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EDGEWORTH EXPANSION FOR
ONE-SAMPLE U-STATISTICS

By
Yoshihiko MAESONO*

Abstract

Under some regularity conditions on kernel, an asymptotic ex-
pansion with remainder term o(N™!) is established for one-sample
U-statistics with kernel of arbitrary degree. This is an extension of
the result by Callaert, Janssen and Veraverbeke [1].

1. Introduction

Let X,, X,, ---, Xy, be independently and identically distributed random variables
with common distribution function F. Let A be symmetric function of its arguments,
satisfying Eh(X,, X,, ---, X;)=0 with »<N, & is called a kernel and » is called its
degree. We shall define a one-sample U-statistic with a kernel of degree », h, by

N\-1
UNZ(?,) szi1<i2<-u<irszvh(Xi1, Xiz; Tt Xi,)-

In the case of degree two, Callaert, Janssen and Veraverbeke [1] have obtained the
asymptotic expansion of the distribution of I/ with the remainder term o(N-!). In this
paper, using the forward martingale characterization of Uy, we obtain an asymptotic
expansion of Uy with a kernel of arbitrary degree . In Section 2 we obtain a re-
presentation for Uy in terms of forward martingales, and get the bounds of absolute
moments of martingales. We state the main theorem in Section 3 and prove it in
Section 4.

2. Preliminaries

We shall represent Uy in terms of forward martingales. This representation is due
to Hoeffding [5] (cf. Serfling [7] p. 178). Under the assumption E| (X, X,, -+, X;)| <oo,
let us define the following notations: for 1=<k=<r

wi(xy, Xg o+, Xp)=E{h(X;, X, -, X)) Xi=21, Xo=x,, -+, Xe=x4},

gi(x)=wi(x1), golx1, X)=wWe(xy, X2)—23=181(%4)

Gel(x1, Xoy v, X)=WAXy, Koy ) Xe)—Digii<ecipogsr8r-1(Xi, 5 Xiply)

— 58,y ger8r-o{Xipy 0 xi,__z)'— e =20 gi(x4),
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and
Ap, v=Zhziig<iysn& el Xiy Xigy =5 Xiy), for 1Sk=r.

Then Uy can be rewritten as

Uy=(") 2V ) A

It is shown in the proof of Lemma 2 that {A, y}~.» is a forward martingale for each
k=1, 2, .-, 7.
By the definition of g,, it is easily shown that if one of {7, 75, -+, 7} is not con-
tained in {j,, ju, -+, 75}, then
E{gk(X’ily Xizy Tty Xik)llei ij) Ty st}:‘o‘ (2'1>

Using this property, we can prove the useful two lemmas.
LEMMA 1. If E\lgu(X,, X, -, Xp)| <oco and one of {1, is, -+, £4} IS not contained
in {j1y, jo -, I}, then for f satisfying E\fg.| <co,

E{f(le’ ng: ) st)gk(Xi1) Xizy U Xik)}zo'
Proor. Taking the conditional expectation, we have the desired result from (2.1).
Before describing the next lemma, we prepare the notations. For 1=ZN;<N,< ---
<NR=N and 1=k<r, let us define
By(Ny, Ny, -, Nk):E?iilEf;iim
E;Xk:ik_l-J-lgk(Xil’ Xizr T Xik)'
Then we have the upper bound of the pth absolute moment of B,.

LEMMA 2. Given the existence of the pth (p=2) absolute moment of kernel h, there
exist a positive constant C such that

E|By(Ny, Ny, -+, Np)|?SCILE- NP2, (2.2)

If the second moment of kernel h is finite, the inequality (2.2) holds also with p=1.

ProOOF. The latter part of the lemma immediately follows from the former. There-
fore we consider the case p=2. By induction on s we prove the following inequality
for 1<s<k and 1=m,<my< - <ms<igpy, =, Is,

IADIEIDIVFINRTED JCIINNY- 10, CHRD. CRNEIIIND, SRR, SN Ik
S(Cp)VEgh(Xy, Xy, -, X)) | P(THaamy)?? (2.3)
where C,={8(p—1)max (1, 279}~
When s=1, let YV,;=24.8:(X;, Xy, -+, X;,) for j=1,2, -, my,. Then for j=
1,2, -, m, we have Y,—Y,,=g,(X;, X, -+, Xi,) and j<i,, iy, -, 3;, Where ¥,=0.

Since Yy, Yy, -+, Y-y are functions of X,, X,, -+, X;.,, Xy, -, Xy, we find from (2.1)
that

E{Yj_yj-'llyl) YZ: Tty Yj"l}
=E(E{gs(X;, Xy, -+, Xi )| Xy, Xy o) Xjosy Xiyy oo, XifH Y0, ¥, oo, Vn)=0.
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Therefore {Y;}ozjsm, is a forward martingale. Applying an upper bound for moments
of martingales obtained by Dharmadhikari, Fabian and Jogdeo [2], we have the in-
equality (2.3) when s=1.

Assume that (2.3) holds for 1, 2, ---, s—1 instead of s. For s=;j=m, put @)=
min (m;, j—s-+i) (for =1, 2, ---, s—1) and

() (&) 1
Zj:27ini1=1 E;r;s 11 ig- 2+12’%8=is_1+1gk(xil, ) Xis_p Xisy ) Xik)'
Then in the same way of s=1, {Z,}oc;sm, is a forward martingale, where Z ;=0 for

0<j<s. Hence using the result of Dharmadhikari et al. [2], we get the inequality
(2.3) for s. Thus we have the desired result.

3. Main Theorem

Before we state the main theorem, we define the following notations:
=EgiXy, Xs, -+, Xi) for 1=k=sr,

M 2.1 ... + 7’!
2N(N—-1) ™ N(N—1) - (N—r+1)

oh=E{Uy} = 61
ﬂ(f)=E(eXp{l'tg1(X1)}),

f{gl(ngl(y)} for r=2,

xsZEIa(Eg?(X1)+3(r—1)E{gl(Xl)gl(Xz)ge(Xl, X1,

£=ET Egi(X) =361+ 120r— D E {g1(X1)8:(X2)go( Xy, Xo)}
+120r =1 E{g1(X»)8:1(X2) 82(X,, Xo)ga(Xs, Xi)}
+4r—1)(r—2)E {g:1(X1)81(X2)8:(X0)&a( X1, Xo, Xo)}),

LUx, y)y=wqx, y)—

and

Qu(x)=0(x)— ¢(x{ NW( —1)+ 24N(x —3x) 7§jv(x5—~10x3+15x)}>

where @(x) and ¢(x) denote the distribution function and the density of the standard
normal distribution.

THEOREM. If the following conditions are satisfied (when r=1, the condition (C) must
be omitted)

(A) Elh(X;, X, -, X)|P<o0

(B) limsupqi-«| @)} <1

(C) there exist positive constants c<1 and a<us such that for m=[N%],

P(1 Etexp fitoy 05w t(X,, X)V Xer, -+, )| e
N(N—-1)

1
>1—of ——
=1 "(Nlong)
uniformly for all te[N**/log N, Nlog N] then
SgplP(a?v‘UNéﬂ*QN(X) [=o(N7Y).
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REMARK 1. Instead of condition (A), the asymptotic expansion is valid under the
existence of a fourth moment of kernel 4. Lin [6] has proved it in the case of one-
sample U-statistics with kernel of degree two. For arbitrary degree, we can similarly
prove it by the way of Lin [6].

REMARK 2. The asymptotic expansion with remainder term o(N-'/?) is valid with-
out condition (C).

4. Proof of the Theorem

For r=1, Uy is a sum of independently and identically distributed random variables
and the expansion of Uy has been obtained already (cf. Gnedenko and Kolmogorov [41).
Then we consider the case r=2.

Let

U y()=E{exp (itoy'Uy)}
and for s=1, 2, 3,
I nt)=E{exp (itZi=3dsr yAs 3}

W )

Then for ¥ x(t), we have the following lemma.
LEMMA 3. If (A) is satisfied, then there exist positive constants Ky (s=1,2, ---, 6)
such that for all t(—co<t<co), all integers N and m with 6<m<N—2

where

t -
w012 |2( )| BaStealt s,y N Ko ], V)

+ K ttd§ ym* N2+ K t%d, ydy ymN3?
+Kt*d3 ymN2+ K|t d, ym/2N32, 4.1)
Note that if r=2, the terms which include ds y or d, n are omitted. Similarly we omit
K \t|\d,, ym*2N32, if r=3.
PROOF. See Appendix 1.
Furthermore, for ¥ y(f) we have Lemma 4.
LEmMMA 4. If (A) is satisfied, then there exist positive constants My(s=1, 2, ---, 12)
such that for all H(—co<t< o), all integers N and m with 8<m<N—3
1T N ()] éE(IE(eXp{itdz.szﬁmHC(X;, X X, ooy Xa)|™78)
X (M 3= |t1°41dS, wd o ym™ VNP M, 3040, t]*42d5, yd, ym* SO N4
M, 3001201 S, nd s, ymPHINEE M, 35, 18] 0dS, ym®®)
+M;|t1°d3, wdy, xm N3P Mt*dy, wdy, ymN®2
+ Mt d} yd3 ymP N2+ Mgt'd} yd,, ym** 2N
+Mgt*d3, ymP+ My |t]*dE, ym®EN?
+ Myt di, ymN>+ M|t ds, ym' /N2, 4.2)

Note that if r=2, the terms which include dy y, ds n or ds x are omitied. Similarly if
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r=3, we omit the terms which include d, y or ds y, and if r=4, omit My,|t|ds ym** N2

PROOF. See Appendix 2.

Now applying Lemma 3, 4 and Esseen’s smoothing lemma [3] we shall prove the
Theorem. In the sequel, we consider the proof for the case r=5. When r=2, 3, 4,
we can prove the Theorem more easily.

Let

Futy=|_exp(itdQu(x)

—exp (— )i+ g s ' e 0 T @

From smoothing lemma, we have
Nlog N o
5up | P00y S )= Qu(x) S e 611 n(— Fa(t) di-Fo(N).

Since the proof for the negative part of ¢ is similar to that for the positive one, we
shall show that

U =T x(@) | di=0o(N7Y).

SN log N

Since d, y=O(NY*"%*) and E|A, x| SONN*?) from (2.2) in Lemma 2,

Nlog N

Nlog N
IR NGEUNGITTES SN P A
=o(N™Y).

Similary we have

LW v —F w (@) di=0(N"")

SN3/4/10gN

and
11 N =¥ (@) | dt=0(N).

SNIM/logN

Then, putting

N1l/4/log N -
go 1. ) —T(t) | dt,
3/4/10
(H):Szm:: - .Y () dt,
Nlo
=§ TN dL,
N3/4/log
and -
w):& 1 Ty dt,
we have
S:lowt-w%u)—mun dt=(1)-+(I+(I)+(IV)+o(N7). “.3)

It immediately follows from condition (A) that (IV)=o(N-'). Next, we shall prove
that (1), () and (I0) are o(N~%).
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Order of (I1): Let us define
. R t)?
0= (expitd, x Ay {1 itds x At -0 d 48 4}
+E@td, yAs, vexp(itd, v A x).
Then,
SNW/IOgN

RO —T w(t) 1 dt

N1/4/1og N
SS

74| E((exp (itd:, w As, x){exp (itds, v As, )~ (1+itds,w As.

0

(a1)?

+ 5 ds v AL )} ) et t1| EGitdy, y Ay, v exp (itdy, y Ay x)

SN”"/logN

X {exp (itd,, y Az, y)—1}) [ dt+0o(N7).

Using the similar way which has been described in Callaert et al. [1] pp 304-306, we
can establish that the first term is o(N-!). Applying Schwartz’s inequality and (2.2) in
Lemma 2, we can easily obtain the order of the second term.

Now we evaluate the difference of ¥%(t) and ¥y(t). From Lemma 1 ¥%(¢) can be
rewritten as

N =7" (s, wt) ity V(s bl gy Eexplitd,, v(g(X0+ £ X)) 24X, Xo)
+85 v, s MY Bexplitd, o (:0X0+ £, 83K, X0)
(it

o 7V T de y)dE yNIN=DN=2) Eexp {itd,, w(g:1(X1)+8:(Xz)

(m NN—1)(N—2)(N—3)

+8.1(Xo))} go( Xy, Xo)go( Xy, X))+ —5— V—4(d1, ahdi

4
I -
S A E(explitds, x(g:(X)+g1(Xa)} ga(Xe, X)) 2+itn¥¥(d, y)ds v N(-Algizl
X E(exp {itdl.N(gl(X1)+gl(X2)+g1(X3))}g3<X11 Xz, Xy).
Let us denote T¥%(¢) by
2 _
CrO=T5itdx o rypry O gy NED pyp
N2 2 T - T
O -2t @ g, MO D=2 1y
titd, y NYNVZDIN=2) _ZW =2 g,

Then approximations of I¥ and E¥ are given as follows:

I,=exp (—_—)(1_ iy {(L;;;ﬁ_'_k}—]— 6]<\er3sz Egi(Xy

(it 4
+ 5 24NE! {Egi(X,)—3¢&i} +

@@)°
T2NE;

(EgX)}?),
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_ (@
Né&}
@?
+ ”N'a/zé%—
E,=EgyX,:, X»
(it)?

E, E{g,(X)g(X:)g( X1, Xo)}

E{gd(X)g:(Xa)go( X1, Xo)},

E3MAE{g1(X2)g1(X3)g2(X1; X2)g:(X:, Xo)},

G
(#2)

Ei=(-yar Elo(X0a XX, X))

_ @y
TN

2
’

E{g(X)g.(Xp)g (X g Xy, Xo, Xi)}.

195

By the same way of Lemma 2 as Callaert et al. [1], there exist positive constants &

and a such that for 0<¢t<eN?

[I¥—1x] So(N"1)P(t)exp (—at?)

where P(t) is a polynomial in ¢.

Furthermore, from condition (A), and o3*=NVY2%£&,r)"(1+O(N-1), we have the fol-

lowing inequalities:

| E¥—E,| SHON-)+O(N-2)+ | t|2O(N-%2),

|EX—E;| S|t]ON?),

|E¥—Es| < [tPO(N-**)+1*0(N™9),

| EY—E| S|t|PON~*")+1°0(N~*)+1'O(N~?),
|E¥—Es| St ON-D+|11P0(N-%2),

Define
. . N(N—1 t)? N(N—1
FHO=1 titdy D LE A gy N g,
y+\2 742 — — J__
+- 8 g N2 E G gy NS ) g
(N — J—
+z'td3,Nﬂ1X—]g&—2)—13E5.
Then,
NYi/log ¥ .
| EHTHO— T ()] de
N1/4/log N

<

Nl/4j10g N N
| RO TR0 di|

[

Since o =NY%&7)"Y(14+0O(N-Y) and for any %,

§:tkexp(—t2/2)dt<00,

we get that the last term is o(N-1).
For the first term, we have

tHTEO—T @) dt.

4
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r(ir—1)

‘:W*&(t)—@'?»‘f(t)!éif*o‘—lol-Ht\WHET(I?—IQ)H\Iz(ET—El)l}

2 {r(r—1)}*
—I—Tm {1EXIE—1,) |+ | I,(E¥—Ey)|}

B {rr—D}AN—-2) _ _
TTW{|E§U§ I) I TL(ES—Ey|}

£ {rr=DPN=2)(N-3)
5 T I B =1+ LB =)}

4] ﬁ_gjfv’—‘m (I EXIE—1)|+ | [(EX—ED)1).

Therefore, using the previous discussions, we can establish that the first term is o(N-%).
Order of (I): Applying (4.1) in Lemma 3, condition (B) and the same arguments
which have been described in Callaert et al. [1] pp 308-309, we get the order of (II).

Order of (I): Combining (4.2) in Lemma 4 and condition (C), we can easily
establish that the order of (II) is o(N7Y).

Thus we showed that (1), (II) and (Il) are o(N-!) and therefore by (4.3) we have
the desired result.

Appendix
1. Proof of Lemma 3

We have

I y(t)=E(explitd, xBi(m)}exp{itd, x(A:, y— Bi(m))}exp{itds yB:(m, N)}
xexp{itd, w(As v—Bo(m, N))texp{itds yBs(m, N—1, N)}
xexp{itds y(As, y— Bs(m, N—1, N))}exp{itd, yB,m, N—2, N—1, N)}
xexp{itd, y(A, n—B.m, N—2, N—1, N)}).

Let us define B¥=B,(m, ---) and R,=exp{itd; y(Ar. x—B¥)} (k=1, 2, 3,4). Then ex-
panding exp{itd, yB¥} (=3, 4), we have

[ n(t)] = | E(exp{itd,, v BY}explitds y B} IR ;)]
+|t’ds,N|E(eXp{iZdl,NBT}Hj‘:leBt)l
+1*°dy yds yE| BEBY|+1°d3 vE | BY|*+ |t|d., vE| BYI.
Therefore using (2.2) in Lemma 2, we can obtain (4.1) in the same way of Lemma 4
of Callaert et al. [1].
2. Proof of Lemma 4
We get
T v)=E(explitds, y Tici<sanC(Xs, Xptexplitds, yBy(m, N—1, N)}
xexpiitds y(As, y—Bs(m, N—1, N))}exp{itd, yB.m, N—2, N—1, N)}
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xexpiitd, y(A, y—Bim, N—2, N—1, N))}
X exp{itds yBs(m, N—3, N—2, N—1, N)}
xexpl{itds y(As, y— Bs(m, N—3, N—2, N—1, N)}).

Let us define D=exp{itd, v 21zi<jsnC(Xi, X,)}, Bi=Bsm, N—1, N), B¥=B,im, N—2,
N—1, N), B¥=Bym, N—3, N—2, N—1, N) and R,=explitd, ~(A, y—B¥} (=3, 4, 5).
Then expanding exp{itd, yB¥} (k=3, 4, 5), we have

LY ()] =25<0121°d8, w | E{DBY T, R} | +121°d3, v E | BY | ®
+1t1dy, | E{DB¥II}=sR;} | +1°ds, nvds, » E | BYBY|
+12d5, yE(BY)*-+-|t|ds, yE| B¥)

Using (2.2) in Lemma 2 and applying the factorization of D which has been discussed
in Lemma 5 of Callaert et al. [1], we have the desired result.
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