . . , Bd, Bd+l = 1 with Bi = bo + bl + . . . + b+1. 

B1 through & can be any non-decreasing sequence in 
the unit interval. 

Stack of rectangles. Suppose we chop the rectangle 

in Figure 1 into k pieces of equal width, stack them on 
top of each other, and expand the scale by a factor of 
k in the horizontal direction for clarity; see Figure 2. 
The coordinates of the dividing lines are obtained by 

2 3 4 

s 6 7 / 

Figure 2: The rectangle in Figure 1 is chopped into three 

pieces. which are stacked and expanded. 

multiplying the coordinates of the earlier dividing lines 
by k and discarding the integer part, keeping only the 
fractional part. We discard any duplicates, letting j + 2 
be the number of distinct values remaining. Call these 
numbers 0 = Cc, Cl,. . . , Cj, C,+i = 1, making sure to 

sort them in increasing order. We extend the dividing 
lines vertically until they span the entire stack and label 
each region by its color; see Figure 3. The widths of the 
regions in the stack are ci = Ci+i - Ci, for 0 5 i 5 j. 

Figure 3: Each rectangle is cut into equally many regions, 

and each region keeps the original color of its points. 

Color scheme. The number of regions in each row of 

the stack is j + 1. Forgetting the positions of the vertical 
dividing lines we get a matrix 

X = 
. . . : 

xk,O Xk,l ... xk,j 
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of k(j+l) colors. We call X a color scheme because it de- 
termines the combinatorics but not the geometry of the 
coloring. The matrices that may occur are those whose 
entries are drawn from the set (0, 1, . . . , d}, whose en- 
tries are in non-decreasing order when read like text: 

xl,0 < x1,1 < . * . 5 xl,j 5 x2,0 < . . . 5 xk,j, 

and whose columns are pairwise different. 

Combination of points. The numbers ci sum to 1 

and can therefore be used as barycentric coordinates to 
express our original point X in terms of other points. 
For k not necessarily distinct colors Xi through Xk we 
introduce the notation 

P XIXZ...Xk = (P,, + Px2 + . . . + P,,)/k. 

This way we obtain exactly all points in our d-simplex 
0 whose barycentric coordinates are integer multiples of 
l/k. Each column in a color scheme corresponds to such 
a point. We now show that the ci are the barycentric 
coordinates of X with respect to the points that corre- 
spond to the columns of the color scheme X = X(X, k). 

COMBINATION LEMMA. X = Cizoci. PXl,iXZ,i...Xk,i. 

PROOF. The product k . bi is the total width of regions 
with color i. It follows that the sum, over all entries of 
the color scheme, of Pi/k times the width of the corre- 
sponding region is the sum of bi . Pi. By definition this 
is our original point X. Now consider 

y = c ci * pXl.iX*,i...Xk.i 
i=O 

= ~.~ci.(Px~,,+Px*,~+...+Px~,~), 
z=o 

which is a sum over all entries of the same color scheme. 
Each term corresponds to a column, and the contribu- 
tion of an entry with color i is again Pi/k times the 
width of the corresponding region. Hence X = Y. q 

Independence of points. We prove that the points 
in the Combination Lemma are affinely independent. 
This implies that a color scheme with j + 1 columns 
specifies a j-simplex. The color scheme depends on the 
sequence in which the vertices of u are presented. This 
sequence defines a directed path obtained by concate- 
nating the shape vectors Vi = Pi - Pi-1 for 1 5 i 5 d. 
Since c is non-degenerate, the d shape vectors are lin- 
early independent. 

INDEPENDENCE LEMMA. The points Pxl,ix2,i...xk i de- 
fined by the columns of a color scheme X are afhnely 
independent. 

PROOF. Assume first that X has d+ 1 columns and con- 
sider the vectors connecting points of adjacent columns: 

Because the color scheme is full, the transition from 
column i - 1 to column i changes only a single color, 
and that color increases by 1. Suppose that the color 
increases in row e. We define a permutation r of 
{1,2,. . . ,d} by setting r(i) = Xe,i = Xe,i-i + 1. K 
is indeed a permutation because the transition to r(i) 

occurs exactly once in the matrix X. We find that 

= ’ ’ VT(i). 
k 

The linear independence of the Vi thus implies the linear 
independence of the Vi’, which implies the affine inde- 
pendence of the points PXl,iX2,i...Xk,i. A color scheme 
with j + 1 columns is obtained by removing d-j of the 
d + 1 columns of a full color scheme. The corresponding 
operation for the vectors is addition. Specifically, the d 
linearly independent vectors are grouped into j sums, 
which are again linearly independent vectors and thus 
define a j-simplex. PI 

3 Subdivision of a Simplex 

Section 2 described an algorithm which takes a point 

of CT and produces a smaller simplex within 0 that con- 
tains the point. We use that algorithm to construct a 
subdivision of (T. 

Edgewise subdivision. Each point X E 0 defines a 

unique color scheme X = X(X, k) with k rows. This 
color scheme defines a unique simplex ux, namely the 
one spanned by the points Pxl,ixz,i...xk,i that correspond 
to the columns of x. The edgewise subdivision of cr 
consists of all simplices defined this way by points of 0: 

Esdka = {ox 1 X = x(X,k), X E o}. 

If we delete one or more columns from X we get another 
color scheme X (Y, k), where Y is obtained from X by 
setting one or more of the barycentric coordinates to 
zero and increasing the others accordingly. It follows 
that for each simplex gx the edgewise subdivision con- 
tains all faces of that simplex. A set of simplices with 
that property is a subdivision of o iff the interiors of the 
simplices are pairwise disjoint and the union of interiors 
is (T. We establish the latter two properties for Esdka. 

SUBDIVISION LEMMA. For each k 2 1, Esdka is a sub- 
division of 0‘. 
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PROOF. The algorithm in Section 2 is deterministic and 
maps a point X E cr to a set of barycentric coordinates 
that express X in terms of the vertices of a j-simplex 
ox E (T. These coordinates are positive, which implies 
that X lies in the interior of ~7~. It follows that the 
union of interiors of simplices in Esdka is C. 

What happens if we start at the other end? Sup- 
pose we take a j-simplex ox E Esdka, choose non-zero 
barycentric coordinates CO + cl + . . . + cj = 1 and define 

i=o 

Applying our algorithm to this point Y will lead to the 
same ci and ux because each step in the algorithm is 
uniquely reversible. It follows that the interiors of the 
simplices in Esdka are pairwise disjoint. q 

Number of simplices. To count simplices we exploit 
the one-to-one correspondence between simplices and 
color schemes. For simplices of maximum dimension 
this is straightforward. 

COUNTING LEMMA. If the dimension of CJ is d then the 
number of d-simplices in Esdko is kd. 

PROOF. We may count the simplices in Esdk(T by look- 
ing at the vertical dividing lines as illustrated in Fig- 
ure 2. The color schemes are completely determined by 
working from left to right, and selecting for each divid- 
ing line the row in which it appears. For a d-simplex 
there are d dividing lines, and each.one may appear in 
one of k rows, so there are kd possibilities. q 

To count simplices of dimension j < d is similar but 
more complicated. Now we have j dividing lines and 
each may be multiply defined. Furthermore, the right 
ending line of the stack may also be multiply defined. 
The number of j-simplices in Esdka is therefore equal to 
the number of ways we can draw d not necessarily dis- 
tinct rows from { 1,2,. . . , k} and distribute them over 
the j dividing lines plus one right ending line in such a 
way that each dividing line receives at least one row. 

Volume. For a simplex (I with vertices PO, PI,. . . , Pd 
in lF@ it is known that the d-dimensional volume is 

vola = $.I~~~(P~-PO,P~-PO,...,P~--PO)I. 

We prove Property (1) of the Main Theorem, which 
claims that all d-simplices in the edgewise subdivision 
have the same volume. 

MEASURING LEMMA. The d-dimensional volume of ev- 
ery d-simplex ox E Esdka is vola, = vola/kd. 

PROOF. By definition of the shape.vectors we have Pi - 
PO = K + Vi-1 + . . . + VI. Using elementary column 
operations we find that volume can also be expressed 
using shape vectors: 

vola = $.ldeW,ti,... ,vd)l. 

Permuting the vectors does not affect the absolute value 
of the determinant, and shrinking them to l/k-th their 
original lengths decreases the determinant by a factor 
of l/kd. • l 

Simplex types. We have seen in the proof of the 
Independence Lemma that the shape vectors of a d- 
simplex in the edgewise subdivision are obtained by per- 
muting and shrinking the shape vectors of 0. We use 
this to prove Property (2) of the Main Theorem. 

CONGRUENCE LEMMA. If the dimension of (T is d then 
the number of pairwise non-congruent d-simplices 
in Esdka is at most d!/2. 

PROOF. Esdka contains at most d! types of d-simplices, 

each defined by a permutation of the d shape vectors 
of CT. Reversing the sequence (without reversing the di- 
rections of the vectors) effectively reflects the d-simplex 
through the origin. Reflected simplices are congruent, 
which implies the claimed upper bound. • 3 

In general the upper bound is tight. For sufficiently 
large k all permutations occur, and for generic shape 
vectors two permutations define congruent d-simplices 
only if the permutations are equal or the reverse of each 
other. For special d-simplices (T the congruence classes 
may further collapse. For example if every permuta- 
tion of the d shape vectors can be geometrically realized 
by an orthogonal transformation then we have only one 
congruence class. Such shape vectors are determined by 
their common length and the same angle between every 
pair of vectors. The angle can be chosen anywhere in 
the open interval between 0 and o&r, where ad-1 is the 
angle formed by the vectors connecting the barycenter 
with two vertices of a regular (d - 1)-simplex. For each 
angle in this interval we get a d-simplex that tiles Rd 
with congruent copies of itself. The l-parameter family 
of such simplices was studied already by Moore [8]. Ac- 
cording to Senechal [lo] the problem of characterizing 
all d-simplices that tile E@ is open even for d = 3. 

Symmetry of dimension. Each face T of (T is a sim- 
plex which is subdivided as a consequence of the subdi- 
vision of ~7. We prove Property (3) of the Main Theo- 
rem. 
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FACE LEMMA. Let T be a face of cr and assume the 
vertices of r are ordered as specified by the ordering 
of the vertices of cr. Then Esdkr G Esdka. 

PROOF. Let C = (0, 1, . . . , d} and T c C such that Pi is 
a vertex of I- iff i E T. A point X = c bi *Pi E 0 belongs 
to r iff bi =: 0 for all i E C - T. As a consequence, the 
color scheme X defined by X contains only colors in T. 
Every color scheme with colors drawn from T can be 
obtained from a color scheme with colors drawn from C 
by dropping all columns that contain colors from C - T. 

• l 

Symmetry of scale. It is plausible that a finer edge- 
wise subdivision of u is a subdivision of a coarser edge- 
wise subdivision provided this is true for the edges of 0. 
We prove Property (4) of the Main Theorem. 

REFINEMENT LEMMA. EsdeEsdko = Esdkea. 

PROOF. We show that every simplex in Esdkeo be- 
longs to Esde of a simplex in Esdka. Since Esdkea and 
EsdeEsdka both subdivide rr this implies that the two 
subdivisions are the same. 

Let X = C bi * Pi be a point in (T; and let Bi be the 
sum of the first i barycentric coordinates, as usual. Let 

X = X(X,rC) and X’ = X(X,M) be the corresponding 
color schemes. The coordinates of the dividing lines 
in the corresponding stacks are k . Bi mod 1 and kt . 
Bi mod 1. Equivalently, if C is a dividing line for X 
then e.C mod 1 is a dividing line for X’. In other words, 
the stack of X’ is obtained from that of X by chopping 
each rectangle into C pieces, stacking the pieces, and 
expanding by ! in the horizontal direction for clarity. It 
follows that (TV! E Esdegx . • 3 

Symmetry of location. Ignoring boundary effects, 
the neighborhoods of any two vertices in an edgewise 
subdivision are the same. We prove Property (5) of the 
Main Theorem. 

TRANSLATION LEMMA. Let P, P’ be vertices and 0’ a 
simplex in Esdko. Then o’+( P- P’) either belongs 
to Esdka or its interior lies outside cr. 

PROOF. Consider a point X in the interior of 0 and as- 
sume Y = X + (P - P’) lies within 0. The coordinates 
of P- P’ are integer multiples of l/k. It follows that the 
vertical dividing lines of the stacks defined by X and Y 
are the same, but the rows defining the dividing lines 
may be different. Specifically, the row indices increase 
or decrease depending on the coordinates of P - P’. 
The color scheme x = X(Y, k) differs from X’ = X(X, k) 
by increasing or decreasing colors accordingly. Since 
all points X in the interior of 0’ define the same color 

scheme, all Y = X + (P - P’) define t,he same trans- 
formed color scheme and therefore belong to the interior 
of the same simplex in the edgewise subdivision. This 

simplex is u’ + (P - P’). H 

4 Examples 

This section presents examples of the edgewise subdivi- 
sion for simplices of dimension 2, 3, 4. 

Triangle. Figure 4 shows the edgewise subdivisions 
Esdz and Esds of a triangle. The three vertices are 

co2 003 
. . 

la? -o** 

101 l . 011 

201 . -021 
111 

200 l .020 300. . 030 
110 210 120 

Figure 4: Cdivision to the left and g-division to the right. 

labeled kO0, OkO, OOk indicating the sequence used in the 
construction of the subdivisions. Not that the sequence 
matters, however, since all 6 = 3! permutations lead to 
the same subdivision consisting of k2 similar triangles. 
The vertex labels encode barycentric coordinates: 

xyz = f . kO0 + ; . Ok0 + ; . OOk. 

&division of tetrahedron. The smallest non-trivial 
edgewise subdivision of a tetrahedron 0 is the 8-division 
illustrated in Figure 5. The tetrahedra adjacent to the 

Figure 5: The octahedron in the center of the 8-division 

is decomposed into four tetrahedra surrounding the space 

diagonal. 

four vertices are similar to CT. The four tetrahedra sub- 
dividing the center octahedron are generally not similar 
to g because their shape vectors come in a different 
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sequence. Observe that exactly one diagonal of the oc- 
tahedron belongs to the S-division. Every proper subset 

T c (0, 1,2,3} defines a non-trivial partition into two 
sets and a halfway plane of points with barycentric coor- 
dinates ‘&eT bi = xjeT bj. There are 7 halfway planes, 
and the S-division can be defined by cutting CT with 6 
of them. The only halfway plane not used is defined by 
T = {0,2} and crosses the diagonal that belongs to the 
subdivision. 

\ 

27-division of tetrahedron. The 27-division of u 
shares many of the features of the S-division; see Fig- 
ure 6. It embeds four S-divisions, one adjacent to every 

Figure 6: The 27-division contains four octahedra ar- 

ranged around the tetrahedron in the center, each decom- 

posed into four tetrahedra around parallel space diagonals. 

vertex of IS. Any two such S-divisions overlap in a sin- 
gle tetrahedron adjacent to the middle third of the edge 
joining the two vertices. We have 4 ; 8 - (i) = 26, which 
shows that the four S-divisions cover all tetrahedra ex- 
cept the one in the center of the 27-division. 

l&division of 4-simplex. We are not able to draw 
the entire 16-division, but we can draw the 4-simplex (T 
and argue about its 16-division. A 3-simplex is usually 
drawn as a convex quadrilateral in lR* simultaneously 
subdivided into two triangles in the two ways possible. 
Two of the triangles are in the back and the other two 
are in the front. By analogy we think of a 4-simplex as 
a convex double tetrahedron in R3 simultaneously sub- 
divided into two tetrahedra and into three tetrahedra. 
Maybe the three tetrahedra are in the front and the 
two are in the back. Figure 7 shows two copies of the 4- 
simplex with front tetrahedra 1203,2403,4103 and back 
tetrahedra 0124,3124. For k = 2 the color scheme of an 
edge is a 2-by-2 matrix with entries from (0, 1,2,3,4}. 
At least one of the colors is not used, which implies 
that all edges in the lgdivision belong to the subdivi- 
sions of proper faces. We can therefore draw all edges 
by superimposing the edges of the five S-divisions in the 
boundary of u. 

Figure 7: Two views of a 4-simplex. To the left the dotted 

lines show the 8-division of one tetrahedral face. To the 

right the dotted lines decompose a Mobius strip in the 

interior of the Csimplex into five triangles. 

The simplices that decompose the interior of (T cor- 
respond to color schemes that use all five colors. There 
are only 5 triangles because there are only that many 
2-by-3 matrices with five colors: 

As illustrated in Figure 7, the triangles form a Mobius 
strip one time around the center of u. The five solid 
edges form the boundary of the strip and the five dot- 
ted edges cut it into five triangles. Similarly we find 20 
tetrahedra that do not lie in the boundary and decom- 
pose 0 into 24 = 16 4-simplices. 

5 Discussion 

This paper introduces the edgewise subdivision of a d- 
simplex and proves it is symmetric in dimension, in 
scale, and in location. The main ingredient in the con- 
struction is the abacus model of a simplex, which leads 
to a mechanical description of the subdivision amenable 
to computer implementations. 

Variation. The abacus model can also be used to de- 
compose a d-simplex into Cartesian products of sim- 
plices. Such decompositions are by-products of edgewise 
subdivisions. We return to the stack of rectangles as il- 
lustrated in Figure 2. Each rectangle contains dividers 
which are allowed to move freely between the left and 
the right end, except they cannot switch places. Each 
rectangle represents a simplex, and the stack represents 
the Cartesian product of these simplices. In lR3 we have 
three types of 3-dimensional Cartesian products: tetra- 
hedra, triangular prisms, and parallelepipeds. Figure 
8 illustrates the decomposition for k = 3, which is the 
smallest integer for which all three types arise. Compare 
this with the 27-division in Figure 6. 
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[9] V. N. PARTHASARATHY. On tetrahedron shape distor- 

tion measures. Internet. J. Numer. Methods Engrg., 

1991. 

[lo] M. SENECHAL. Which tetrahedra fill space? Math. 

Mug. 54 (1981) 227-243. 

Figure 8: The tetrahedron is decomposed into three tetra- 

hedra, six triangular prisms, and one parallelepiped. Each 

bounding triangle is decomposed into three triangles and 

three rhombi. 

Questions. For d = 2 there is only one edgewise sub- 

division per triangle and per integer k 2 1. For d = 3 
there are three different edgewise subdivisions for each 
k, each one defined by the cyclic rotations and reversals 
of a permutation of the 4 vertices. How many edgewise 
subdivisions are there for general d > 3? A related ques- 
tion is the identification of the best edgewise subdivision 
for a given measure of simplex shape. Particular mea- 
sures have been studied by Parthasarathy [9] and others. 
Which permutation of the vertices of a d-simplex defines 
the edgewise subdivision that maximizes the minimum 
or the average shape measure of its simplices? 
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