EDGEWORTH EXPANSION FOR ONE－SAMPLE \＄U \＄－ STATISTICS

Maesono，Yoshihiko
Department of Mathematics，Faculty of Science，Kagoshima University
https：／／doi．org／10．5109／13386

出版情報：Bulletin of informatics and cybernetics． 22 （3／4），pp．189－197，1987－03．統計科学研究会
バージョン：
権利関係：

EDGEWORTH EXPANSION FOR ONE-SAMPLE U-STATISTICS

By

Yoshihiko Maesono*

Abstract

Under some regularity conditions on kernel, an asymptotic expansion with remainder term $o\left(N^{-1}\right)$ is established for one-sample U-statistics with kernel of arbitrary degree. This is an extension of the result by Callaert, Janssen and Veraverbeke [1].

1. Introduction

Let $X_{1}, X_{2}, \cdots, X_{N}$, be independently and identically distributed random variables with common distribution function F. Let h be symmetric function of its arguments, satisfying $\operatorname{Eh}\left(X_{1}, X_{2}, \cdots, X_{r}\right)=0$ with $r \leqq N, \quad h$ is called a kernel and r is called its degree. We shall define a one-sample U-statistic with a kernel of degree r, h, by

$$
U_{N}=\binom{N}{r}^{-1} \Sigma_{1 \leqslant i_{1}<i_{2}<\cdots<i_{r} \leqslant N} h\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{r}}\right) .
$$

In the case of degree two, Callaert, Janssen and Veraverbeke [1] have obtained the asymptotic expansion of the distribution of U_{N} with the remainder term $o\left(N^{-1}\right)$. In this paper, using the forward martingale characterization of U_{N}, we obtain an asymptotic expansion of U_{N} with a kernel of arbitrary degree r. In Section 2 we obtain a representation for U_{N} in terms of forward martingales, and get the bounds of absolute moments of martingales. We state the main theorem in Section 3 and prove it in Section 4.

2. Preliminaries

We shall represent U_{N} in terms of forward martingales. This representation is due to Hoeffding [5] (cf. Serfling [7] p. 178). Under the assumption $E\left|h\left(X_{1}, X_{2}, \cdots, X_{r}\right)\right|<\infty$, let us define the following notations: for $1 \leqq k \leqq r$

$$
\begin{aligned}
& w_{k}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=E\left\{h\left(X_{1}, X_{2}, \cdots, X_{r}\right) \mid X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{k}=x_{k}\right\}, \\
& g_{1}\left(x_{1}\right)=w_{1}\left(x_{1}\right), g_{2}\left(x_{1}, x_{2}\right)=w_{2}\left(x_{1}, x_{2}\right)-\sum_{i=1}^{2} g_{1}\left(x_{i}\right) \\
& \cdots \cdots
\end{aligned}, \begin{aligned}
& g_{r}\left(x_{1}, x_{2}, \cdots, x_{r}\right)= w_{r}\left(x_{1}, x_{2}, \cdots, x_{r}\right)-\sum_{1 \leq i_{1}<\cdots<i_{r-1} \leq r} g_{r-1}\left(x_{i_{1}}, \cdots, x_{i_{r-1}}\right) \\
& \quad-\sum_{1 \leq i_{1}<\cdots<i_{r-2} \leq r} g_{r-2}\left(x_{i_{1}}, \cdots, x_{i_{r-2}}\right)-\cdots-\sum_{i=1}^{r} g_{1}\left(x_{i}\right),
\end{aligned}
$$

[^0]and
$$
A_{k, N}=\sum_{1 \leqq i_{1}<i_{2}<\cdots<i_{k} \leqq N} g_{k}\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{k}}\right), \text { for } 1 \leqq k \leqq r .
$$

Then U_{N} can be rewritten as

$$
U_{N}=\binom{N}{r}^{-1} \sum_{k=1}^{r}\binom{N-k}{r-k} A_{k, N} .
$$

It is shown in the proof of Lemma 2 that $\left\{A_{k, N}\right\}_{N \geq k}$ is a forward martingale for each $k=1,2, \cdots, r$.

By the definition of g_{k}, it is easily shown that if one of $\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ is not contained in $\left\{j_{1}, j_{2}, \cdots, j_{s}\right\}$, then

$$
\begin{equation*}
E\left\{g_{k}\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{k}}\right) \mid X_{j_{1}}, X_{j_{2}}, \cdots, X_{j_{s}}\right\}=0 . \tag{2.1}
\end{equation*}
$$

Using this property, we can prove the useful two lemmas.
Lemma 1. If $E\left|g_{k}\left(X_{1}, X_{2}, \cdots, X_{k}\right)\right|<\infty$ and one of $\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ is not contained in $\left\{j_{1}, j_{2}, \cdots, j_{s}\right\}$, then for f satisfying $E\left|f g_{k}\right|<\infty$,

$$
E\left\{f\left(X_{j_{1}}, X_{j_{2}}, \cdots, X_{j_{s}}\right) g_{k}\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{k}}\right)\right\}=0 .
$$

Proof. Taking the conditional expectation, we have the desired result from (2.1).
Before describing the next lemma, we prepare the notations. For $1 \leqq N_{1}<N_{2}<\cdots$ $<N_{k} \leqq N$ and $1 \leqq k \leqq r$, let us define

$$
\begin{aligned}
B_{k}\left(N_{1}, N_{2}, \cdots, N_{k}\right)= & \sum_{i_{1}=1}^{N_{1}} \sum_{i_{2}=i_{1}+1}^{N_{2}} \cdots \\
& \sum_{i_{k}=i_{k-1}+1}^{N_{k}} g_{k}\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{k}}\right) .
\end{aligned}
$$

Then we have the upper bound of the p th absolute moment of B_{k}.
Lemma 2. Given the existence of the pth ($p \geqq 2$) absolute moment of kernel h, there exist a positive constant C such that

$$
\begin{equation*}
E\left|B_{k}\left(N_{1}, N_{2}, \cdots, N_{k}\right)\right|^{p} \leqq C\left(\prod_{i=1}^{k} N_{i}\right)^{p / 2} . \tag{2.2}
\end{equation*}
$$

If the second moment of kernel h is finite, the inequality (2.2) holds also with $p=1$.
Proof. The latter part of the lemma immediately follows from the former. Therefore we consider the case $p \geqq 2$. By induction on s we prove the following inequality for $1 \leqq s \leqq k$ and $1 \leqq m_{1}<m_{2}<\cdots<m_{s}<i_{s+1}, \cdots, i_{k}$,

$$
\begin{align*}
& E\left|\sum_{i=1}^{m_{1}^{1}} \sum_{i_{2}=i_{1}+1}^{m_{1}} \cdots \sum_{i_{s} i_{s-1}+1}^{m_{s}} g_{k}\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{s}}, \cdots, X_{i_{k}}\right)\right|^{p} \\
& \leqq\left(C_{p}\right)^{s} E\left|g_{k}\left(X_{1}, X_{2}, \cdots, X_{k}\right)\right|^{p}\left(\Pi_{i=1}^{s} m_{i}\right)^{p / 2} \tag{2.3}
\end{align*}
$$

where $C_{p}=\left\{8(p-1) \max \left(1,2^{p-3}\right)\right\}^{p}$.
When $s=1$, let $Y_{j}=\sum_{i_{1}=1}^{j} g_{k}\left(X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{k}}\right)$ for $j=1,2, \cdots, m_{1}$. Then for $j=$ $1,2, \cdots, m_{1}$, we have $Y_{j}-Y_{j-1}=g_{k}\left(X_{j}, X_{i_{2}}, \cdots, X_{i_{k}}\right)$ and $j<i_{2}, i_{3}, \cdots, i_{k}$, where $Y_{0}=0$. Since $Y_{1}, Y_{2}, \cdots, Y_{j-1}$ are functions of $X_{1}, X_{2}, \cdots, X_{j-1}, X_{i_{2}}, \cdots, X_{i_{k}}$, we find from (2.1) that

$$
\begin{aligned}
& E\left\{Y_{j}-Y_{j-1} \mid Y_{1}, Y_{2}, \cdots, Y_{j-1}\right\} \\
& =E\left(E\left\{g_{k}\left(X_{j}, X_{i_{2}}, \cdots, X_{i_{k}}\right) \mid X_{1}, X_{2}, \cdots, X_{j-1}, X_{i_{2}}, \cdots, X_{i_{k}}\right\} \mid Y_{1}, Y_{2}, \cdots, Y_{j-1}\right)=0 .
\end{aligned}
$$

Therefore $\left\{Y_{j}\right\}_{0 \leq j \leq m_{1}}$ is a forward martingale. Applying an upper bound for moments of martingales obtained by Dharmadhikari, Fabian and Jogdeo [2], we have the inequality (2.3) when $s=1$.

Assume that (2.3) holds for $1,2, \cdots, s-1$ instead of s. For $s \leqq j \leqq m_{s}$, put $\tilde{m}_{i}(j)=$ $\min \left(m_{i}, j-s+i\right)$ (for $\left.i=1,2, \cdots, s-1\right)$ and

$$
Z_{j}=\sum_{i_{1}=1}^{\tilde{m}_{1}(j)} \cdots \sum_{i_{s-1}=i_{s}-2_{1}}^{\tilde{m}_{s-1}(j)} \sum_{i_{s}=i_{s-1}+1}^{j} g_{k}\left(X_{i_{1}}, \cdots, X_{i_{s-1}}, X_{i_{s}}, \cdots, X_{i_{k}}\right) .
$$

Then in the same way of $s=1,\left\{Z_{j}\right\}_{0 \leq j \leq m_{s}}$ is a forward martingale, where $Z_{j}=0$ for $0 \leqq j<s$. Hence using the result of Dharmadhikari et al. [2], we get the inequality (2.3) for s. Thus we have the desired result.

3. Main Theorem

Before we state the main theorem, we define the following notations:

$$
\begin{aligned}
& \xi_{k}^{2}= E g_{k}^{2}\left(X_{1}, X_{2}, \cdots, X_{k}\right) \quad \text { for } 1 \leqq k \leqq r, \\
& \sigma_{N}^{2}= E\left\{U_{N}\right\}^{2}=\frac{r^{2}}{N} \xi_{1}^{2}+\frac{\{r(r-1)\}^{2}}{2 N(N-1)} \xi_{2}^{2}+\cdots+\frac{r!}{N(N-1) \cdots(N-r+1)} \xi_{r}^{2}, \\
& \eta(t)= E\left(\exp \left\{i t g_{1}\left(X_{1}\right)\right\}\right), \\
& \zeta(x, y)=w_{2}(x, y)-\frac{r-2}{r-1}\left\{g_{1}(x)+g_{1}(y)\right\} \quad \text { for } r \geqq 2, \\
& \kappa_{3}= \xi_{1}^{-3}\left(E g_{1}^{3}\left(X_{1}\right)+3(r-1) E\left\{g_{1}\left(X_{1}\right) g_{1}\left(X_{2}\right) g_{2}\left(X_{1}, X_{2}\right)\right\}\right), \\
& \kappa_{4}= \xi_{1}^{-4}\left(E g_{1}^{4}\left(X_{1}\right)-3 \xi_{1}^{4}+12(r-1) E\left\{g_{1}^{2}\left(X_{1}\right) g_{1}\left(X_{2}\right) g_{2}\left(X_{1}, X_{2}\right)\right\}\right. \\
&+12(r-1)^{2} E\left\{g_{1}\left(X_{2}\right) g_{1}\left(X_{3}\right) g_{2}\left(X_{1}, X_{2}\right) g_{2}\left(X_{1}, X_{3}\right)\right\} \\
&\left.+4(r-1)(r-2) E\left\{g_{1}\left(X_{1}\right) g_{1}\left(X_{2}\right) g_{1}\left(X_{3}\right) g_{3}\left(X_{1}, X_{2}, X_{3}\right)\right\}\right),
\end{aligned}
$$

and

$$
Q_{N}(x)=\Phi(x)-\phi(x)\left\{\frac{\kappa_{3}}{6 N^{1 / 2}}\left(x^{2}-1\right)+\frac{\kappa_{4}}{24 N}\left(x^{3}-3 x\right)+\frac{\boldsymbol{\kappa}_{3}^{2}}{72 N}\left(x^{5}-10 x^{3}+15 x\right)\right\}
$$

where $\Phi(x)$ and $\phi(x)$ denote the distribution function and the density of the standard normal distribution.

Theorem. If the following conditions are satisfied (when $r=1$, the condition (C) must be omitted)
(A) $E\left|h\left(X_{1}, X_{2}, \cdots, X_{r}\right)\right|^{5}<\infty$
(B) $\quad \lim \sup _{|t|-\infty}|\eta(t)|<1$
(C) there exist positive constants $c<1$ and $\alpha<1 / 8$ such that for $m=\left[N^{\alpha}\right]$,

$$
\begin{aligned}
& P\left(\left|E\left(\left.\exp \left\{i t \sigma_{N}^{-1} \frac{r(r-1)}{N(N-1)} \sum_{j=m+1}^{N} \zeta\left(X_{1}, X_{j}\right)\right\} \right\rvert\, X_{m+1}, \cdots, X_{N}\right)\right| \leqq c\right) \\
& \geqq 1-o\left(\frac{1}{N \log ^{\prime} N}\right)
\end{aligned}
$$

uniformly for all $t \in\left[N^{3 / 4} / \log N, N \log N\right]$ then

$$
\sup _{x}\left|P\left(\sigma_{N}^{-1} U_{N} \leqq x\right)-Q_{N}(x)\right|=o\left(N^{-1}\right)
$$

Remark 1. Instead of condition (A), the asymptotic expansion is valid under the existence of a fourth moment of kernel h. Lin [6] has proved it in the case of onesample U-statistics with kernel of degree two. For arbitrary degree, we can similarly prove it by the way of Lin [6].

Remark 2. The asymptotic expansion with remainder term $o\left(N^{-1 / 2}\right)$ is valid without condition (C).

4. Proof of the Theorem

For $r=1, U_{N}$ is a sum of independently and identically distributed random variables and the expansion of U_{N} has been obtained already (cf. Gnedenko and Kolmogorov [4]). Then we consider the case $r \geqq 2$.

Let

$$
\Psi_{N}(t)=E\left\{\exp \left(i t \sigma_{N}^{-1} U_{N}\right)\right\}
$$

and for $s=1,2,3$,

$$
{ }_{s} \Psi_{N}(t)=E\left\{\exp \left(i t \sum_{k=1}^{6-s} d_{k \cdot N} A_{k, N}\right)\right\}
$$

where

$$
d_{k, N}=\sigma_{N}^{-1}\binom{N}{r}^{-1}\binom{N-k}{r-k}
$$

Then for ${ }_{2} \Psi_{N}(t)$, we have the following lemma.
Lemma 3. If (A) is satisfied, then there exist positive constants $K_{s}(s=1,2, \cdots, 6)$ such that for all $t(-\infty<t<\infty)$, all integers N and m with $6<m<N-2$

$$
\begin{align*}
\left.\right|_{2} \Psi_{N}(t) \mid \leqq & \left|\eta\left(\frac{r t}{N \sigma_{N}}\right)\right|^{m-6}\left(K_{1} \sum_{s=0}^{3}|t|^{s} d_{2, N}^{s} m^{s} N^{s}+K_{2}|t| d_{3, N} m N^{2}\right) \\
& +K_{3} t^{4} d_{2, N}^{4} m^{2} N^{2}+K_{4} t^{2} d_{2, N} d_{3, N} m N^{3 / 2} \\
& +K_{5} t^{2} d_{3, N}^{2} m N^{2}+K_{6}|t| d_{4, N} m^{1 / 2} N^{3 / 2} . \tag{4.1}
\end{align*}
$$

Note that if $r=2$, the terms which include $d_{3, N}$ or $d_{4, N}$ are omitted. Similarly we omit $K_{6}|t| d_{4, N} m^{1 / 2} N^{3 / 2}$, if $r=3$.

Proof. See Appendix 1.
Furthermore, for ${ }_{1} \Psi_{N}(t)$ we have Lemma 4.
Lemma 4. If (A) is satisfied, then there exist positive constants $M_{s}(s=1,2, \cdots, 12)$ such that for all $t(-\infty<t<\infty)$, all integers N and m with $8<m<N-3$

$$
\begin{align*}
\left.\right|_{1} \Psi_{N}(t) \mid \leqq & E\left(\left|E\left(\exp \left\{i t d_{2, N} \sum_{j=m+1}^{N} \zeta\left(X_{1}, X_{j}\right)\right\} \mid X_{m+1}, \cdots, X_{N}\right)\right|^{m-8}\right) \\
& \times\left(M_{1} \sum_{s=0}^{1}|t|^{s+1} d_{2, N}^{s} d_{4, N} m^{2 s+1} N^{3}+M_{2} \sum_{s=0}^{1}|t|^{s+2} d_{2, N}^{s} d_{3, N}^{2} m^{2(s+1)} N^{4}\right. \\
& \left.+M_{3} \sum_{s=0}^{2}|t|^{s+1} d_{2, N}^{s} d_{3, N} m^{2 s+1} N^{2}+M_{4} \sum_{s=0}^{3}|t|^{s} d_{2, N}^{s} m^{2 s}\right) \\
& +M_{5}|t|^{3} d_{2, N}^{2} d_{4, N} m^{9 / 2} N^{3 / 2}+M_{6} t^{2} d_{3, N} d_{4, N} m N^{5 / 2} \\
& +M_{7} t^{4} d_{2, N}^{2} d_{3, N}^{2} m^{5} N^{2}+M_{8} t^{4} d_{2, N}^{3} d_{3, N} m^{13 / 2} N \\
& +M_{9} t^{4} d_{2, N}^{4} m^{8}+M_{10}|t|^{3} d_{3, N}^{3} m^{3 / 2} N^{3} \\
& +M_{11} t^{2} d_{4, N}^{2} m N^{3}+M_{12}|t| d_{5, N} m^{1 / 2} N^{2} . \tag{4.2}
\end{align*}
$$

Note that if $r=2$, the terms which include $d_{3, N}, d_{4, N}$ or $d_{5, N}$ are omitted. Similarly if
$r=3$, we omit the terms which include $d_{4, N}$ or $d_{5, N}$, and if $r=4$, omit $M_{12}|t| d_{5, N} m^{1 / 2} N^{2}$.
Proof. See Appendix 2.
Now applying Lemma 3, 4 and Esseen's smoothing lemma [3] we shall prove the Theorem. In the sequel, we consider the proof for the case $r \geqq 5$. When $r=2,3,4$, we can prove the Theorem more easily.

Let

$$
\begin{aligned}
\tilde{\Psi}_{N}(t) & =\int_{-\infty}^{\infty} \exp (i t x) d Q_{N}(x) \\
& =\exp \left(-\frac{t^{2}}{2}\right)\left\{1+\frac{\kappa_{3}}{6 N^{1 / 2}}(i t)^{3}+\frac{\kappa_{4}}{24 N}(i t)^{4}+\frac{\kappa_{3}^{2}}{72 N}(i t)^{6}\right\}
\end{aligned}
$$

From smoothing lemma, we have

$$
\sup _{x}\left|P\left(\sigma_{N}^{-1} U_{N} \leqq x\right)-Q_{N}(x)\right| \leqq \frac{1}{\pi} \int_{-N \log N}^{N \log N}|t|^{-1}\left|\Psi_{N}(t)-\tilde{\Psi}_{N}(t)\right| d t+o\left(N^{-1}\right)
$$

Since the proof for the negative part of t is similar to that for the positive one, we shall show that

$$
\int_{0}^{N \log N} t^{-1}\left|\Psi_{N}(t)-\tilde{\Psi}_{N}(t)\right| d t=o\left(N^{-1}\right)
$$

Since $d_{k, N}=O\left(N^{1 / 2-k}\right)$ and $E\left|A_{k, N}\right| \leqq O\left(N^{k / 2}\right)$ from (2.2) in Lemma 2,

$$
\begin{aligned}
\int_{0}^{N \log N}{ }_{t}{ }^{-1}\left|\Psi_{N}(t)-{ }_{1} \Psi_{N}(t)\right| d t & \leqq \sum_{k=6}^{r} d_{k, N} E\left|A_{k, N}\right| \int_{0}^{N \log N} d t \\
& =o\left(N^{-1}\right)
\end{aligned}
$$

Similary we have
and

$$
\left.\int_{0}^{N^{3 / 4} / \log N} t^{-1}\right|_{1} \Psi_{N}(t)-{ }_{2} \Psi_{N}(t) \mid d t=o\left(N^{-1}\right)
$$

$$
\left.\int_{0}^{N^{1 / 4} / \log N} t^{-1}\right|_{2} \Psi_{N}(t)-{ }_{3} \Psi_{N}(t) \mid d t=o\left(N^{-1}\right)
$$

Then, putting

$$
\begin{aligned}
& \text { (I) }=\int_{0}^{\left.N^{1 / 4 / \log N} t^{-1}\right|_{3} \Psi_{N}(t)-\tilde{\Psi}_{N}(t) \mid d t} \\
& \text { (II) }=\left.\int_{N^{1 / 4} / \log N}^{N^{3 / 4} / \log N} t^{-1}\right|_{2} \Psi_{N}(t) \mid d t \\
& \text { (III) }=\left.\int_{N^{3 / 4} / \log N}^{N \log N} t^{-1}\right|_{1} \Psi_{N}(t) \mid d t
\end{aligned}
$$

and

$$
(\mathrm{IV})=\int_{\log N}^{\infty} t^{-1}\left|\tilde{\Psi}_{N}(t)\right| d t
$$

we have

$$
\begin{equation*}
\int_{0}^{N \log N} t^{-1}\left|\Psi_{N}(t)-\tilde{\Psi}_{N}(t)\right| d t \leqq(\mathrm{I})+(\text { II })+(\text { III })+(\mathrm{IV})+o\left(N^{-1}\right) \tag{4.3}
\end{equation*}
$$

It immediately follows from condition (A) that $(\mathrm{IV})=o\left(N^{-1}\right)$. Next, we shall prove that (I), (II) and (III) are $o\left(N^{-1}\right)$.

Order of (I): Let us define

$$
\begin{aligned}
\Psi_{N}^{*}(t)= & E\left(\exp \left(i t d_{1, N} A_{1, N}\right)\left\{1+i t d_{2, N} A_{2, N}+\frac{(i t)^{2}}{2} d_{2, N}^{2} A_{2, N}^{2}\right\}\right) \\
& +E\left(i t d_{3, N} A_{3, N} \exp \left(i t d_{1, N} A_{1, N}\right)\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \int_{0}^{N^{1 / 4 /} / \log N}{ }^{-1}\left|\Psi_{N}^{*}(t)-{ }_{3} \Psi_{N}(t)\right| d t \\
& \leqq \int_{0}^{N^{1 / 4 / 10 g} N} t^{-1} \mid E\left(\operatorname { e x p } (i t d _ { 1 , N } A _ { 1 , N }) \left\{\exp \left(i t d_{2, N} A_{2, N}\right)-\left(1+i t d_{2, N} A_{2, N}\right.\right.\right. \\
& \left.\left.\left.\quad+\frac{(i t)^{2}}{2} d_{2, N}^{2} A_{2, N}^{2}\right)\right\}\right)\left|d t+\int_{0}^{N^{1 / 4} / \log N}{ }^{-1}\right| E\left(i t d_{3, N} A_{3, N} \exp \left(i t d_{1, N} A_{1, N}\right)\right. \\
& \left.\quad \times\left\{\exp \left(i t d_{2, N} A_{2, N}\right)-1\right\}\right) \mid d t+o\left(N^{-1}\right) .
\end{aligned}
$$

Using the similar way which has been described in Callaert et al. [1] pp 304-306, we can establish that the first term is $o\left(N^{-1}\right)$. Applying Schwartz's inequality and (2.2) in Lemma 2, we can easily obtain the order of the second term.

Now we evaluate the difference of $\Psi_{N}^{*}(t)$ and $\tilde{\Psi}_{N}(t)$. From Lemma $1 \Psi_{N}^{*}(t)$ can be rewritten as

$$
\begin{aligned}
\Psi_{N}^{*}(t)= & \eta^{N}\left(d_{1, N} t\right)+i t \eta^{N-2}\left(d_{1, N} t\right) d_{2, N} \frac{N(N-1)}{2} E\left(\exp \left\{i t d_{1, N}\left(g_{1}\left(X_{1}\right)+g_{1}\left(X_{2}\right)\right)\right\} g_{2}\left(X_{1}, X_{2}\right)\right) \\
& +\frac{(i t)^{2}}{2} \eta^{N-2}\left(d_{1, N} t\right) d_{2, N}^{2} \frac{N(N-1)}{2} E\left(\exp \left\{i t d_{1, N}\left(g_{1}\left(X_{1}\right)+g_{1}\left(X_{2}\right)\right)\right\} g_{2}^{2}\left(X_{1}, X_{2}\right)\right) \\
& +\frac{(i t)^{2}}{2} \eta^{N-3}\left(d_{1, N} t\right) d_{2, N}^{2} N(N-1)(N-2) E\left(\operatorname { e x p } \left\{i t d _ { 1 , N } \left(g_{1}\left(X_{1}\right)+g_{1}\left(X_{2}\right)\right.\right.\right. \\
& \left.\left.\left.+g_{1}\left(X_{3}\right)\right)\right\} g_{2}\left(X_{1}, X_{2}\right) g_{2}\left(X_{1}, X_{3}\right)\right)+\frac{(i t)^{2}}{2} \eta^{N-4}\left(d_{1, N} t\right) d_{2, N}^{2} \frac{N(N-1)(N-2)(N-3)}{4} \\
& \times\left\{E\left(\exp \left\{i t d_{1, N}\left(g_{1}\left(X_{1}\right)+g_{1}\left(X_{2}\right)\right)\right\} g_{2}\left(X_{1}, X_{2}\right)\right)\right\}^{2}+i t \eta^{N-3}\left(d_{1, N} t\right) d_{3, N} \frac{N(N-1)(N-2)}{6} \\
& \times E\left(\exp \left\{i t d_{1, N}\left(g_{1}\left(X_{1}\right)+g_{1}\left(X_{2}\right)+g_{1}\left(X_{3}\right)\right)\right\} g_{3}\left(X_{1}, X_{2}, X_{3}\right)\right) .
\end{aligned}
$$

Let us denote $\Psi_{N}^{*}(t)$ by

$$
\begin{aligned}
\Psi_{N}^{*}(t)= & I_{0}^{*}+i t d_{2, N} \frac{N(N-1)}{2} I_{2}^{*} E_{1}^{*}+\frac{(i t)^{2}}{2} d_{2, N}^{2} \frac{N(N-1)}{2} I_{2}^{*} E_{2}^{*} \\
& +\frac{(i t)^{2}}{2} d_{2, N}^{2} N(N-1)(N-2) I_{3}^{*} E_{3}^{*}+\frac{(i t)^{2}}{2} d_{2, N}^{2} \frac{N(N-1)(N-2)(N-3)}{4} I_{1}^{*} E_{4}^{*} \\
& +i t d_{3, N} \frac{N(N-1)(N-2)}{6} I_{3}^{*} E_{5}^{*} .
\end{aligned}
$$

Then approximations of I_{k}^{*} and E_{k}^{*} are given as follows:

$$
\begin{aligned}
I_{k}= & \exp \left(-\frac{t^{2}}{2}\right)\left(1-\frac{(i t)^{2}}{2 N}\left\{\frac{(r-1)^{2} \xi_{2}^{2}}{2 \xi_{1}^{2}}+k\right\}+\frac{(i t)^{3}}{6 N^{1 / 2} \xi_{1}^{3}} E g_{1}^{3}\left(X_{1}\right)\right. \\
& \left.+\frac{(i t)^{4}}{24 N \xi_{1}^{4}}\left\{E g_{1}^{4}\left(X_{1}\right)-3 \xi_{1}^{4}\right\}+\frac{(i t)^{6}}{72 N \xi_{1}^{i}}\left\{E g_{1}^{3}\left(X_{1}\right)\right\}^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
E_{1}= & \frac{(i t)^{2}}{N \xi_{1}^{2}} E\left\{g_{1}\left(X_{1}\right) g_{1}\left(X_{2}\right) g_{2}\left(X_{1}, X_{2}\right)\right\} \\
& +\frac{(i t)^{3}}{N^{3 / 2} \xi_{1}^{3}} E\left\{g_{1}^{2}\left(X_{1}\right) g_{1}\left(X_{2}\right) g_{2}\left(X_{1}, X_{2}\right)\right\}, \\
E_{2}= & E g_{2}^{2}\left(X_{1}, X_{2}\right) \\
E_{3}= & \frac{(i t)^{2}}{N \xi_{1}^{2}} E\left\{g_{1}\left(X_{2}\right) g_{1}\left(X_{3}\right) g_{2}\left(X_{1}, X_{2}\right) g_{2}\left(X_{1}, X_{3}\right)\right\}, \\
E_{4}= & \left(\frac{(i t)^{2}}{N \xi_{1}^{2}} E\left\{g_{1}\left(X_{1}\right) g_{1}\left(X_{2}\right) g_{2}\left(X_{1}, X_{2}\right)\right\}\right)^{2} \\
E_{5}= & \frac{(i t)^{3}}{N^{3 / 2} \xi_{1}^{3}} E\left\{g_{1}\left(X_{1}\right) g_{1}\left(X_{2}\right) g_{1}\left(X_{3}\right) g_{3}\left(X_{1}, X_{2}, X_{3}\right)\right\}
\end{aligned}
$$

By the same way of Lemma 2 as Callaert et al. [1], there exist positive constants ε and a such that for $0 \leqq t \leqq \varepsilon N^{1 / 2}$,

$$
\left|I_{k}^{*}-I_{k}\right| \leqq o\left(N^{-1}\right) P(t) \exp \left(-a t^{2}\right)
$$

where $P(t)$ is a polynomial in t.
Furthermore, from condition (A), and $\sigma_{N}^{-1}=N^{1 / 2}\left(\xi_{1} r\right)^{-1}\left(1+O\left(N^{-1}\right)\right)$, we have the following inequalities:

$$
\begin{aligned}
& \left|E_{1}^{*}-E_{1}\right| \leqq t^{4} O\left(N^{-2}\right)+t^{2} O\left(N^{-2}\right)+|t|^{3} O\left(N^{-5 / 2}\right), \\
& \left|E_{2}^{*}-E_{2}\right| \leqq|t| O\left(N^{-1 / 2}\right), \\
& \left|E_{3}^{*}-E_{3}\right| \leqq|t|^{3} O\left(N^{-3 / 2}\right)+t^{2} O\left(N^{-2}\right), \\
& \left|E_{4}^{*}-E_{4}\right| \leqq|t|^{5} O\left(N^{-5 / 2}\right)+t^{6} O\left(N^{-3}\right)+t^{4} O\left(N^{-3}\right), \\
& \left|E_{5}^{*}-E_{5}\right| \leqq t^{4} O\left(N^{-2}\right)+|t|^{3} O\left(N^{-5 / 2}\right) .
\end{aligned}
$$

Define

$$
\begin{aligned}
\tilde{\Psi}_{N}^{*}(t)= & I_{0}+i t d_{2, N} \frac{N(N-1)}{2} I_{2} E_{1}+\frac{(i t)^{2}}{2} d_{2, N}^{2} \frac{N(N-1)}{2} I_{2} E_{2} \\
& +\frac{(i t)^{2}}{2} d_{2, N}^{2} N(N-1)(N-2) I_{3} E_{3}+\frac{(i t)^{2}}{2} d_{2, N}^{2} \frac{N(N-1)(N-2)(N-3)}{4} I_{4} E_{4} \\
& +i t d_{3, N} \frac{N(N-1)(N-2)}{6} I_{3} E_{5} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \int_{0}^{N^{1 / 4 / \log N}} t^{-1}\left|\Psi_{N}^{*}(t)-\widetilde{\Psi}_{N}(t)\right| d t \\
& \leqq \int_{0}^{N^{1 / 4} / \log N} t^{-1}\left|\Psi_{N}^{*}(t)-\tilde{\Psi}_{N}^{*}(t)\right| d t+\int_{0}^{N^{1 / 4} / \log N} t^{-1}\left|\tilde{\Psi}_{N}^{*}(t)-\tilde{\Psi}_{N}(t)\right| d t .
\end{aligned}
$$

Since $\sigma_{N}^{-1}=N^{1 / 2}\left(\xi_{1} r\right)^{-1}\left(1+O\left(N^{-1}\right)\right)$ and for any k,

$$
\int_{0}^{\infty} t^{k} \exp \left(-t^{2} / 2\right) d t<\infty,
$$

we get that the last term is $o\left(N^{-1}\right)$.
For the first term, we have

$$
\begin{aligned}
\left|\Psi_{N}^{*}(t)-\tilde{\Psi}_{N}^{*}(t)\right| \leqq & \left|I_{0}^{*}-I_{0}\right|+|t| \frac{r(r-1)}{2 \sigma_{N}}\left\{\left|E_{1}^{*}\left(I_{2}^{*}-I_{2}\right)\right|+\left|I_{2}\left(E_{1}^{*}-E_{1}\right)\right|\right\} \\
& +\frac{t^{2}}{2} \frac{\{r(r-1)\}^{2}}{2 \sigma_{N} N(N-1)}\left\{\left|E_{2}^{*}\left(I_{2}^{*}-I_{2}\right)\right|+\left|I_{2}\left(E_{2}^{*}-E_{2}\right)\right|\right\} \\
& +\frac{t^{2}}{2} \frac{\{r(r-1)\}^{2}(N-2)}{!2 \sigma_{N} N(N-1)}\left\{\left|E_{3}^{*}\left(I_{3}^{*}-I_{3}\right)\right|+\left|I_{3}\left(E_{3}^{*}-E_{3}\right)\right|\right\} \\
& +\frac{t^{2}}{2} \frac{\{r(r-1)\}^{2}(N-2)(N-3)}{4 \sigma_{N} N(N-1)}\left\{\left|E_{4}^{*}\left(I_{4}^{*}-I_{4}\right)\right|+\left|I_{4}\left(E_{4}^{*}-E_{4}\right)\right|\right\} \\
& +|t| \frac{r(r-1)(r-2)}{6 \sigma_{N}}\left\{\left|E_{5}^{*}\left(I_{3}^{*}-I_{3}\right)\right|+\left|I_{3}\left(E_{5}^{*}-E_{5}\right)\right|\right\} .
\end{aligned}
$$

Therefore, using the previous discussions, we can establish that the first term is $o\left(N^{-1}\right)$.
Order of (II): Applying (4.1) in Lemma 3, condition (B) and the same arguments which have been described in Callaert et al. [1] pp 308-309, we get the order of (II).

Order of (III): Combining (4.2) in Lemma 4 and condition (C), we can easily establish that the order of (III) is $o\left(N^{-1}\right)$.

Thus we showed that (I), (II) and (III) are $o\left(N^{-1}\right)$ and therefore by (4.3) we have the desired result.

Appendix

1. Proof of Lemma 3

We have

$$
\begin{aligned}
{ }_{2} \Psi_{N}(t)= & E\left(\exp \left\{i t d_{1, N} B_{1}(m)\right\} \exp \left\{i t d_{1, N}\left(A_{1, N}-B_{1}(m)\right)\right\} \exp \left\{i t d_{2, N} B_{2}(m, N)\right\}\right. \\
& \times \exp \left\{i t d_{2, N}\left(A_{2, N}-B_{2}(m, N)\right)\right\} \exp \left\{i t d_{3, N} B_{3}(m, N-1, N)\right\} \\
& \times \exp \left\{i t d_{3, N}\left(A_{3, N}-B_{3}(m, N-1, N)\right)\right\} \exp \left\{i t d_{4, N} B_{4}(m, N-2, N-1, N)\right\} \\
& \left.\times \exp \left\{i t d_{4, N}\left(A_{4, N}-B_{4}(m, N-2, N-1, N)\right)\right\}\right) .
\end{aligned}
$$

Let us define $B_{k}^{*}=B_{k}(m, \cdots)$ and $R_{k}=\exp \left\{i t d_{k, N}\left(A_{k, N}-B_{k}^{*}\right)\right\}(k=1,2,3,4)$. Then expanding $\exp \left\{\right.$ itd $\left._{k, N} B_{k}^{*}\right\} \quad(k=3,4)$, we have

$$
\begin{aligned}
\left|{ }_{2} \Psi_{N}(t)\right| \leqq & \left|E\left(\exp \left\{i t d_{1, N} B_{1}^{*}\right\} \exp \left\{i t d_{2, N} B_{2}^{*}\right\} \Pi_{j=1}^{4} R_{j}\right)\right| \\
& +|t| d_{3, N}\left|E\left(\exp \left\{i t d_{1, N} B_{1}^{*}\right\} \Pi_{j=1}^{4} R_{j} B_{3}^{*}\right)\right| \\
& +t^{2} d_{2, N} d_{3, N} E\left|B_{2}^{*} B_{3}^{*}\right|+t^{2} d_{3, N}^{2} E\left|B_{3}^{*}\right|^{2}+|t| d_{4, N} E\left|B_{4}^{*}\right| .
\end{aligned}
$$

Therefore using (2.2) in Lemma 2, we can obtain (4.1) in the same way of Lemma 4 of Callaert et al. [1].

2. Proof of Lemma 4

We get

$$
\begin{aligned}
{ }_{1} \Psi_{N}(t)= & E\left(\exp \left\{i t d_{2, N} \Sigma_{1 \leq i<j \leq N} \zeta\left(X_{i}, X_{j}\right)\right\} \exp \left\{i t d_{3, N} B_{3}(m, N-1, N)\right\}\right. \\
& \times \exp \left\{i t d_{3, N}\left(A_{3, N}-B_{3}(m, N-1, N)\right)\right\} \exp \left\{i t d_{4, N} B_{4}(m, N-2, N-1, N)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \times \exp \left\{i t d_{4, N}\left(A_{4, N}-B_{4}(m, N-2, N-1, N)\right)\right\} \\
& \times \exp \left\{i t d_{5, N} B_{5}(m, N-3, N-2, N-1, N)\right\} \\
& \left.\times \exp \left\{i t d_{5, N}\left(A_{5, N}-B_{5}(m, N-3, N-2, N-1, N)\right)\right\}\right) .
\end{aligned}
$$

Let us define $D=\exp \left\{i t d_{2, N} \Sigma_{1 \Sigma i<j \leqslant N} \zeta\left(X_{i}, X_{j}\right)\right\}, \quad B_{3}^{*}=B_{3}(m, N-1, N), B_{4}^{*}=B_{4}(m, N-2$, $N-1, N), B_{5}^{*}=B_{5}(m, N-3, N-2, N-1, N)$ and $R_{k}=\exp \left\{i t d_{k, N}\left(A_{k, N}-B_{k}^{*}\right)\right\}(k=3,4,5)$. Then expanding $\exp \left\{i t d_{k, N} B_{k}^{*}\right\}(k=3,4,5)$, we have

$$
\begin{aligned}
\left|{ }_{1} \Psi_{N}(t)\right| \leqq & \sum_{s=0}^{2}|t|^{s} d_{3, N}^{s}\left|E\left\{D B_{3}^{* s} \Pi_{j=3}^{5} R_{j}\right\}\right|+|t|^{3} d_{3, N}^{3} E\left|B_{3}^{*}\right|^{3} \\
& +|t| d_{4, N}\left|E\left\{D B_{3}^{*} \Pi_{j=3}^{5} R_{j}\right\}\right|+t^{2} d_{3, N} d_{4, N} E\left|B_{3}^{*} B_{1}^{*}\right| \\
& +t^{2} d_{4, N}^{2} E\left(B_{4}^{*}\right)^{2}+|t| d_{5, N} E\left|B_{5}^{*}\right|
\end{aligned}
$$

Using (2.2) in Lemma 2 and applying the factorization of D which has been discussed in Lemma 5 of Callaert et al. [1], we have the desired result.

References

[1] Callaert, H., Janssen, P. and Veraverbeke, N.: An Edgeworth Expansion for U-statistics, Ann. Statist., 8 (1980), 299-312.
[2] Dharmadhikari, S. W., Fabian, V. and Jogdeo, K.: Bounds of Moments of Martingales, Ann. Math. Statist., 39 (1968), 1719-1723.
[3] Esseen, C.F.: Fourier Analysis of Distribution Functions. A Mathematical Study of the Laplace-Gaussian Law, Acta Math., 77 (1945), 1-125.
[4] Gnedenko, B. V. and Kolmogorov, A. N.: Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading., (1968).
[5] Hoeffding, W.: The Strong Law of Large Numbers for U-statistics, Univ. of North Carolina Institute of Statistics Mimeo Series. No. 302, (1961).
[6] Lin Zhengyan: A Note on the Asymptotic Expansion for U-statistics, (in Chinese) Acta Mathematica Sinica, 27 (1984), 595-598.
[7] Serfling, R.J.: Approximation Theorems of Mathematical Statistics, Wiley, New York, (1980).

Communicated by Ch. Asano
Received May 18, 1985

[^0]: * Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan.

