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EDGEWORTH EXPANSIONS FOR INTEGER VALUED ADDITIVE

FUNCTIONALS OF UNIFORMLY ELLIPTIC MARKOV CHAINS

DMITRY DOLGOPYAT AND YEOR HAFOUTA

Abstract. We obtain asymptotic expansions for probabilities P(SN = k) of partial

sums of uniformly bounded integer-valued functionals SN =

N
∑

n=1

fn(Xn) of uniformly

elliptic inhomogeneous Markov chains. The expansions involve products of polyno-
mials and trigonometric polynomials, and they hold without additional assumptions.
As an application of the explicit formulas of the trigonometric polynomials, we show
that for every r ≥ 1 , SN obeys the standard Edgeworth expansions of order r in a
conditionally stable way if and only if for every m, and every ℓ the conditional distri-
bution of SN given Xj1 , ..., Xjℓ mod m is oℓ(σ

1−r
N ) close to uniform, uniformly in the

choice of j1, ..., jℓ, where σN =
√

Var(SN ).

1. Introduction

Let Y1, Y2, . . . be a sequence of integer-valued random variables. Let SN = Y1+ · · ·+
YN and suppose that VN = V (SN) = Var(SN) → ∞. Recall that the local central limit
theorem (LLT) states that, uniformly in k we have

P(SN = k) =
1√
2πσN

e−(k−E(SN ))2/2VN + o(σ−1
N ).

where σN =
√
VN . For independent random variables, the stable local central limit

theorem (SLLT) states that the LLT holds true for any integer-valued square integrable
independent sequence Y ′

1 , Y
′
2 , . . . which differs from Y1, Y2, . . . by a finite number of

elements. We recall a classical result due to Prokhorov.1

1. Theorem. [19] If Yn are independent and bounded then the SLLT holds true iff for
each integer h > 1,

(1)
∑

n

P(Yn 6= mn mod h) = ∞

where mn = mn(h) is the most likely residue of Xn modulo h.

We refer the readers to [20, 25] for extensions of this result to the case when Yn’s
are not necessarily bounded (for instance, the result holds true when sup

n
‖Yn‖L3 <∞).

Related results for local convergence to more general limit laws are discussed in [2, 17].

1The local limit theorem has origins in the de Moivre-Laplace theorem, and Prokhorov’s theorem
can be viewed as a generalization.
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The central limit theorem (CLT) for inhomogeneous Markov chains was obtained for
the first time in [3], and we refer to [23, 18] for two modern approaches. In the past
decades local limit theorems were extended to stationary homogeneous Markov chains.
The first result in this direction was obtained in [24], and we refer to [11] for a general
approach. Despite the fact that results in the homogeneous case where already known
in the 50’s ([24]), only very recently [4] the general case of an inhomogeneous (uniformly
elliptic) Markov chains was solved (see also [16]). It turns out that the theory of the
the local limit theorem in the inhomogeneous case is far richer than the homogeneous
case. In particular, one of the main problems in the inhomogeneous setting arises from
a possibility of non-linear growth of VN . We refer to [4] for a detailed discussion about
the obstructions for the LLT (in both lattice and non-lattice cases).
The local limit theorem deals with approximation of P (SN = k) up to an error

term of order o(σ−1
N ). In this paper, for uniformly bounded integer-valued additive

functional Yn = fn(Xn) of uniformly elliptic inhomogeneous Markov chains {Xn} we
will characterize a more refined type of approximations of the probabilities P(SN = k).
Given r ≥ 1, the Edgeworth expansion of order r holds true if there are polynomials
Pb,N , whose coefficients are uniformly bounded in N and their degrees do not depend
on N, so that uniformly in k ∈ Z we have that

(2) P(SN = k) =

r
∑

b=1

Pb,N(kN)

σb
N

g(kN) + o(σ−r
N )

where kN = (k − E(SN )) /σN and g(u) = 1√
2π
e−u2/2.

During the 20th century, the work of many authors led to the development of asymp-
totic expansions in both the CLT and the LLT, see [12, 10] and references therein for
more details. Recently in [6], for bounded independent random variables Yn we gave a
complete characterization for expansions of an arbitrary order r by means of the rate
of decay of the characteristic function of SN − E[SN ] and their first r − 1 derivatives
at nonzero “resonant points” of the form t = 2πl

m
with 0 < m ≤ 2K and 0 ≤ l < m,

where K = supn ‖Yn‖L∞ . The main probabilistic interpretation of these results was a
characterization of “super stable” Edgeworth expansions of an arbitrary order r using

only the decay rates of the distance of the distribution of SN −
ℓ
∑

j=1

Ykj,N modulo m from

the uniform distribution, for all m, for an arbitrary choice of indexes k1,N , ..., kℓ,N . In
this paper we will characterize a certain type of super stable Edgeworth expansions of
an arbitrary order r (see the precise definition below). That is, we will generalize [6,
Theorem 1.8] to integer valued additive functionals of uniformly elliptic Markov chains.
We say that the Edgeworth expansion of order r holds true in a conditionally stable2

way if the usual Edgeworth expansion of order r holds true under conditioning by finite

2Note that for independent summands Xn, in the case when Xn = Yn, the conditionally stable
expansions are equivalent to the super stable expansions defined in [6]. However, in general these two
types of expansions do not coincide, which is why we decided to introduce the notion of “conditionally
stable expansions”.
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elements Xj1, ..., Xjℓ, with error terms which depend only on ℓ and polynomials whose
coefficients are bounded by some constants which depend only on ℓ.
We begin from a quantitative version of Prokhorov theorem which is a direct conse-

quence of the general asymptotic expansion which will be described in Section 2.

2. Theorem. Let ε0 > 0 be so that for every measurable set A,

ε0P(Xn+1 ∈ A) ≤ P (Xn+1 ∈ A|Xn = x) ≤ ε−1
0 P(Xn+1 ∈ A)

for each n and a.e. x. Let Yn = fn(Xn) with supn ‖Yn‖L∞ ≤ K. For each r ∈ N there
is a constant R=R(r,K, ε0) such that the conditionally stable Edgeworth expansion of
order r holds if for all N we have

MN := min
2≤h≤2K

N
∑

n=1

P(Yn 6= mn(h) mod h) ≥ R lnVN .

In particular, SN obeys Edgeworth expansions of all orders if

lim
N→∞

MN

lnVN
= ∞.

This theorem is a quantitative version of Prokhorov’s Theorem 1. We observe that
logarithmic in VN growth of various non-periodicity characteristics of individual sum-
mands are often used in the theory of local limit theorems (see e.g. [13, 14, 16]).
However, to justify the optimality we need to understand the conditions necessary for
the validity of the Edgeworth expansion.
To this end we obtain an expansion for the probabilities P(SN = k) which holds true

without additional assumptions3. In order to not to overload the exposition we will
formulate the general trigonometric expansion later (see Theorem 7). Our generalized
expansion is a key step in proving a complete characterization of the conditionally
stable expansions of an arbitrary order which extends [6, Theorem 1.8] (which dealt
with independent summands).

3. Definition. Call t resonant if t = 2πl
m

with 0 < m ≤ 2K and 0 ≤ l < m.

4. Theorem. For arbitrary r ≥ 1 the following conditions are equivalent:

(a) SN =

N
∑

j=1

fn(Xn) obeys the conditionally stable Edgeworth expansions of order r.

(b) For each ℓ, sup
1≤j1,...,jℓ≤N

∥

∥E[eitjSN |Xj1, .., Xjℓ]
∥

∥

L1 = oℓ(σ
−(r−1)
N ).

(c) For each 1 ≤ j1, ..., jℓ ≤ N , and each h ≤ 2K the conditional distribution of SN

given Xj1, ..., Xjℓ mod h is oℓ(σ
1−r
N ) close to uniform.

5.Remark. It will follow from our proofs in the case r = 1 that the conditionally stable
local limit theorem (namely the LLT after conditioning on a finite number number of

3Expansions in the CLT for additive functionals of uniformly elliptic Markov chains were considered
in [8] and [5].
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elements) is equivalent to the conditionally stable Edgeworth expansion of order 1.
Thus we see that the conditionally stable local limit theorem holds true iff for ℓ,

sup
1≤j1,...,jℓ≤N

∥

∥E[eitjSN |Xj1, .., Xjℓ]
∥

∥

L1 = oℓ(1)

that is iff (c) holds with r = 1, namely, for each integers h and L if we are given a
sequence (j1,N , . . . , jℓN ,N) of tuples with ℓN ≤ L then the conditional distributions of
(SN |Xj1, . . . , XjℓN

) mod h converge to uniform as N → ∞. Equivalently for each m ∈ Z

lim
N→∞

E[eimSN /h|Xj1, .., Xjℓ] = 0.

6. Remark. Note that if

MN(h) =
N
∑

n=1

P(Yn 6= mn(h)) ≤ R(r,K, ε0) ln σN

then for most n, the distributions of Yn are sufficiently close to being concentrated on
a single point modulo h. Our arguments also show that if this closeness holds for all

n, then the Edgeworth expansions of order r is valid iff E[eitSN ] = o(σ
−(r−1)
N ) for every

nonzero resonant point t. This is a particular case of Theorem 9 formulated in Section 2,

which shows that the condition E[eitSN ] = o(σ
−(r−1)
N ) is always necessary for the usual

expansions to hold, and that a certain weaker version of condition (b) is sufficient.
We also note that if the distribution of Yn mod m is not approximately concentrated

on a single point the condition E[eitSN ] = o(σ
−(r−1)
N ) does not imply that the Edgeworth

expansion holds even in the independent case, see [6, Example 10.2]. In fact, in the
independent case if one of the Yn’s is uniformly distributed modulo m then E[eitSN ] = 0
for all N large enough and for every nonzero resonant point of the form t = 2πl

m
.

However, this does not imply that the derivatives of the characteristic function of SN −
E[SN ] vanish at t, and hence by [6, Theorem 1.5] expansions of an arbitrary order r
might not hold.

2. Main results

Let {Xj} be a Markov chain and assume that each Xj takes values on some countably
generated measurable space. Denote by µn the law of Xn. We assume that there is a
constant C > 1 so that for µn-a.e. x and all measure subsets A on the state space of
Xn+1 we have

(3) C−1
P(Xn+1 ∈ A) ≤ P (Xn+1 ∈ A|Xn = x) ≤ CP(Xn+1 ∈ A).

The latter condition is equivalent to the following representation of the transition prob-
abilities:

P(Xn+1 ∈ A|Xn = x) =

∫

A

pn(x, y)dµn+1(y)

where the transition densities pn(x, y) take values in the interval [C−1, C]. Then {Xn}
is exponentially fast ψ-mixing (see e.g. [4]), which means that there are constants
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C1 > 0 and δ ∈ (0, 1) so that if X̄ is a function of X1, ..., Xm and Ȳ is a function of
Xm+n, Xm+n+1, ... for some m and n then for every relevant measurable sets A,B

(4)
∣

∣P(X̄ ∈ A, Ȳ ∈ B)− P (X̄ ∈ A)P (Ȳ ∈ B)
∣

∣ ≤ C1P (X̄ ∈ A)P (Ȳ ∈ B)δn.

Next, for each n, let fn be a of measurable integer valued-function on the state space
of Xn and set Yn = fn(Xn). We assume that K := sup ‖Yn‖L∞ <∞.
Let qn(m) denote the second largest value among P (Yn ≡ j mod m),

j = 0, 1, . . . , m− 1. Set

MN = min
2≤m≤2K

N
∑

n=1

qn(m).

7. Theorem. Let SN = Y1+Y2+ ...+YN and σN =
√

V (SN). There is J = J(K) <∞
and polynomials Pa,b,N with degrees depending only on a and b, whose coefficients are
uniformly bounded in N such that, for any r ≥ 1 uniformly in k ∈ Z we have

P(SN = k)−
J−1
∑

a=0

r
∑

b=1

Pa,b,N((k − aN)/σN )

σb
N

g((k − aN)/σN)e
2πiak/J = o(σ−r

N )

where aN = E(SN) and g(u) = 1√
2π
e−u2/2.

Moreover, given K, r, there exists R = R(K, r) such that if MN ≥ R lnVN then we
can choose Pa,b,N = 0 for a 6= 0.
In particular, SN obeys the Edgeworth expansion of all orders if

lim
N→∞

MN

ln σN
= ∞.

Next, we say that the Edgeworth expansions of order r hold true in a conditionally
stable way if they hold true under conditioning by finite elements Xj1 , ..., Xjℓ, with error

terms oℓ(σ
−(r−1)
N ) which depend only on4 ℓ, r and σN (and not on the indexes j1, ..., jℓ).

8. Theorem. Sn obeys the Edgeworth expansions of order r in a conditionally stable
way if and only if for every nonzero resonant point tj and every ℓ,

sup
1≤j1,...,jℓ≤N

∥

∥E[eitjSN |Xj1, ..., Xjℓ ]
∥

∥

L1 = oℓ(σ
−(r−1)
N ).

In the course of the proof of Theorem 8 we obtain the following result.

9. Theorem. (i) The condition E[eitjSN ] = o(σ
−(r−1)
N ) is necessary for the usual Edge-

worth expansions of order r to hold true.
(ii) There is a natural number ℓr which depends only on r so that the condition

max
ℓ≤ℓr

sup
j1,...,jℓ∈B

∥

∥E[eitjSN |Xj1, .., Xjℓ]
∥

∥

L1 = oℓ(σ
−(r−1)
N )

is sufficient for the usual Edgeworth expansions of order r to hold true.

4Recall that ℓ is the number of indices we are allowed to fix.
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The number ℓr in part (ii) can be recovered from the proof of the theorem (for
instance, we have ℓ2 = 6).
The reason that Theorem 8 follows from Theorem 9 is that we can apply it to the

conditional law of SN given a finite number of Xj’s, and that in part (i) the term

o(σ
−(r−1)
N ) depends only on the error term of the Edgeworth expansions.

3. Background and some preparations

3.1. A generalized sequential Perron-Frobenius theorem. Let Bj denote the
space of bounded functions of Xj, and let ‖ · ‖∞ be the supremum norms. Let B∗

j

denote the dual space of Bj.
Let us take uniformly bounded real-valued functions Un = un(Xn) and for every

complex number z consider the operator R
(j)
z : Bj 7→ Bj+1 defined by

R(j)
z g(x) = E[eiUj+1+zYj+1g(Xj+1)|Xj = x].

For each j and n in N let

Rj,n
z = R(j)

z · · ·R(j+n−1)
z .

The next result serves as one of our key technical tools.

10. Theorem. There exist a number δ0 > 0 which depends only on the uniform bound
K of Yn and on the ellipticity constant of Xn so that the following holds. If sup

n
‖Un‖L1+

|z|< δ0 then for every j ∈ Z there exists a triplet λj(z), h
(z)
j and ν

(z)
j consisting of a

nonzero complex number λj(z), a complex function h
(z)
j ∈ Bj and a continuous linear

functional ν
(z)
j ∈ B∗

j satisfying ν
(z)
j (1) = 1, ν

(z)
j (h

(z)
j ) = 1,

R(j)
z h

(z)
j+1 = λj(z)h

(z)
j , and (R(j)

z )∗ν(z)j = λj(z)ν
(z)
j+1

where (R
(j)
z )∗ : B∗

j → B∗
j+1 is the dual operator of R

(z)
j and B∗

j is the dual space of Bj.

When z = t ∈ R and Un ≡ 0 then h
(t)
j is strictly positive, ν

(t)
j is a probability measure

and there are constants a, b > 0, so that λ
(t)
j ∈ [a, b] and h

(t)
j ≥ a. When t = 0 we have

λj(0) = 1 and h
(0)
j = 1.

Moreover, this triplet is analytic and uniformly bounded. Namely, the maps

λj(·) : U → C, h
(·)
j : U → Bj and ν

(·)
j : U → B∗

j

where U = {z ∈ C : |z| < δ0} are analytic, and there exists a constant C > 0 so that

(5) max
(

sup
z∈U

|λj(z)|, sup
z∈U

‖h(z)j ‖∞, sup
z∈U

‖ν(z)j ‖∞
)

≤ C

where ‖ν‖∞ is the operator norm of a linear functional ν : Bj → C. In addition,
λj(z), hj(z) and νj(z) depend continuously on Uj in the sense that they converge uni-
formly to the triplets corresponding to the choice Uj = 0 as sup

n
‖Un‖L1 → 0.



7

Furthermore, there exist constants C > 0 and δ ∈ (0, 1) such that for any n ≥ 1,
j ∈ Z, z ∈ U and q ∈ Bj+n,

(6)

∥

∥

∥

∥

Rj,n
z q

λj,n(z)
−
(

ν
(z)
j+n(q)

)

h
(z)
j

∥

∥

∥

∥

∞
≤ C‖q‖∞ · δn

and

(7)

∥

∥

∥

∥

(Rj,n
z )∗µ

λj,n(z)
−
(

µh
(z)
j

)

νj+n(z)

∥

∥

∥

∥

∞
≤ C‖µ‖∞ · δn

where λj,n(z) =
n−1
∏

k=0

λj+k(z). Here ‖·‖∞ are the appropriate operator norms correspond-

ing the the norms in the spaces Bj.

Proof. This theorem is proved similarly to [9, Ch. 6] (which makes a stronger assump-
tion sup

n
‖Un‖L∞ < δ0). In the course of the proof we will use several definitions and

properties of real and complex cones. In order not to overload the paper we will not
present them here, and instead we refer to the Appendix of [9] for a summary of all the
necessary background.
Let Qj be the Markov operator given by

Qjg(x) = E[g(Xj+1)|Xj = x] =

∫

pj(x, y)g(y)dµj+1(y).

Then Qj maps Bj+1 to Bj and the corresponding operator norm equals 1. Let Kj,L,
L > 0 be the real Birkhoff cone which consists of the positive function gj on the range
of Xj so that g > 0 and g(x1) ≤ Lg(x2) for all x1, x2. Then, since C

−1 ≤ pj(x, y) ≤ C
for all x and y, we see that for every nonnegative bounded function g on the state space
of Xj+1 we have Qjg ∈ KC2,j. Let L = 2C2. Then by [9, Lemma 6.5.1] the projective
diameter of KC2,j inside KL,j (with respect to the real Hilbert metric associated with the
cone Kj,L) does not exceed d0 = d0(C) = 2 ln(2C2). We conclude that QjKj+1,L ⊂ Kj,L,
and the projective diameter of the image is bounded above by d0.

Next, let us explain in what sense R
(j)
z is a small perturbation of Qj with respect to

the dual of the cones Kj,L. Since Uj and fj are uniformly bounded and because of the
uniform ellipticity we get that for every point x and a function g ∈ Kj+1,L we have

(8) |R(j)
z g(x)−Qg(x)| ≤ C‖g‖∞E[|Uj+1 + |z||Yj+1|] ≤ C ′L(‖Uj+1‖L1 + |z|K)Qg(x)

for some constant C ′. Next, let us recall that the dual of the cone Kj,L is generated
by the the linear functional h → h(x0) and h → g(x1)− C−2h(x2) where x0, x1, x2 are
arbitrary points in the state space of Xj. Now, using (8), by repeating the arguments
in [9, Proposition 6.6.1] we see that if s is one of the latter linear functionals then for
every g ∈ KK,j+1 we have

∣

∣s(R(j)
z g)− s(Q(j)g)

∣

∣ ≤ AC4(‖Uj+1‖L1 + |z|K)

where A is an absolute constant. By [9, Theorem A.2.4] (taking into account Theo-
rem 6.2.1 and Lemma 6.4.1 of [9]), there is a constant δ0 so that if ‖Uj+1‖L1 + |z|K < δ0
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then R
(j)
z g maps the canonical complexification KL,j+1,C of KK,j to the canonical com-

plexification KL,j,C and the projective diameter of the image (with respect to the com-
plex Hilbert metric associated with the complex cone Kj,L,C) does not exceed 2d0. Once
this is established, the rest of the proof of Theorem 10 proceeds as in [9, Ch. 6] by a
repeated application of a conic perturbation theorem due to H.H. Rugh [21] and the

explicit limiting expressions for λj(z), h
(z)
j and ν

(z)
j . �

3.2. Behavior around 0. Let

ΛN(h) = lnE[eih(SN−E[SN ])/σN ] + h2/2.

By [5, Section 5] for every m there exist constants δm, Cm > 0 so that for all j ≥ 3

sup
h∈[−δmσN ,δmσN ]

|Λ(j)
N (h)| ≤ Cmσ

−(j−2)
N .

Set

Qr,N(t) =
∑

k̄

1

k1! · · ·kr!

(

Λ
(3)
N (0)

3!

)k1

· · ·
(

Λ
(r+2)
N (0)

(r + 2)!

)kr

(it)3k1+...+(r+2)kr

where the summation ranges over the collection of r tuples of nonnegative integers

(k1, ..., kr) that are not all 0 so that
∑

j

jkj ≤ r. Then

(9) Qr,N(t) =
r
∑

j=1

σ−j
N Pj,N(t)

with

(10) Pj,N(x) =
∑

k̄∈Aj

Ck̄

s
∏

j=1

(

σ−2
N Λ

(j+2)
N (0)

)kj
(ix)3k1+...+(s+2)ks,

where Aj is the set of all tuples of nonnegative integers k̄ = (k1, ..., ks), ks 6= 0 for some

s = s(k̄) ≥ 1 so that
∑

s

sks = j (note that when j ≤ r then s ≤ r since ks ≥ 1).

Moreover

Ck̄ =
s
∏

j=1

1

kj!(j + 2)kj
.

11. Lemma. ([5, Section 4.3]). Let WN = (SN −E[SN ])/σN . For every r ≥ 1 there are
constants δr, Cr > 0 so that for every t ∈ [−δrσN , δrσN ] we have

∣

∣

∣
E[eitWN ]− e−t2/2(1 +Qr,N(t))

∣

∣

∣
≤ Ce−ct2σ

−(r+1)
N max

(

|t|, |t|(r+3)(r+2)
)

where c > 0 is a constant independent of r (and, by decreasing δr, it can be made
arbitrarily close to 1/2).

Lemma 11 will be crucial to determine the contribution of the resonant point 0. To
determine the contribution of other non-resonant points we will also need the following
more general result, whose proof proceeds exactly as the proof of [5, Proposition 23].



9

12. Proposition. Fix some integer r ≥ 1. Let LN : R → C be an r + 2 times differen-
tiable function so that

LN(0) = L′
N(0) = L′′

N(0) = 0

and that for each 3 ≤ j ≤ r + 2 for every t ∈ [−δr, δr] we have
∣

∣

∣
L(j)

N (t)
∣

∣

∣
≤ Arσ

2
N

where δr and Ar are constants which do not depend on t and N . Set L̄(t) = L(t/σN).
Then there are constants 0 < c < 1

2
and Br, εr > 0 depending only on δr and Ar so that

for every t ∈ [−εrσN , εrσN ] we have
∣

∣

∣
eL̄N (t) −HN,r(t)

∣

∣

∣
≤ Br(σN )

−(r+1)|max(|t|, |t|(r+2)(r+3))

where

(11) HN,r(t) = 1 +
∑

k̄

1

k1! · · · kr!

(

L̄(3)
N (0)

3!

)k1

· · ·
(

L̄(r+2)
N (0)

(r + 2)!

)kr

(it)3k1+...+(r+2)kr

and the summation runs over the collection of r tuples of nonnegative integers (k1, ..., kr)

that are not all 0 so that
∑

j

jkj ≤ r.

3.3. Mixing properties and moment estimates.

13. Lemma. For each j, let Gj = gj(Xj) be a real valued function of Xj so that

‖G‖∞ := supj ‖Gj‖L∞ < ∞. For every k, n ∈ N such that k ≤ n let Gk,n=

n
∑

j=k

Gj.

Then

(i) There are constants C1, C2 which depend only on the ellipticity constant C so that

C1

n
∑

j=k

Var(Gj) ≤ Var(Gk,n) ≤ C2

n
∑

j=k

Var(Gj)

(ii) For every p > 2 there is a constant Rp depending only on p, C and ‖G‖∞ so that

‖Gk,n − E[Gk,n]‖Lp ≤ Rp(1 +
√

Var(Gk,n)).

The first part follows5 from [18, Proposition 13], while the harder lower bound in the
first estimate was obtained in [23, Proposition 3.2 ]. We also refer to [4, Theorem 2.1],
which in the case one step elliptic Markov chains and functionals of the form Gj reduces
to these variance estimates of part (i).
The second result was essentially obtained in [4, Lemma 2.16] and it also follows from

[15, Theorem 6.17].

5Note that for one step uniformly elliptic chains the correlation coefficient of the chain as defined
in [18] is strictly smaller than 1.
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14. Lemma (Proposition 1.11 (2), [4]). Let Gj = gj(Xj) be a real valued function of
Xj so that sup

j
‖Gj‖L∞ < ∞. Then there exist δ ∈ (0, 1) and A > 0 which depend only

on the ellipticity constant C and on ‖G‖∞ so that for all n, k ∈ N we have
∣

∣Cov
(

gn(Xn), gn+k(Xn+k)
)
∣

∣ ≤ Aδk.

15. Remark. We note that by (4) and (12) we can get that
∣

∣Cov
(

gn(Xn), gn+k(Xn+k)
)
∣

∣ ≤ C1‖gn(Xn)‖L1‖gn+k(Xn+k)‖L1δk.

However, this stronger estimate will not be used in this paper.

3.4. Mixing and transition densities.

16. Lemma. We have

P(Xn+k ∈ A|Xn = x) =

∫

p(k)n (x, y)dµn+k(y)

and the transition densities p
(k)
n (x, y) take values in [C−1, C].

Proof. We have

P(Xn+k ∈ A|Xn) = E[P(Xn+k ∈ A|Xn+k−1, Xn)|Xn] = E[P(Xn+k ∈ A|Xn+k−1)|Xn].

To complete the proof, note that P(Xn+k ∈ A|Xn+k−1) ∈ [C−1, C], a.s. �

In the course of the proofs will also need the following result.

17. Lemma. ess-supx,y
∣

∣p(k)n (x, y)− 1
∣

∣ ≤ C1δ
k.

Proof. Let x be fixed. Let Γ(A) be the singed measure given by

Γ(A) = P(Xn+k ∈ A|Xn = x)− P(Xn+k ∈ A).

Then y → p
(k)
n (x, y)− 1 is the Radon-Nikodym derivative dΓ/dµn+k. Let (Ω,F ,P) be

a probability space. Recall that by [1, Ch.4], for every two sub-σ-algebras G,H of F ,

(12) ψ(G,H) := sup

{
∣

∣

∣

∣

P(A ∩ B)

P(A)P(B)
− 1

∣

∣

∣

∣

: A ∈ G, B ∈ H,P(A)P(B) > 0

}

= sup
{

‖E[h|G]− E[h]‖L∞ : h ∈ L1(Ω,H,P), ‖h‖L1 ≤ 1
}

.

Let G = σ{Xn} and H = σ{Xn+k}. Then by condition (4) we have ψ(G,H) ≤ C1δ
k.

Hence, by applying (12) with the function h = I(Xn+k ∈ A)/P(Xn+k ∈ A) we see that

‖P(Xn+k ∈ A|Xn)− P(Xn+k ∈ A)‖L∞ ≤ C1P(Xn+k ∈ A)δk.

Since the state space (Xn+k,Fn+k) of Xn+k is countably generated we conclude that

sup
A∈Fn+k

(P(Xn+k ∈ A))−1 |P(Xn+k ∈ A|Xn = x)− P(Xn+k ∈ A)| ≤ C1δ
k, µn − a.s.

Hence dΓ/dµn+k is bounded by C1δ
k. �
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3.5. Conditioning. Let E = EN be the σ-algebra generated by {Xn : n ∈ B} where B
is a subset of {1, . . . , N}.
18. Lemma. (i) There is a constant C2 ≥ 1 so that for any n 6∈ B and all ω in the
sample space we have

(13) C−1
2 V (Yn) ≤ V (Yn|E) ≤ C2V (Yn).

(ii) For any n, let qn(m|E) be the second largest among P (Yn ≡ j mod m|E),
j = 0, 1, . . . , m− 1. Then there exists a constant A ≥ 1 so that for any n ∈ N and all
ω in the sample space we have

(14) A−1qn(m) ≤ qn(m|E) ≤ Aqn(m).

Proof. We first note that by considering iid copies of X1 (which are also independent of
{Xn}) we can always extend {Xn} to a two sided uniformly elliptic Markov chain with
the same ellipticity constant C.
Let us prove the first item. It is clearly enough to prove it in the case when E(Yn) = 0.

Now, for every positive integers n, k and l we have

(15) P(Xn ∈ A|Xn−l = a,Xn+k = b) =

∫

A

p(n−l,n+k)
n (y|a, b)dµn(y)

with

p(n−l,n+k)
n (y|a, b) = p

(l)
n−l(a, y)p

(k)
n (y, b)

p
(l+k)
n−l (a, b)

and p
(s)
m is the transition density of Xm+s given Xm. Hence by Lemma 16, for every

possible value of Yn = fn(Xn) we have

(16) C−3
P(Yn = x) ≤ P(fn(Xn) = x|Xn−l, Xn+k) ≤ C3

P(Yn = x).

We note that when n is smaller than the first index n1 in B then we only condition on
the latter, but in this case we still get (16) from (15) by further conditioning on X0.
We conclude that

V (Yn|E) =
∑

x

P(Yn = x|E) (x− E[Yn|E ])2

≥ C−3
∑

x

P(Yn = x) (x− E[Yn|E ])2 ≥ C−3V (Yn)

since E(Yn − a)2 ≥ V (Yn) for any a ∈ R. On the other hand, using again (16) we see
that

V (Yn|E) ≤ E[Y 2
n |E ] =

∑

x

P(Yn = x|E)x2 ≤ C3
∑

x

P(Yn = x)x2 = C3V (Yn)

and (13) follows.

To prove the second item we use the fact that if Z is an integer valued random
variable with ‖Z‖L∞ ≤ K then

(17)
q(Z)

4
≤ V (Z) ≤ 8K3q(Z)
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where q(Z) is the probability that Z takes its second most likely value. Indeed let Z ′

and Z ′′ be independent copies of Z, and let ī and î be the most likely and the second
most likely values of Z. Then

V (Z) =
1

2
E[(Z ′ − Z ′′)2] =

1

2

∑

|i|,|j|≤K

P(Z = i)P(Z = j)(i− j)2 ≥ 1

2
P(Z = î)P(Z 6= î) =

q(Z)(1− q(Z))

2
≥ q(Z)

4

since q(Z) ≤ 1
2
. On the other hand, using the above formula for V (Z) we get

V (Z) ≤ 1

2
× (2K)2 × P(Z ′ 6= ī or Z ′′ 6= ī) ≤ (2K)2 × P(Z 6= ī) ≤ (2K)2 × 2Kq(Z).

Applying (17) with Z = Yn mod m and using item (i) proves item (ii). �

19. Lemma (Conditional chains). After conditioning on E , for almost every realization
of E the sequence {Xn : n 6∈ E} forms a uniformly elliptic Markov chain. More precisely,
let us write B = {n1 < n2 < .... < nd}, where both ni and d might also depend on N .
For the sake of convenience, let us also set n0 = 0 and nd+1 = ∞. Then, for almost
every realization of E we have the following:

(i) The random variables {Xn : ns < n < ns+1} are conditionally independent,
namely they are independents with respect to PE , where PE(·) denotes P(·|E).
(ii) If n and n + 1 belong to the same block (ns, ns+1) then

PE(Xn+1 ∈ A|Xn = x) =

∫

pn,E(x, y)dµn+1,E(y).

with C−6 ≤ pE,n(x, y) ≤ C6, where dµn+1,E denotes the law of Xn+1 given E .
Proof. The first part follows because {Xn} is a Markov chain, and it does not require
ellipticity.
To prove the second part, notice that by (15) together with Lemma 16 the conditional

law of Xn is equivalent to the law of Xn, and the Radon-Nikodym derivative is bounded
above by C3 and below by C−3. Note that if n < n1 then we can still use (15) by taking
n − l = 0 and setting X0 to be an independent copy of X1 which is independent of
{Xn}.
Next, since {Xn : ns < n < ns+1} are conditionally independent it is enough to

show that each {Xn : ns < n < ns+1} forms uniformly elliptic Markov chain after
conditioning by E . To show that, let n satisfy that ns < n < n + 1 < ns+1 for some s.
If 0 < ns and ns+1 <∞ then

PE(Xn+1 ∈ A|Xn) = P(Xn+1 ∈ A|Xn, Xns+1
)

and so it follows from (15) that

PE(Xn+1 ∈ A|Xn) =

∫

A

p(ns,ns+1)
n (y|Xn, Xns+1

)dµn+1(y)

where the densities are bounded above by C3 and below by C−3. Now the result follows
since µn+1 and µn+1,E are equivalent with Radon-Nikodym derivatives bounded between
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C−3 and and C3. The proof when ns = 1 is similar, and the case ns+1 = ∞ reduces to
the unconditioned chain. �

4. Classical estimates.

Recall Definition 3. Let R = {tj} be the set of all resonant points. Divide T into
intervals Ij of small size δ such that each interval contains at most one resonant point
and this point is strictly inside Ij . We call an interval resonant if it contains a resonant
point inside. Then

(18) 2πP(SN = k) =
∑

j

∫

Ij

e−itk
E(eitSN )dt.

In the case of sums of independent identically distributed integer valued random vari-
ables the Edgeworth expansion comes from the expansion of the characteristic function
near zero while the other intervals give negligible contributions. In this section we ob-
tain a similar estimates for the integer valued additive functionals of uniformly elliptic
Markov chains. However, in contrast to the iid case, in order to be able to disregard
the contribution of an interval Ij we need to assume that this interval is either non-
resonant, or it is resonant but the value ofMN (m) is large (where m is the denominator
of the corresponding resonant point).

4.1. The contribution a neighborhood of 0. In this section we will estimate the
integral

∫

Ij
e−itkE(eitSN )dt when tj = 0. Namely, we will expand the integral

∫ δ

−δ

E(eitSN )dt = σ−1
N

∫ δσN

−δσN

eitE[SN ]/σNE(eit(SN−E[SN ])/σN )dt

for a sufficiently small δ = δr. First, by Lemma 11, if δ is small enough then
∫ δσN

−δσN

eitE[SN ]
E(eit(SN−E[SN ])/σN )dt =

∫ ∞

−∞
eitE[SN ]/σN e−t2/2 (1 +Qr,N(t)) dt+ o(σ−r−1

N ).

Second, recall that for every real α we have
∫ ∞

−∞
e−iαhe−h2/2hkdh = (−1)kHk(α)ϕ(α).

where Hk is the k-th Hermite polynomial. Applying this formula with α = −E[SN ]/σN
and taking into account (9) and (10) we get the following result.

20. Proposition. There are polynomials P0,b,N with uniformly bounded coefficients so
that for tj = 0, for every r ≥ 1 we have the following: if the length of the resonant
interval Ij around 0 is small enough then

∫

Ij

e−itk
E(eitSN )dt =

r
∑

b=1

Pa,b,N((k − aN )/σN)

σb
N

g((k − aN)/σN ) + o(σ−r
N ).

The above Proposition shows that the contribution of the neighborhood of 0 corre-
sponds to the polynomials P0,b,N and the choice a = 0 (in the notations of Theorem 7).
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4.2. The negligible contribution: non-resonant intervals and resonant points

with MN (m) ≥ R ln σN and the proof of Theorem 2. For the sake of simplicity,

assume that

[N/2]
∑

n=1

q2n(m) ≥ R ln σN
2

(otherwise we will work with odd indexes instead).

Let us condition on X1, X3, X5, . . . . Then X2, X4, X6, . . . are independent after such a
conditioning. Moreover, by Lemma 18 the ratio between q2n(m) and their conditioned
versions is uniformly bounded and bounded away from 0. Therefore, we can assume

that, after the conditioning, we still have

[n/2]
∑

n=1

q2n(m) ≥ R0 ln σN with R0 large enough.

This reduces the problem to the case of independent variables which was considered in
[6, Lemma 3.4] and it shows that the contribution of the integrals over such resonant
intervals is o(σ−r

N ). Note also that similar arguments show that the contribution coming
from non-resonant intervals is O(e−cVN ) for some c > 0. Indeed, we assume that the
sums of the variances of X2n, n ≤ N/2 is lager than the sum of corresponding sum along
the odd indexes, and then condition on the odd indexes. Now we can apply [6, Lemma
3.3].
We note that it is immediate from the formulation of Theorem 2 that it is enough

to prove that the usual Edgeworth expansions hold (not in a conditionally stable way)
since after conditioning by a finite number of elements qn(m) can only change by a
multiplicative constant, see Lemma 18(ii). Hence, ifMN (m) ≥ R ln σN for large enough
R and all denominators m of nonzero resonant points, then the conditionally stable
Edgeworth expansions of order r hold true, and the proof of Theorem 2 is complete.

5. Contribution of nonzero resonant intervals with MN (m) ≤ R lnσN

In this Section we prove Theorem 7.

Let tj = 2πl/m be a nonzero resonant point so that MN (m) =
N
∑

n=1

qn(m) ≤ R lnVN .

Let us fix some ε̄ > 0, and let N0 = N0(tj, N) be the number of indexes n between
1 to N so that qn(m) ≥ ǭ. Then N0 ≤ R lnVN

ǭ
. Let us denote the latter indexes by

n1 < n2 < · · · < nN0
and set B = BN = {n1, ..., nN0

}. Let E = EN be the σ-algebra
generated by {Xn : n ∈ B}.
5.1. More on conditioning.

21. Lemma. There is a constant C > 0 so that

(19) |E(SN |E)− E(SN )| ≤ CN0 ≤
CR lnVN

ε̄
and

(20) |Var(SN |E)− VN | ≤ C ln2 VN .

Proof. In order to prove (19), let us take n so that ni < n < ni+1 for some i. Then

(21) E(Yn|E)− E(Yn) =

∫

(

p(ni,ni+1)
n (x|Xni

, Xni+1
)− 1

)

fn(x)dµn(x)
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where p
(ni,ni+1)
n (x|Xni

, Xni+1
) is defined by

p(ni,ni+1)
n (x|Xni

, Xni+1
) =

p
(n−ni)
ni (Xni

, x)p
(ni+1−ni)
n (x,Xni+1

)

p
(ni+1−ni)
ni−1 (Xni

, Xni+1
)

.

Now, by Lemmas 16 and 17 we have
∣

∣p(n−ni)
ni

(Xni
, x)− 1

∣

∣ ≤ C1δ
n−ni,

∣

∣p(ni+1−n)
ni

(x,Xni+1
)− 1

∣

∣ ≤ C1δ
ni+1−n,

C−1 ≤ p(ni+1−ni)
ni−1

(Xni
, Xni+1

) ≤ C,
∣

∣

∣
p(ni+1−ni)
ni−1

(Xni
, Xni+1

)− 1
∣

∣

∣
≤ C1δ

ni+1−ni.

We thus conclude that
∣

∣p(ni,ni+1)
n (x|Xni

, Xni+1
)− 1

∣

∣ ≤ C2δ
min(n−ni,ni+1−n)

for some constant C2. Therefore,

(22) |E(Yn|E)− E(Yn)| ≤ C2E[|Yn|]δmin(n−ni,ni+1−n).

Similarly when n < n1 or n > nN0
we have

|E(Yn|E)− E(Yn)| ≤ CE[|Xn|]δd(n,BN )

where BN = {n1, n2, ..., nN0
} and d(n,B) = min{|n− b| : b ∈ B} for any n and a finite

set B, and we set n0 = 0 and nN0+1 = N . It follows that there exists a constant C > 0
so that for any i,

(23)
∑

ni<n≤ni+1

|E(Yn|E)− E(Yn)| ≤ C.

Therefore,

|E(SN |E)− E(SN)| ≤
N0
∑

i=0

∑

ni<n≤ni+1

|E(Yn|E)− E(Yn)| ≤ C(N0 + 1).

Now we prove (20). First, let A1 < A2 be two sufficiently large numbers. Using (13)
and that{Xn} also satisfies (3) given E with a deterministic constant (see Lemma 19),
we can divide {1, ..., N} into blocks B1, B2, ..., BaN , aN ≍ VN so that for any k both

V (SBk
) and V (SBk

|E) lie between A1 and A2, where SB =
∑

n∈B
Yn for any finite set

B ⊂ N. Let us put Zk = SBk
.

Next, let us define S̃N =
∑

k∈NN
Zk where NN is the set of indexes 1 ≤ k ≤ aN so

that the distance between Bk and BN is at least A ln aN , where A is a constant so large
that a2Nδ

A ln aN ≤ 1. We claim first that

(24) VN = V (S̃N ) +O(ln2 aN ) and ‖V (SN |E)− V (S̃N |E)‖L∞ = O(ln2 aN).

Indeed, by (4) we have |Cov(Zn+k, Zn)| ≤ Cδk and also |Cov(Zn+k, Zn|E)| ≤ Cδk, where
C > 0 is some constant. As a consequence, for any k we have

(25) |V (SN)− V (SN − Zk)| ≤ C and |V (SN |E)− V (SN − Zk|E)| ≤ C.

Now (24) follows by a repeated application of (25) taking into account that S̃N was
obtained by removing at most O(ln2 aN) individual summands.
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Next, let us show that there exists C1 > 0 so that

(26) |V ar(S̃N |E)− V (S̃N )| ≤ C1.

Indeed, let 1 ≤ k1 ≤ k2 ≤ aN be so that d(Bki,BN ) ≥ A ln aN for i = 1, 2, where
d(A,B) denotes the distance between two finite sets. Then there are s1, s2 so that Bki

is contained in (nsi, nsi+1), for i = 1, 2. Let us first assume that s1 6= s2. Then Zk1 and
Zk2 are independent given E and

|Cov(Zk1, Zk2)| ≤ CδAaN .

Therefore, the contribution of such pairs to the left hand side of (26) is O(1).
Next, let us assume that Bk1 , Bk2 ⊂ (ns, ns+1) for some s. We will first show that,

with Wki = {fn(Xn) : n ∈ Bki} i = 1, 2, for any possible values u and v of Wk1 and
Wk2, respectively, for all possible values x and y of Xns

and Xns+1
respectively, we have

P (Wk1 = v,Wk2 = u|Xns
= x,Xns+1

= y)− P (Wk1 = v,Wk2 = u)(27)

= P (Wk1 = v,Wk2 = u)O(δA lnaN ).

Assuming that (27) holds we get6 that

(28) |Cov(Yk1, Yk2)− Cov(Yk1, Yk2|E)| ≤ C
√

V (Yk1)V (Yk2)δ
A ln aN = O(a−2

N )

which yields that the contribution of such pairs k1 and k2 to the left hand side of (26)
is also O(1).
Now let us prove (27). Let X(Bki) = {Xn : n ∈ Bki} and let

Γ1 = {X(Bk1) : fj(Xj) = vj} , Γ2 = {X(Bk2) : fj(Xj) = uj} .
For any n, k and x = (x0, ..., xk) let us write

pn,n+k(x) =

k
∏

j=1

pn+j−1(xj−1, xj)

where we recall that y → pn(x, y) is the transition density of Xn+1 given Xn = x.
Denote

x̄ = (xj)
ns+1

j=ns+1, x̄(i) = (xj)j∈Bki
, i = 1, 2

and let
D = {x̄ : x̄(i) ∈ Γi, i = 1, 2}.

Let us assume that k1 ≤ k2 and write Bki = [αi, βi]∩N. Then the difference on the left
hand side of (27) can be written as

∫

D

pα1,β1(x̄(1))p
(α2−β1)
β1

(xα2
)pα2,β2(x̄(2))

(

p
(α1−ns)
ns (x, xα1

)p
(ns+1−β2)
β2

(xβ2
, y)

p
(ns+1−ns)
ns (x, y)

− 1

)

β2
∏

t=α1

dµt(xt)

where we recall that y → p
(k)
j (x, y) is the transition density of Xj+k given Xj = x. The

term in the parenthesis is bounded exactly as the corresponding term from (21). Since
d(Bki,B) ≥ A ln aN and Bki ⊂ (ns, ns+1), it follows that ns+1−ns ≥ A ln aN . Therefore,
by Lemma 17 the term in the parenthesis is O(δA lnaN ), and (27) follows. �

6It is enough to prove this when E(Yki
)=0, i=1, 2. In this case (28) is a direct consequence of (27).
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5.2. The conditional cumulant generating function around nonzero resonant

points and its additive behavior. By Lemma [4, Lemma 3.4] we can find a bounded

sequences of integers (cn) so that E(SN ) −
N
∑

n=1

cn is bounded in N . Therefore, by

replacing Yn with Yn − cn we can assume that sup
N

|E(SN )| <∞.

Now, let us fix some nonzero resonant point tj = 2πl/m. Let j(Yn, m|E) be the most
likely residue of Yn mod m given E , and set

(29) Zn = Yn mod m− j(Yn, m|E), Z̄n = Zn − E[Zn|E ]
and for any n < k,

Sn,kZ̄ =
k−1
∑

s=n

Z̄s.

Note that for every p ∈ [1, 2] we have

(30) E
[

|Sn,kZ̄|p|E
]

≤ b

k−1
∑

s=n

qs(m|E)

for some positive constant b. Indeed, since |x|p ≤ |x|+ |x|2 for all real x and p ∈ (1, 2) it
is enough to prove (30) for p = 1 and 2. For p = 1 it follows from the triangle inequality
that

E[|Z̄s|
∣

∣E ] ≤ 2E[|Zs|
∣

∣E ] ≤ 2K2
P(Zn 6= 0|E) ≤ 2K2qs(m|E).

For p = 2 the result follows since by Lemmata 18 and 19, there is a constant c > 0 so
that

Var(Sn,kZ|E) ≤ c

k−1
∑

s=n

Var(Zs|E) ≤ c

k−1
∑

s=n

E(Z2
s |E) ≤ c(4K)3

k−1
∑

s=n

qs(m|E).

where in the last inequality we have used that

E(Z2
s |E) ≤

∑

0<|j|≤4K

j2P(Zs = j|E) ≤ (4K)3qs(m|E).

Recall that by Lemma 19 conditioned on E , for each s the Markov chains {Xn : ns <
n < ns+1} are uniformly elliptic with constants not depending on s and E . Moreover,
the processes {Xn : ns < n < ns+1} are independent, where we set n0 = 0 and

nN0+1 = ∞. Consider the family of functions g
(z)
n = zYn + itjZn = for z small enough

(recall that both Yn and Zn are functions of Xn). Then, since the L2-norm of Zn is
O(

√
ε̄) (both unconditionally and conditionally on E), we can apply Theorem 10 after

conditioning on E provided that ε̄ is small enough. This means that there is a constant
r0 > 0 so that for any complex number z with |z| ≤ r0 there are complex numbers

λn(z) = λn,E(z), uniformly bounded functions h
(z)
n = h

(z)
n,E and uniformly bounded

measures ν
(z)
n = ν

(z)
n,E (which depend on the realizations of E) so that ν

(z)
n (1) = 1,
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|λn(z)− 1| < 1
2
, ‖h(z)n − 1‖∞ ≤ 1

2
and for any bounded function g, n ≥ 1 and p > 0 we

have

(31)

∥

∥

∥

∥

E[eitjSn,pZ+zSn,pg(Xn+p)|E ]/λn,p(z)− ν
(z)
n+p(g)

∫

h(z)n dµn,E

∥

∥

∥

∥

∞
≤ A0‖g‖∞γp

where γ ∈ (0, 1) and A0 > 0 are some constants which do not depend on E and N and
µn,E is the law of Xn given E . Set Πn(z) = Πn,E(z) = lnλn,E(z) and

Πn,p = Πn,p,E =

n+p−1
∑

s=n

Πs(z).

Taking the logarithms in (31) we get that

(32) |Πn,p,E(z)− Γn,p(z)| ≤ C

where

(33) Γn,p(z) = Γtj ,n,p,E(z) = lnE[eitjSn,pZ+zSn,p|E ].
Let use also set ΓN(z) = Γ1,N(z) = Γtj ,N,E(z). Using the analyticity in z we get that
for any u there is a constant Cu > 0 so that for any complex number z with |z| ≤ r0/2
the derivatives of Γn,p satisfy

(34)
∣

∣Π(u)
n,p(z)− Γ(u)

n,p(z)
∣

∣ ≤ Cu.

5.3. Estimates on the derivatives of the conditional cumulant generating

function. We need the following result.

22. Lemma. For every p ∈ (1, 2) we have the following:

(i) Π′
1,N,E(0) = E(SN) +O

(

(lnσN )
2

p+2 (σN )
2p

p+2 )
)

= O
(

(ln σN)
2

p+2 (σN )
2p

p+2 )
)

and so

Γ′
tj ,N,E(0) = E(SN) +O

(

(ln σN)
2

p+2 (σN )
2p

p+2 )
)

= O
(

(ln σN )
2

p+2 (σN)
2p

p+2 )
)

.

(ii) We have

Π′′
1,N,E(0) = VN +O

(

(σN )
2p

p+1 (ln σN )
1

p+1

)

and so

Γ′′
tj ,N,E(0) = VN +O

(

(σN)
2p

p+1 (ln σN )
1

p+1

)

.

(iii) For any u ≥ 3 there exist constants Du > 0 and δu > 0 so that for any N and
all h ∈ [−δu, δu] we have

∣

∣

∣
Π

(u)
1,N,E(ih)

∣

∣

∣
≤ DuVN

and therefore there is a constant D′
u such that

∣

∣

∣
Γ
(u)
tj ,N,E(ih)

∣

∣

∣
≤ D′

uVN .
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Proof. Denote Πn = Πtj ,n,E . For any I we set ΠI(z) =
∑

n∈I
Πn(z).

First we prove (ii). Let εN < ǭ. Then the number of n’s between 1 and N so
that qn(m|E) ≥ εN is O(lnσN/εN). We subdivide the set of n’s between 1 to N so that

qn(m) < εN into blocks B1, ..., BlN so that for each k we have εN ≤
∑

n∈Bk

qn(m|E) ≤ 2εN .

Then

(35) lN = O(lnσN/εN)

and each Bk is contained in one of the blocks (ns, ns+1). By (32) for any k we have

Π′′
Bk
(0) =

E[eitjSBk
ZS2

Bk
|E ]

E[eitjSBk
Z |E ] −

(

E[eitjSBk
ZSBk

|E ]
E[eitjSBk

Z|E ]

)2

+O(1).

=
E[eitjSBk

Z̄S2
Bk
|E ]

E[eitjSBk
Z̄ |E ]

−
(

E[eitjSBk
Z̄SBk

|E ]
E[eitjSBk

Z̄ |E ]

)2

+O(1).

To estimate the first term on the right hand side, we first write

E[eitjSBk
Z̄S2

Bk
|E ]

E[eitjSBk
Z̄ |E ]

=
E[(eitjSBk

Z̄ − 1)(S2
Bk

− E[S2
Bk
|E ])|E ]

E[eitjSBk
Z̄ |E ]

+ E[S2
Bk
|E ].

To estimate the first summand on the right hand side, by (30) we have

E
[

|SBk
Z̄|
∣

∣E
]

≤ C
∑

n∈Bk

qn(m|E) ≤ 2CεN

and so when εN is smaller than some sufficiently small constant c0 > 0 we have
∣

∣

∣
E[eitjSBk

Z̄|E ]− 1
∣

∣

∣
≤ 1

2

which implies that

|E[eitjSBk
Z̄ |E ]| ≥ 1

2
.

Next, let us estimate the numerator. Since

(36) |eitjSBk
Z̄ − 1| ≤ |tj||SBk

Z̄|
for every p ∈ (1, 2) we have
∣

∣

∣
E[(eitjSBk

Z̄ − 1)(S2
Bk

− E[S2
Bk
|E ])|E ]

∣

∣

∣
≤ C‖SBk

Z̄‖Lp(E)
(

‖S2
Bk
‖Lq(E) + |E[S2

Bk
|E ]|
)

where Lq(E) denotes the Lq norm with respect to the conditional measure and q is the
conjugate exponent of p. To estimate ‖S2

Bk
‖Lq(E), let q0 = [q] + 1. Then

E[S2q0
Bk

|E ] = E[
(

S̄Bk
+ E[SBk

|E ]
)2q0 |E ] =

2q0
∑

j=0

(

2q0
j

)

E[S̄j
Bk
|E ](E[SBk

|E ])2q0−j.
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Since sup
a<b

|E[Sb]−E[Sa]| <∞ due to (23), we have that E[SBk
|E ] is uniformly bounded

in k. Applying the moment estimates of Lemma 13 to the conditioned Markov chain
we see that for every integer w ≥ 1 there is a constant Cw ≥ 1 so that

(37) ‖S̄Bk
‖Lw(E) ≤ Cw(1 + ‖S̄Bk

‖L2(E)).

We thus conclude that

‖S2
Bk
‖Lq(E) ≤ ‖S2

Bk
‖Lq0 (E) = ‖SBk

‖2L2q0 (E) = O(1 + ‖S̄Bk
‖2L2(E)).

To estimate the term E[S2
Bk
|E ] we have

E[S2
Bk
|E ] = V (SBk

|E) + (E[SBk
|E ])2.

The second term is O(1) because of (23). Combining the above estimates and using
(30) we see that

∣

∣

∣

∣

∣

E[(eitjSBk
Z̄ − 1)(S2

Bk
− E[S2

Bk
|E ])|E ]

E[eitjSBk
Z̄|E ]

∣

∣

∣

∣

∣

≤ C(εN)
1/p(1 + V (SBk

|E)).

We conclude that for every p ∈ (1, 2) we have

E[eitjSBk
ZS2

Bk
|E ]

E[eitjSBk
Z |E ] = E[S2

Bk
|E ] +O

(

(εN)
1/p
)

V (S(Bk)|E) +O
(

(εN)
1/p
)

.

Next, similar arguments show that for every p ∈ (1, 2) we have

(38)

∣

∣

∣

∣

E[eitjSBk
ZSBk

|E ]
E[eitjSBk

Z|E ] − E[SBk
|E ]
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E[(eitjSBk
Z̄ − 1)(SBk

− E[SBk
|E ])|E ]

E[eitjSBk
Z̄ |E ]

∣

∣

∣

∣

∣

= O
(

εN)
1/p
)
√

V (S(Bk)|E).
Now, by (23) and since each Bk is contained in one of the block (ns, ns+1) we have

|E[SBk
|E ]− E(SBk

)| ≤ C

and therefore, since |E(SBk
)| is also bounded in k, we get that

|E[SBk
|E ]| = O(1).

Combining the above estimates we derive that for every p ∈ (1, 2) we have

Π′′
Bk
(0) = V (SBk

|E)(1 +O
(

εN)
1/p)
)

+O
(

(εN)
1/p
)

√

V (SBk
|E) +O(1).

Next, set sk = V (S(Bk)|E). Then

(39)

lN
∑

k=1

√
sk ≤

√

lN

√

√

√

√

lN
∑

k=1

sk ≤ A

(

ln σN
εN

)1/2

σN
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for some constant A. Therefore, the contribution to Π′′
1,N (0) coming from the terms

O
(

(εN)
1/p
)
√

V (SBk
|E) is O

(

σN(εN)
1/p−1/2

√
ln σN

)

. Now, because of the Lemma 19
and exponential decay of correlation (Lemma 14) we have

V (SN |E) =
lN
∑

k=1

V (SBk
|E) +O(lN).

Since lN = O(lnσN/εN) we conclude that

(40)
N
∑

n=1

Π′′
n(0) =

O(lnσN/εN)+ (1+O
(

(εN)
1/p)
)

(V (SN |E)+O(lnσN/εN))+O
(

σN(εN)
1/p−1/2

√

lnσN

)

= V (SN |E) +O
(

(εN)
1/p
)

V (SN |E) +O(lnσN/εN) +O
(

σN (εN)
1/p−1/2

√

ln σN

)

.

This together with (20) and the choice εN = σ
− 2p

p+1

N

(

ln σN
)

p

p+1 yields (ii), where we
have used that, by (13), V (SN |E)/VN is uniformly bounded and bounded away from 0.

Now we derive (i) using the estimates obtained in the proof of (ii). By (38) and (19)

Π′
1,N(0) = E(SN ) +O(lnσN/εN) +O

(

(εN)
1/p
)

lN
∑

k=1

√

V (S(Bk)|E).

By (39)

Π′
1,N(0) = E(SN ) +O(lnσN/εN) +O

(

(εN)
1/p

(

ln σN
εN

)1/2

σN

)

.

Taking εN =
(

lnσN

σ2
N

)
p

p+2

we get (i).

In order to prove (iii), let c0 > 0 be such that for any n < k with

k−1
∑

s=n

qs(m|E) ≤ c0

we have

(41) |E(eitjSn,k |E)| = |E(eitjSn,kZ̄|E)| ≥ 1

2
.

Fix some s, and decompose {ns < n < ns+1} into blocks B1, B2, ..., BLs
, Ls ≤ R′ ln σN ,

so that for each k we have
c0
2
<
∑

n∈Bk

qn(m|E) < c0 (this is possible if ǭ is small enough).

Next, let us fix some large constant A. If V (SBj
|E) is larger than 2A then we subdivide

the block SBj
into smaller blocks so that the variance along each blocks is between A
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and 2A. We conclude that there is a partition of {1, 2, ..., N} into blocks B̃1, ..., B̃L̃ so

that7 L̃ ≍ σ2
N , the conditional variances along the blocks are uniformly bounded and

(42) |E(eitjSB̃s |E)| ≥ 1

2
.

for each block B̃s. Since V (SB̃s
|E) ≤ 2A we have

∣

∣

∣
E(eitjSB̃s

+ihS
B̃s |E)− E(e

itjSB̃l |E)
∣

∣

∣
≤ 4A|tj||h|

and thus there exists 0 < h0 < r0/2 so that for every h ∈ [−h0, h0] we have

(43) |E(eitjSB̃l
+ihS

B̃l |E)| ≥ 1

4
.

Next, let us decompose Π1,N according to the blocks B̃s:

Π1,N =

L̃
∑

s=1

ΠB̃s
.

Differentiating both ΠB̃s
and Γtj ,B̃s,E = ΓB̃s

u-times and using the Cauchy integral

formula together with (32) we see that if |h| < h0 then

(44)
∣

∣

∣
Π

(u)

1,B̃s,E(ih)
∣

∣

∣
≤ Cu +

∣

∣

∣
Γ
(u)

B̃s
(ih)

∣

∣

∣

where Cu is a constant which depends on u but not on E , N or h. Next, let us bound

ψ(h) = ψs(h) := Γ
(u)

B̃j
(ih) = lnE[eitjSB̃seihSB̃s |E ].

To ease the notation, let us abbreviate SB̃js
= S and W = tjSB̃s

. Then by Faá di

Bruno’s formula, for every h ∈ [−r0, r0] we have

|ψ(u)(h)| =

∣

∣

∣

∣

∣

∣

∑

(m1,...,mu)

u!
∏u

q=1(mq!(q!)mq)
· 1

ψ(h)
∑u

l=1 mq

u
∏

w=1

(

(i)wE[SweiW+ihS|E ]
)mw

∣

∣

∣

∣

∣

∣

where (m1, ..., mu) range over all the u-tuples of nonnegative integers such that
∑

q

qmq = u. By applying (43) (which provides lower bounds on the denominators)

together with Lemma 13 (taking into account Lemma 19) and the Hölder inequality
(to bound the numerators) we see that if |h| < h0 then

|ψ(u)(h)| ≤ C(u,A)

for some constant C(u,A) which depends only on u and A. Thus by (44)
∣

∣

∣
Π

(u)

1,B̃s,E(ih)
∣

∣

∣
≤ C ′(u,A)

7Since Ls≤R′ lnσN the blocks Bj for which V (SBj
|E)≤2A only contribute O(N0 lnσN )=O(ln2 σN )

to the total variance, and so in order to estimate L̃ we can disregard these blocks when one of the
original blocks has small variance.
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and since the number of blocks is O(σ2
N) we conclude that if |h| < h0 then

∣

∣

∣
Π

(u)
1,N,E(h)

∣

∣

∣
≤ C ′′σ2

N

for some other constant C ′′. �

5.4. The canonical form of the generalized Edgeworth polynomials at reso-

nant points. Let

(45) Λtj ,N,E(h) = Γtj ,N,E(ih/σN ) = lnE[eitjSNY eihSN/σN |E ]
and set

(46) Htj ,N,E,r(t) =

1 +
∑

k̄

1

k1! · · · kr!

(

Λ
(3)
tj ,N,E(0)

3!

)k1

· · ·
(

Λ
(r+2)
tj ,N,E(0)

(r + 2)!

)kr

(it)3k1+...+(r+2)kr

where the summation runs over the collection of r tuples of nonnegative integers
(k1, ..., kr) that are not all 0 so that

∑

j jkj ≤ r. Then we can also write

(47) Htj ,N,E,r(t) = 1 +
r
∑

q=1

σ−j
N P̃tj ,E,q(t)

with

P̃tj ,N,E,q(x) =
∑

k̄∈Aq

Ck̄

s
∏

j=1

(

σ−2
N Γ

(j+2)
tj ,N,E(0)

)kj
(ix)3k1+...+(s+2)ks

where Aq is the set of all tuples of nonnegative integers k̄ = (k1, ..., ks), for some

s = s(k̄) ≥ 1 such that
∑

s

sks = q (note that when j ≤ r then s ≤ r since ks ≥ 1).

Moreover Ck̄ =

s
∏

j=1

1

kj !(j + 2)kj
.

By Lemma 22, the L∞ norm of the coefficients of each P̃tj ,N,E,q are uniformly bounded.
Next, set

Λ̃tj ,N,E(h) = Λtj ,N,E(h)−
(

Λtj ,N,E(0) + hΛ′
tj ,N,E(0) + (h2/2)Λ′′

tj ,N,E(0)
)

.

Set also

dN = Λ′
tj ,N,E(0)−

iE[SN ]

σN
and uN = Λ′′

tj ,N,E(0)− 1.

Then by Lemma 22, for every p ∈ (1, 2) we have

(48) ‖dN‖L∞ = O(σ
− 2−p

p+2

N ln
2

p+2 σN ), ‖uN‖L∞ = O
(

σ
− 2

p+1

N (ln σN)
1

p+1

)

.

23. Proposition. For every r there are constants δr, Cr > 0 so that for every realization
of E and every real h with |h| ≤ δrσN we have

E
(

ei(tj+h/σN )SN |E
)

= E(eitjSN |E)e−hΛ′

tj,N,E(0)+(h2/2)Λ′′

tj ,N,E (0)Htj ,N,E,r(h)+θN,r,Eσ
−r−1
N e−h2/4
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where θN,r,E is a random variable so that supN ‖θN,r,E‖L∞ <∞. As a consequence,

(49) E
(

ei(tj+h/σN )SN |E
)

= E(eitjSN |E)e−ihE[SN ]/σN e−h2/2×
(

ehdN+h2uN/2e
−hΛ′

tj ,N,E
(0)+h2/2Λ′′

tj ,N,E
(0)
Htj ,E,r(h)

)

+ θN,r,Eσ
−r−1
N e−h2/4

Proof. We have

E
(

ei(tj+h/σN )SN |E
)

= exp

(

ΛN,E(h) + itj

N
∑

n=1

j(Yn, m|E)
)

=

E(eitjSN |E)e−hΛ′

N,E
(0)+(h2/2)Λ′′

N,E
(0) exp(Λ̃N,E(h)).

Notice now that Λ̃
(q)
N,E(0) = 0, q = 0, 1, 2 and that for j ≥ 3,
∥

∥

∥
Λ̃

(j)
N,E(h)

∥

∥

∥

L∞

=
∥

∥

∥
Λ

(j)
N,E(h)

∥

∥

∥

L∞

= O(σ
−(j−2)
N )

and σN = σN,E(1 + o(1)). Now the proof of the proposition is completed using Propo-
sition 12, applied for every realization of E . �

5.5. Proof of Theorem 7. Recall the decomposition (18) of P(SN = k). In this
section we will expand the integrals

∑

j

∫

Ij
e−itkE(eitSN )dt for resonant points tj =

2πl
m

so that MN(m) ≤ RσN for some constant R.
Recall first that

∫ ∞

−∞
e−iαhe−h2/2hkdh = (−1)kHk(α)ϕ(α)

where Hk is the k-th Hermite polynomial. Now, let us write
∫

Ij

e−ikt
E(eitSN )dt = E

[

e−itjkσ−1
N

∫ δσN

−δσN

e−ikh
E
(

ei(tj+h/σN )SN |E
)

dh

]

.

Expanding the terms ehdN and e−h2uN/2 in (49) and using (48) yields that the contri-
bution of tj up to o

(

σ−r
N

)

equals to the expectation of

σ−1
N E(eitjSN |E)

∫ ∞

−∞
e−i(tjk+hk/σN )

(

1 +
3r−2
∑

j=1

hjdjN
j!

)(

1 +
r
∑

j=1

h2jujN
j!2j

)

Htj ,N,E,r(h)e
−h2/2dh.

Next,

(50)

(

1 +
3r−2
∑

j=1

hjdjN
j!

)(

1 +
r
∑

j=1

h2jujN
j!2j

)

Htj ,N,E,r(h) = 1 +
wr
∑

s=1

Atj ,s,N,Eh
s + gN,r(h)

where wr = 5r − 2 and gN,r(h) is a polynomials whose coefficients are o(σ−r−1
N ) in the

L∞ norm. Then with k̂N = k−E[SN ]
σN

the contribution is the expectation of

(51) σ−1
N E(eitjSN |E)ϕ(k̂N)

(

1 +

wr
∑

s=1

Atj ,s,N,E(−1)sHs(k̂N)

)

.
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Proof of Theorem 7. The theorem follows from (47) and (51) and the results in Sec-
tion 4.2 (showing that the contribution of nonzero resonant points is negligible when
MN(m) ≥ R ln σN with R large enough). �

6. Classical Edgeworth expansions.

24. Proposition. The condition E[eitjSN ] = o(σ
−(r−1)
N ) is necessary for the usual ex-

pansions of order r to hold.

Proof. Let us write

(52) 1 +
wr
∑

s=1

Atj ,s,N,E(−1)sHs(k̂N) =
wr
∑

u=0

Btj ,u,N,E k̂
u
N .

Using (51) and [6, Lemma 5.1] we conclude that the expansions hold iff

E[E(eitjSN |E)Btj ,u,N,E ] = o(σ
−(r−1)
N )

for all u. However, since Hk is of degree k we conclude that the expansions hold iff

E[E(eitjSN |E)Atj ,s,N,E ] = o(σ
−(r−1)
N )

Indeed, the leading coefficient on the right hand side of (52) is Atj ,wr,N,E , which yields
that

E[E(eitjSN |E)Atj ,wr,N,E ] = o(σ
−(r−1)
N ).

Now we can proceed by induction on s, using [6, Lemma 5.1]. This means that the
contribution is reduced to

σ−1
N eitjkE[E(eitjSN |E)] = σ−1

N eitjkE[eitjSN ]

and thus E[eitjSN ] = o(σ
−(r−1)
N ). �

25. Remark. The proof shows that if the conditionally stable expansions of order r
hold then for all ℓ,

sup
j1,...,jℓ

∥

∥E[eitjSN |Xj1, ..., Xjℓ]
∥

∥

L∞
= oℓ(σ

−(r−1)
N ).

Indeed we can just replace the chain by the chain conditioned on Xj1, ..., Xjℓ and use
that the error term in the definition of the conditionally stable expansion depends only
on r, σN and the number of conditioned variables ℓ.

26. Proposition. The condition

(53) max
k≤8r−4

sup
j1,...,jk∈B

‖E[eitjSN |Xj1, ..., Xjk ]‖L1 = o(σ
−(r−1)
N )

is sufficient for the usual expansions of order r to hold. Similarly, the condition that
for each ℓ

sup
j1,...,jℓ

‖E[eitjSN |Xj1, ..., Xjℓ]‖L1 = oℓ(σ
−(r−1)
N )

is is sufficient for the conditionally stable expansions of order r to hold.
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Proof. Since the variables Xj coming from different blocks (nk, nk+1) are conditionally
independent (under E) we have8

Γtj ,N,E(z) =
N0
∑

k=0

Γtj ,nk,nk+1,E(z).

Thus recalling (45) we have

(54) (i)−sσs
NΛ

(s)
tj ,N,E(0) =

N0
∑

k=0

Γ
(s)
tj ,nk,nk+1,E(0).

For s ≥ 3, let

Gk,s = Gtj ,k,s,E = (i)sΓ
(s)
tj ,nk,nk+1,E(0).

Then Gk,s are functions of (Xnk
, Xnk+1

). Arguing similarly to the proof of Lemma 22(iii)
we get

‖Gk,s‖L∞ ≤ Cσ2
nk,nk+1

, s ≥ 3.

For j = 1, 2 we need to estimate dN and uN and not only the cumulants. To estimate
dN , note that

(55) σNdN = i
∑

k

(Γ′
tj ,nk,nk+1,E(0)− iE[Snk ,nk+1

]) :=

N0
∑

k=0

Gk,1.

Notice also that Gk,1 depend only on (Xnk
, Xnk+1

). Arguing as in the proof of Lemma 22
we see that, for every p ∈ (1, 2)

(56) ‖Gk,1‖L∞ = O
(

(σnk,nk+1
)

2p

p+2 (ln σnk,nk+1
)

2

p+2

)

+O(1)

where the O(1) term is only needed when σnk,nk+1
=
√

Var(Snk,nk+1
) is small.

To estimate uN , by applying Lemma 21 we see that

−σ2
NuN = Γ′′

N (0)− σ2
N = Γ′′

tj ,N,E(0)− V (SN |E) +O(ln2 σN )

in L∞. Observe now that

V (SN |E) =
∑

k

V (Snk,nk+1
|E)

because the blocks between two bad times are conditionally independent. Thus,

(57) − σ2
NuN = Γ′′

N (0)− σ2
N =

∑

k

(Γ′′
tj ,nk,nk+1,E(0)− V (Snk,nk+1

|E)) +O(ln2 σN).

Let

(58) G2,k = Γ′′
tj ,nk,nk+1,E(0)− V (Snk,nk+1

).

8Recall that Γ is defined by (33).
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Then arguing9 as in the proof of Lemmata 21 and 22 we see that for every p ∈ (1, 2)
we have

‖G2,k‖L∞ = O(1) +O
(

(σnk,nk+1
)

2p

p+1 (ln σnk,nk+1
)

1

p+1

)

where the O(1) term is needed to cover the case when σnk,nk+1
is small.

Next, by using the explicit formula (51) of the generalized Edgeworth polynomials and
the above formulas we see that their coefficients are linear combinations of expressions
of the form

(59) ANE[e
itjSN ] +

∑

1≤k1,...,kℓr≤N0

ck1,...,kℓrE
[

E[eitjSN |X̄k1 , ..., X̄kℓr
]Gk1,...kℓ,N

]

where ℓr = 4r − 2, with X̄k = (Xnk
, Xnk+1

), and AN is either10 0 or 1, ck1,...,k3r are
combinatorial coefficients bounded by some constant C = Cr, and

(60) Gk1,...,kℓr ,N
=

3r−2
∏

s=1

σ
−jks
N Gjks ,ks

for appropriate 0 ≤ jks ≤ mr (for some mr which depend only on r), where for j = 0
we set G0,k = 0. Before we proceed with the proof let us give more detailed explanation
of (60). First, the coefficient of the polynomials defined on the right hand side of (52)
are linear combinations of Atj ,s,N,E , s ≤ wr. Next, by (50) and (46) each Atj ,s,N,E has
the form

Atj ,s,N,E = Ps

(

dN , uN ,Λ
(3)
tj ,N,E(0), ...,Λ

(vs)
tj ,N,E(0)

)

for some polynomial Ps whose degree does not exceed 4s− 2, where vs is some positive
integer. Indeed, the term of the smallest order in the brackets on the left hand side of
(50) is dN , and the largest relevant power of dN is 3s− 2. On the other hand, the term

Htj ,N,E,r(t) contributes at most s variables among Λ
(u)
tj ,N,0 to Atj ,s,N,E , where there is an

actual contribution only if u ≤ s+ 2 since in the computation of Atj ,s,N,E we need only
to take into account the partial term Htj ,N,E,s(t).
Overall we get at most 4s−2 appearances of variables of the form (Xnk

, Xnk+1
) which

amounts in at most 2(4r−2) = 8r−4 appearances of variables of the form Xnj
, which is

the maximal number of conditioned variables in (53). Now we arrive at (60) by taking
expectation of the expression in (51), using (54) and (55), and the fact that for every
function Q = Q(Xm1

, ..., Xms
) with mℓ ∈ B we have

E
[

E(eitjSN |E)Q
]

= E
[

Q · E
[

E(eitjSN |E)|Xm1
, ..., Xms

]]

= E
[

Q · E(eitjSN |Xm1
, ..., Xms

)
]

.

To prove that the contribution coming from the nonzero resonant point is negligible

it is enough to show that the above coefficients are o(σ
−(r−1)
N ).

We claim that

(61) ‖G‖ :=
∑

k1,...,kℓr

‖Gk1,...kℓr ,N
‖L∞ ≤ C

9We first approximate the conditional variance by σ2

nk,nk+1
as in Lemma 21, and then approximate

the second derivative as in Lemma 22.
10AN is 1 only in the coefficients of the polynomial multiplied by σ−1

N , but for the proof to work we
actually only need AN to be bounded.
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for some C which depends only on r. Note that (61) implies that
∣

∣

∣

∣

∣

∣

∑

k1,...,kℓr

E
[

E[eitjSN |X̄k1, ..., X̄kℓ ]Gk1,...,kℓr ,N

]

∣

∣

∣

∣

∣

∣

≤ C sup
a1,...,a2ℓr∈B

∥

∥E[eitjSN |Xa1 , . . . , Xa2ℓr
]
∥

∥

L1

and so the first condition is indeed sufficient.
In order to prove (61), let us first consider the case where one of jks = j is larger

than 2. In this case we have

σ−j
N Gjks ,ks

= σ−j
N

[

O(σ2
nk,nk+1

) +O(1)
]

, k = ks

while the other terms are bounded. Thus the contribution to ‖G‖ of such terms is
O(N ℓr

0 )σ−1
N = o(1). Otherwise, jks is either 1 or 2. If one of them is 1, then, since the

other terms in the product are bounded we see that the contribution to ‖G‖ of such
terms is dominated by

N ℓr
0

N0
∑

k=0

σ−1
N ‖G1,k‖L∞ .

However, by (56), if p is close enough to 1 then ‖Gk,1‖L∞ = O
(

σ
3/4
N

)

and so

Nkℓ
0

N0
∑

k=0

σ−1
N ‖G1,k‖L∞ = O

(

Nkℓ+1
0 σ

−1/4
N

)

= o(1)

where we have used that N0 = O(lnσN ).
It remains to consider (k1, ..., kℓr) so that jks = 2 for all s. In this case the contribution

to ‖G‖ from such terms is at most

N
kℓr
0

N0
∑

k=0

σ−2
N ‖G2,k‖L∞ .

Note that by (58), if p is close enough to 1 then

‖G2,k‖L∞ = O
(

ln σN(σN )
3/2
)

where we have again used that σnk ,nk+1
= O(σN). Hence

N ℓr
0

∑

k

σ−2
N ‖G2,k‖L∞ ≤ Cσ

−1/2
N N ℓr+1

0 ln σN = o(1).

The proof that the second condition is sufficient for the stable expansions is similar, we
first condition on a finite number of variables, and then repeat the arguments above. �

Proof of Theorem 8. The theorem follows now by Remark 25 and Proposition 26 (note
that the case when MN (m) ≥ R lnσN was already treated in §4.2). �

Proof of Theorem 4. The theorem follows from Theorem 8 together with the standard
fact that a sequence of probability measures on {µN} on Z/mZ satisfies µN(a) =
1
m

+ O(γN) for some sequence γN and all a ∈ Z/mZ iff µ̂N(b) = O(γN) for all b ∈
(Z/mZ) \ {0} where µ̂ is the Fourier transform of µ (see e.g. [6, Lemma 6.2]). �
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