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EDGEWORTH EXPANSIONS IN FUNCTIONAL
LIMIT THEOREMS

By F. Go1ZE
University of Bielefeld

Expansions for the distribution of differentiable functionals of normalized
sums of i.i.d. random vectors taking values in a separable Banach space are
derived. Assuming that an (r + 2)th absolute moment exist, the CLT holds
and the distribution of the rth derivative r > 2 of the functionals under the
limiting Gaussian law admits ‘a Lebesgue density which is sufficiently many
times differentiable, expansions up to an order O(n~"/2*#) hold.

Applications to goodness-of-fit statistics, likelihood ratio statistics for
discrete distribution families, bootstrapped confidence regions and function-
als of the uniform empirical process are investigated.

1. Introduction and results. Let X,,..., X, denote a sequence of ii.d.
observations taken from a measurable space (2, /). We are interested in special
sequences of statistics T,(X,,..., X,,) which are symmetric in (X,,..., X,,) and
have a nonnormal limit distribution. Hence, for these statistics the “linear” term

k=1(E(T,|X;, j + k) — ET,) of the Hoeffding expansion of 7T, [see Hoeffding
(1947)] with its limiting normal distribution does not dominate the higher order
terms asymptotically.

Consider the following special sequence of statistics T,,. Let (E, || - |[) denote a
separable Banach space endowed with Borel o-field 4. Let g denote a measur-
able transformation g: (%, &) — E. For functionals F,: E — R define

S, 2 n”V%(g(X,) + -+ +8(X,)),
T.(X,,..., X,) £ F(S,).

Assume that Eg(X,;) =0 and E||g(X,)||?> < . For examples of such statistics
see Section 2.

The model (1.1) allows us to formulate rather precise moment conditions by
using truncation techniques for the norm ||g(X,)|. A drawback of this approach
compared to considering the general type of symmetric statistics 7, as in
van Zwet (1984) and Friedrich (1989) for normal limit laws and the Berry-
Esseen result is that the conditions refer to a rather arbitrary intermediate
Banach space E and not directly to 7,, itself. Asymptotic expansions up to the
order o(n~!) for U-statistics of degree 2 are proved in Bickel, Gotze and van
Zwet (1987).

For the nonnormal limit and finite order von Mises functionals (i.e., Hoeffding
expansions of 7, of finite order) approximations by expansions have been
obtained in Gotze (1979, 1984) for the second and higher order functionals.
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According the formulation in (1.1) let X, X,,... denote from now on a
sequence of i.i.d. random vectors taking values in a separable Banach space
(E, || - |D- Assume that X are measurable with respect to the Borel sets % of E.
Furthermore, assume that for some integer s € N, s > 3 the moment condition

(M,) E|X)*< o, EX =0
holds.

Define S, £ (X, + -+ +X,)n" /2 and assume that the CLT holds in E, i.e.,
(E) S, = G weakly,

where G denotes a random vector in E with Gaussian distribution.

The condition (E) always holds for Banach spaces of type 2 [see, e.g.,
Hoffman-Jergensen and Pisier (1976)]. This includes for example the L? function
spaces with 2 < p < 0.

Let F: E — R denote a Frechét differentiable functional independent of n.
The rate of convergence has been investigated for F(x) = ||x + a||? in Hilbert
space in Yurinskii (1982), Zalesskii (1982), Nagaev (1985) and Sazonov and
Zalesskii (1985) who relaxed the moment and variance conditions of the
Berry—-Esseen result of Gétze (1979) and extended it to the non-ii.d. case. For a
counterexample concerning the necessary minimal number of eigenvalues see
Senatov (1986).

Expansions for this special functional have been investigated in Gotze (1979),
Bentkus (1984a) and Bentkus and Zalesskii (1985). For general differentiable
functionals there are Berry—Esseen results of order O(n~'/2) in Gétze (1981a)
(using Fourier inversion) and Gotze (1986) (improved results without using
Fourier inversion).

Let us call F: E—> R a polynomial function of degree r>1 if F=
Fy+ <+« +F, where F(x)=F]x,...,x] (j arguments) and (x,,...,%,) —
Flx,,...,x;] denotes a j-linear symmetric continuous functional on E J. For
such functionals expansions have been derived in Gotze (1984).

The formal approximations of distribution functions of F(S,) as well as
expansions of expectations of the type Ef(S,) have been studied in a general
framework in Gotze (1985) and in more special contexts in Go6tze (1981b) and
Bentkus (1984b, 1986).

We shall assume that F is Fréchet differentiable in the following sense. There
exist constants ¢, > 0 and K > 0 such that

(Dys-s) IDIF(x)|| < cp(1 + ||| F)

holds for every x € E and 0 < j < 3(s — 2), s > 4.

Here D’F(x) denotes a j-linear continuous symmetric functional D/F(x):
EJ/ > R written as (vy,..., v;) = DIF(x)[v,,..., v;] and the supremum norm of
DJF(x) is defined as usual by ||D’F(x)| £ sup{|D/F(x)[vy,..., v;]]: |lvJl <1,
I'=1,..., j}. Furthermore, let E* denote the dual space of E endowed with the
supremum norm for continuous linear functionals.

The condition (Dy,_j) does not guarantee a limit distribution of F(S,) with

differentiable densities and a Berry—Esseen result. See Rhee and Talagrand
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(1984). The essential condition which achieves this and also determines the order
of approximation for discrete distributions of X, is the following one.
Let G,,Gy,...,G,, r> 2, denote ii.d. Gaussian random vectors in E with

covariance operator ( f, 8) > Ef(G)g(G;), f, g € E* proportional to that of X,.
Define the conditional variance

(12)  6X(Go; Gy, Gooy) 2 E(DF(G)[Grs..., G T|Gy, .., G, y).
Assume that the condition
(V. 2) P(6}(Gy; Gy,...,G,_)) < 8) = 0(8%), &0,

holds.

These conditions were first used in Gotze (1981a) for r = 1. Later Vinogradova
(1985) proved under such conditions for r = 1,2 a Berry—Esseen result of order
O(n~1%#) for the distribution of symmetric differentiable functions F.

The following theorem is the main result of this paper.

THEOREM 1.3. Assume conditions (E), (M,), (Dy,_5) and (V, ) hold
where r>2, s=r+2, k=¢2"/s 0<e<2 with c,245r% r>7, and
c,/rt 2 2.1,2.18,255,2.85,3.1 for 2 <r <86, respectively. Then there exist
3(r — j) — 2 times differentiable functions x ;(a), 0 < j < s — 3, depending on F
and the moments of X, only such that

(1.4) sup P(F(Sn) < a) — rgoxj(a)n—jﬂ = O(n—r/2+'e).

a

REMARK 1.5. The functions x (a) are determined by means of Fourier
inversion of derivatives of the functions

(e1,-+., &) = EexplitF(G, + &, X, + - +¢;x;)].

Compare (3.9). Unfortunately explicit formulae for x ;(a) are available in very
special cases only. Therefore the bootstrap approach is studied in Section 2.

REMARK 1.6. Assuming that conditions (E), (M;,s), (D;,s) and con-
dition (V, ,) is satisfied with & sufficiently large, the Berry-Esseen result
|P(F(S,) < a) — xo(a)] = O(n~'%) holds. [See Gotze (1986).]

REMARK 1.7. For smooth distributions of X, in E = R* in the sense of
Cramér (i.e, [Eexplit- X|]| < 8, <1, t|| > §, > 0, t € E*) Edgeworth approxi-
mations hold up to the error o(n~¢*~?/2), [See Bhattacharya and Ranga Rao
(1986).]

REMARK 1.8. Concerning the continuity of the distribution of X, the lattice
distribution of X, in E = R*, say, seems to be the “worst” case. For a homo-
geneous polynomial F of degree r, the rate of approximation given by Theo-
rem 1.3 is given by at most O(n~"/2*¢), This result is certainly not best possible
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but it cannot be substantially improved, since in this case P(F(S,)=a) =
p(a)n~"7% + o(n~"/%7%), where p(a) is number theoretic function (independent
of n) such that in typical examples p(a) > 0 for arbitrary many a [G&tze
(1987)].

REMARK 1.9. Whenever F(x) = F(—x) for every x € E it follows from the
fact that P,(D) is a differential operator of odd order if / is odd and

P(F(G + 81X1 + A +81Xl) S a) = P(F(_G - £1X1 -t = Sle) S a)
that x,(a) = 0 for odd integers /.

REMARK 1.10. When the moments of || X,|| of order s > r + 2 exist then the
condition on the covariance structure in condition (V, ,) can be relaxed. In this
case one can replace ¢(r)/e by a smaller constant. Furthermore, for small r the
constant ¢(r) is not optimal and can certainly be improved.

REMARK 1.11. When F(x) = (Ax, x) is a quadratic polynomial on a Hilbert
space E condition (V; ) holds provided that Cov(G,y)A has at least k nonzero
eigenvalues. [See Gotze (1979).]

In statistical applications the functional F in (1.1) often does depend on 7 in
the following way:

F~n(sn) 2 .F:,(Sn) + n_1/2FL+1(Sn)
+ oo +n"TE(S,) + A, OtV

where A, , denotes a stochastically bounded r.v. and F,(x) denotes a homo-
geneous polynomial of degree j in x defined on E. Here S, is defined as in
(1.1). In many cases the stochastic expansion arises as the expansion of
n”’%(F(n~'/%S,) — F(0)), provided that D'F(0) = 0 for [ =1,...,» — 1. Here we
shall consider the case of nonnormal limit distributions, i.e., » > 2 only.

For functionals of the type (1.12), we prove the following result.

(1.12)

THEOREM 1.13. Assume that conditions (E), (M) and (V; kj) .for F, j=
v,e..,v+ h,withv>2, h>2lands >r+ 2 hold, wherekjé c; 27 /¢ c,,,ré c

(as in Theorem 1.3), ¢; ,. 2 ;2 forj > v and 0 < & < 1. Furthermore assume

P(|Ar,n| > n1/2+e) —_ O(n"ﬂ“).

Then there exist differentiable functions x (a) € C*"~)~2 different from those
in Theorem 1.3 such that

r

r-1
(1.14) sup |P(F(S,) < a) — ¥ x,;(a)n?| = O(n~"7%*¢),
a Jj=0
wherer =v + 2h.
REMARK 1.15. The functions x; are obtained by means of the expansion

(1.4) for F(G,) = F(G,) + n™Y?F, (G,) + -+ +n""/?F(G,) and an additional
asymptotic expansion of these terms in powers of n~ Y2,
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REMARK 1.16. The conditions allow for arbitrary discrete distributions of
X,. For v = 2 the limiting distributions is of weighted x*type and the result of
Theorem 1.13 extends the results of Chandra and Ghosh (1979) for E = R* and
“smooth” distributions of X, to discrete distributions of X, in infinite dimen-
sional spaces E. For the classical x2limit distribution the paper of Chandra and
Ghosh provides rather explicit formulae for the expansion terms x (a).

Expansions for stochastic expansions with normal limit, i.e., » = 1 have been
studied by Bhattacharya and Ghosh (1978).

REMARK 1.17. Assume that the conditions of Theorem 1.3 (resp. those of
Theorem 1.18) hold. Define ¢, £ x5 () and assume x¢(q,) > 0 for 0 <a < 1.
Then we have for T, = F(S,), respectively T, = F(S,), and 8 > 0,

(1.18) sup |P

f<ax1—8

— O(n—r/2+s)’

r—1
T,<q,+ X n"'ﬂ%(a)) -a
j=1

where

Pi(a) & —(xxo Nqa)s  Yal@) 2 (xixaxs™® = xax67" — x2x4x6 %) (g

and the other ¥ functions are defined similarly by inverting the expansion (1.4)
[resp. (1.14)]. Notice that for symmetric F we have similar as in Remark 1.9:

Vo1 =0,1=0,1,..., and Yy(a) = —xox5
2. Applications.

2.1. Goodness-of-fit statistics in R*. Let f: R > R U {0} denote a function
with 3r > 6 derivatives which are bounded by some polynomial functions in |x]|
such that

(2.2) P(f"(G) <€) = O(e*), €0 for some « > 0 holds,

where G denotes a r.v. with distribution N(0, ), A > 0.
Assuming (2.2), X, € E £ R*, EX, = 0 and E||X;||"*? < 0, it follows from
Theorem 1.3 that the distribution function of

k
(2.3) F(s,) & E,lf(sn,-),

where S, 2 n V%X, + ... +X,) £ (Sy, - -+ Syz), admits an Edgeworth expan-
sion up to an error of O(n~"/2*¢) provided that
24) k=(a'+r-1)2/e and Cov(X,) >0 (c, asin Theorem1.3).
For an example where (2.2) holds one might consider goodness-of-fit statistics by
choosing f equal to
“ fi(x) = x%exp[ —8x2], &6>0
or

fo(x) = x2/(1 + 8x2), 8> 0.
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Expansions of the statistic (2.3) for a given dimension k& holds up to an error of
O(n=%/2%¢) where R £ max{r: k> (a”' + r — 1)¢,2"/¢, 1> ¢ > 0}. Thus R ~
log k.

The first statistic based on f,(x) has been used, e.g., in robust (weighted) least
square methods. The goodness-of-fit statistics based on f(x) # cx? are of course
no longer asymptotically minimax. On the other hand it is well known for the x?
statistic f(x) = x2 [see Esseen (1945)] that in general the error cannot be smaller
than O(n~!*¢), where ¢ = 1/(k + 1). This discontinuity of the x2 distribution
for lattice valued random vectors X; has been investigated by Yarnold (1972),
who demonstrated the unsatlsfactory level asymptotics propertles for small n
unless one takes the number of lattice observation points on the x? ellipsoid into
account.

2.5. Bootstrapped confidence regions. Let X,,..., X, € (Z, &) denote an
i.i.d. sample from the distribution P and let g (%, #) - R? denote a measur-
able function with Covp(g(Xl)) >0.Let §,2n V%g(X)+ - - +g(X,)) and
standardize S, like S(P) £ = (S EPSn) where 2 is a symmetric positive
definite d X d matrix such that 22 = Covp(g(X)) ! Assume

26)(i) Epjg(X))° < oo for s > r(r + 2).

(2.6)(i))  Covp(g(X,)) > 0.

(2.6)(iii)) Condition (V &) holds for r > 2 and % as in Theorem 1.3.
26)iv) F:R?->Ris 'differentiable and satisfies condition (Ds,).

Let P denote the emplncal distribution for a fixed sample X £ - (X, .00 X))
Let X1 s--+s X, denote an iid. sample drawn from X. Let S *(P ) denote the
sum based on g(X*) and P An apphcatlon of Theorem 1.3 yields
P(F(S*(P)) < a)=xfa) +n 1/2x1(a|P) + -+ +0x(n"7/2**), where the
constant in the error bound is uniform in « and is a polynomial function of

Ep |lg(X*)||"*? which is bounded by K + E,|lg(Xp|I"** with probability
1—O(n""2K""). As in Remark 1.17 we may “invert this expansion with a
similar stochastic error term Oy(n~"/2*¢), since xq(a) does not depend on P
Then the following result holds.

COROLLARY 2.7. Assume that conditions (1)-(iii) hold for r > 3. Let qx 4
inf{q: P(F(S; *(P )) < q) > a} denote the exact a-quantile of the distribution of
F(S,( Pn)) under Pn. Then we have for every 8 > 0,

(2.8) \ sup 8|P( *(P,)) < q;“) - a| =0(n").

<a<l-—
The error term is O(n"2) [resp. O(n~%%%)] provided that r = 5 (resp. r = 4)
and F is symmetric. (Compare Remark 1.9 and Remark 1.17.)

For results on confidence regions for statistics with normal limit distributions,
see Hall (1986).
Similar results like (2.8) hold for stochastic expansions of the type (1.12).
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2.9. Applications to likelihood ratio statistics. Let I(8; x) denote the log-
likelihood function for an i.i.d. sample x = (x,,..., x,,) from a parametric family
F, with (dPy/du)(y) = p(8; y), y € &, p being a o-finite measure on a measur-
able space (2, #/) and parameter § € O, open in R**!. Assume that log p(9, y)
admits at least four derivatives which have absolute moments of order s, s > 5,
under P, such that the maximum likelihood estimator §, for 6 exists and the
likelihood ratio statistic has a stochastic expansion of the type (1.14):

w(8) £ 2{1(6,;x) - U(6; x)}
(2.10) = Fy(Su) + n7Y?F(S,, S,2)
+ 1 'Fy(Sy, Suas Sus) + O,(n7%2).

nl»
Here the random vectors S, ; denote the components of the likelihood derivatives
(D’l(6; x) — E,,(Dfl(ﬂ x))/Vn, j=1,2,3. We identify S, in (1.14) with
(S S,25 S, 3) € R¢, d sufficiently large Assuming that the Flsher information
matrix I(8) is p051t1ve definite, let k*¢ 2 (I(©) s, - Using Einstein’s summa-
tion convention define «** £ * Pk %**(33/38, 36, 30,)log p(6). Then

(2.11) Fy(x) £ x*%,x,,  Fyx, y) 2 2™ x,x, + 5 %%, x,y,,

and F, denotes a fourth order polynomial. [See Lawley (1956) and Hayakawa
(1977).] From Ew(0) = k(1 + b(@)n"! + O(n~%?)) one obtains the Bartlett
correction w'(8) £ w(6)/(1 + b(8)n~') [see Bartlett (1937)]. Chandra and Ghosh
(1979) Barndorff-Nielsen and Cox (1984) and Jensen (1987) proved that w'(8)
has x? distribution with error O(n~3/2) for continuous and partly continuous
families of distributions. Extending these results Barndorff-Nielsen and Hall
+ (1988) and Bickel and Ghosh (1987) proved an error O(n~?) for continuous
families. Applying Theorem 1.13 with » = 2 and A = 1 the following results hold
for discrete families as well.

COROLLARY 2.12. Under the condition mentioned above we have for 0 <
e <

=

b

sup|P(«'(0) < a) - x(a; k)| = O(n=2*%)

provided that k > 40.8/¢ and that F3(x Y) satisfies condition (Vj ), where
k3 > 128/¢ and x(a; k) denotes the x2-distribution function with k degrees of
freedom

The number of dimensions & required is rather large for practical applica-
tiops, but although it may be reduced somewhat for this particular case, finding
the minimum number of dimensions % in Theorem 1.3 and 1.13 (which certainly
has to be smaller) is connected to unsolved problems about the asymptotic
number of solutions of diophantine equations [Gdtze (1987)].
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ExaMpLE 2.13 (Multinomial families). Let 1(0; x) 2 log(n! n!™" ---
Ny, 07 - 0Py), where 6,>0, 6, + -+ +6,,,=1 and n=n; + --- +
n,.,. Define 2 (n,,...,n,,)n ' and £ £ (% — 8)V/n . Then we have by (2.10)

r—1
w(8) = ¥ F(£)n 272 + 0p(n™"7?),
=2
where
E+1
F(%) £ Y #1670
g (-1 577

and the Bartlett correction is w'(8) = w(8)/(1 + n~'b(8)),
kb(8) 2 E(n'2Fy(%) + Fy(%)).

Similar as in Example 2.1, condition (V; ;) can be checked for F;. (See section 4.)
Hence, «’(#) admits an asymptotic expansion of the type

P(w'(0) < a) = x¥(a; k) + xy(@)n 2+ -+ +0(n777%"%)
provided that & > ¢(r — 1)r?27, e, r ~ log, k.
2.14. Applications to empirical processes. Let x,(t) denote the uniform

empirical process on [0, 1] pertaining to i.i.d. observations x,,..., x,,. Let V(¢, x)
denote a function defined on [0,1] X R such that for some K > 0:

2.15)0)  [(8Y/3x")V(t, x)| < e + |x|¥) for every ¢, x and I < 3r, r > 2.
(2.15)() |V(¢, x) — V¥, x)| < c|t — |2 + |x[F). >

@15)i) P(J3 |(37/0xTW(t, woDw(e) -+ w._ (£ dt < 8) = O(8H),

where 810, k=5.1c,2"/e and wy(t), 0 <j<r—1, denote iid. Brownian
bridges.

REMARK 2.16. Condition (2.15)(iii) holds provided that

r

ax”

V(a,x)|,nq #0, fora=0o0ra=1.

COROLLARY 2.17. Assume that conditions (2.15)(1)(iii) are satisfied. Define
F(x(-)) & [} V(t, x(t)) dt. Then P(F(x,(-)) < a) has an expansion of type (1.4)
up to an error O(n~"/2*%) uniformly in a.

3. Lemmas. Let us introduce some notation which is frequently used
throughout this paper.

NoTaTioN. We shall use the convention that ¢ denotes a generic constant,
eventually depending on the absolute moments of the r.v. X; but not on n.
Furthermore, let 7 > 0 (resp. L > 0) denote arbitrarily small (resp. large) fixed
constants.
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In order to estimate various remainder terms of our expansion under accept-
able moment conditions we have to introduce a truncation scheme for the
random vectors X;. In the following assume that m > n denote integers. Let
¢: R — [0,1] denote a strictly monotone C* function such that ¢(x) =1 when
|x] < § and @(x) = 0 when |x| > 1. Let Z¥, ¢; > 0, denote a random vector in E
with distribution given by

(3.1) P(zy € A) = Eo,(1 X)l1e;n"%) 1 x 0 c 47>

where 0 £ 2¢/s with 0 < & < } as defined in (1.4), 9;j(x) £ @(x)/Eq(]| X,||le;n"?)
and Z; 9 denotes the random Vector which is identically zero a.s.
Deﬁne

—1/2

(3.2) Z zr
This r.v. is truncated such that
(3.3) IZ;ll < n=o2,

In estimating some error terms we even need a further truncation of Z; which we
denote by V; and which is defined by

(34) P(V,e A) 2 P(Z; € A||Z)| < 7),
where

(3.5) 72 (Nm™)"" for0 <N <m.
Hence,

Vi< as.

Definition of the expansion terms. Let P(D), [=0,..., r, denote differen-
tial operators with respect to variables ¢,...,¢, 21 <3(s —3)at ¢, = -+ =
g; = 0 which are defined as follows. Let D¥ £ 37/9eP. Define formal cumulant
operators k, by means of the formal power series

[~

o0
(3.6) Y k,p! P £ log(l + ) D”p!"lu")
p=2 p=2

using the following convention: DP: ... DP: always denotes partial derivatives
with respect to k different variables ¢,,...,¢, at ¢, = -+ =g, = 0. This con-
vention is unambiguous when applied to symmetric functions of ¢,,...,¢,. We
have ko = k; = 0, k, = D%, 3 = D3, k, = D* — 3D?D? etc. Finally define P,(D)
by

(38.7) Z P(D)u" & exp( Y xpp!_lu"_z).
° p=0 p=3

In particular, P(D) = 1, P(D) = k;/6 and Py(D) = «,/24 + k%/72. Let
(3.8) x(a; e,...,6) 2 P(F(G + X, + -+ +§X;) < a)
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and define
(3.9) X, (a) P(D)x(a 0,...,0), Jj=0,...,s—3,

where, e.g.,

(@) = & ix(as )|

and
a4 392 92 1 9% 93
= [R— —_— + ——— — .
xa(a) £| 5 3 2962 92| T 72 9€° &3 x(a; &, &) .
g =g=
Define
(3.10) T 2Z + - +2Z,,

where m € N and Z, is defined in (3 2). In order to expand the characteristic
function of F(T,,) define for Eyens &y € [-mTY2, m™1/2],

3.11) A, (t;¢,...,&) £ Eexp itFZf1+---+Zf‘+Z,+1+---+Zm .
1

Then we have the following expansion result.

LEMMA 3.12. (i) Let G denote the Gaussian r.v. in condition (E) and let & be
as in Theorem 1.3. Let |a| = a, + -+ +a, a; € Ny and I = [3(s — 3)/2]. Then

s—3
E exp[itF(T,)] — ¥ n/*P(D)Eexp|itF(G + Z3 + -+ +Z7)]|.-0

Jj=0
le|
~(s=2)/2 s ) )
<n sup der 8s;"lh’"(t’ €1y €|
m=>n,la| =s,lg <m 2 j= 1,...,l}
glel
+ sup! |~ E exp|itF(G + Z3 + -+ +Z7)]
(98'111 PR 33?1 =0

Zj(aj—2)3s—3,ajzz}

#

Notice that the terms in the expansion are just the Fourier transforms X i(t) of
x j(a) defined in (3.9).
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(i) Let h(e,,...,€,) 2 ER(Z8 + --- +Z%), h € CE). Then
|ER(Z, + --- +Z,) — Eh(G))
33

PR —1/2 -1/2
dex ... aeaah(el’ezy%,m yese, M )
1 3

<m V2 sup{

-1/2 =
mzn,lgl <m /,a1+a2+a3—3}.

Proor. (i) We have (9/d¢))h (¢ sl,...,sm)|5j=0 = 0 which follows from

EX, = 0 and the fact that

9r
FE(1 + 1 X0 o (el X, In72) = O(e*~4PnPo/?) forp <s — L.

€
Furthermore, h,(t0, &y,...,¢,,) = h,,_(¢ &y,..., ¢,,). Therefore Theorem 2.11
of Gotze (1985), page 5 applies to this sequence of symmetric functions %,
m = n, (n fixed!) and proves (i). The proof of (ii) follows similarly from an
application of Proposition 2.1 in Gotze (1985), page 3. O

(3.13)

LeEmMMA 3.14. (i) Assume that X;, j=1,..., m, satisfy conditions (E) and
(M,). Let V, denote the truncation of Z; at the norm v = (N /m)Y? as defined in
(3.5). Then we have for every N < m and q > 2,

(3.15) E|V, + -+ +Vy|9 < Cr9,

where C depends on E| G|
(ii) Assume that G has a Gaussian distribution on (E, #). Then

Eexp[a|G|]] < oo for every a > 0.
Proor. (i) Let U2 ||V, + --- + Vy|| and decompose U into martingale dif-

ferences U, 2 E(U — EWU|X;, j # 1)|X;, j <) with respect to the o-fields
6(X,,..., X;), 1 <1< N, such that

N
U-EU= ) U,.
I=1
From (a + b)? <297 Ya? + b9) for a, b >0, ¢ > 2 and well-known estimates

for martingale moments by Dharmadhikari, Fabian and Jogdeo (1968) we have
1 N
EU?< () (EU)? + N Y E|UIN9%|.
=1

Since by the triangle inequality and definition

Ul <Vill + E|IVJ| and [V <7 as.,
we have

(3.16) EU? < C;[(EU)? + (E|1Xy2)79"?]
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for some constant C; > 0. According to definitions (3.2) and (3.4) it follows that

-1
IEV) = ”EZjl(llells1)||P(||Zj|| < T)

(3.17) ~1/2,0/2 -1/2)71 -1
= ||E<P(||Xj||m n )le(uX,uleﬂ)”N(m ) P(“Zj“ < "') .

Since for some constant ¢ > 0,

(3.18) IZl < el Xim™*/% as.,
Chebyshev’s inequality shows

(3.19) P(IZ] > 7) = O(m™*/1=) = O(N~*/%),
(3.20) N(m %) =1+ O(m~*/2n°/2),

Hence by definition of ¢, Chebyshev’s inequality and EX; = 0 we obtain from
(3.17)-(3.20)

IEV]| = O(N~¢=175),
IEZ)|| = O(m~(~V/2p6-Do/2),
Furthermore, by virtue of (3.20) we have
P(2,...,2,) €A,,)=P(X,...,X,) €A,)
(3.22) X (1 + o(m~¢=2/2p59/2) 4 o(m~(e=D/2ps0/2)),
P((Vy,...,Vy) € A,)) = o( N~¢-2/2),

Hence 7~'Z;, j=1,..., N, are infinitesimal and Wy 2+ V,+ -+ +Vy) con-
verges to the same Gaussian limit distribution as S, = n" V%X, + --- +X,) by
condition (E). By a result of de Acosta and Giné (1979) we therefore obtain

Jim E|[Wyl = EIlGI < E'V2|G|* < 0.
— 00

(3.21)

Hence, part (ii) is a consequence of (3.16).
(ii) Part (ii) of the lemma follows from a well-known result of Fernique (1970).
O

The key inequality which enables us to prove the rate of approximation in
Theorem 1.3 is the following result.

LEmmA 323. Let S=U, + --- +U,, where U,,...,U, denote independent
random vectors in E. Let g: E — C denote a measurable function such that
E|g(S)|?? < . Define for a; € {0,1}, j=1,..., p,

S,2U +aUy+ (1 —a)Up+ -+ +a U, + (1 - a,)U,
where l_]j, J=1,..., p, denote independent copies of U;. Then
E( I—.[ ga(Sa)lUZ’ 1729"':Up7 (71;)

ae{0,1)P!

(3.24) |Eg(8)* ' <E

y

where g, £ g whenever L2 ,a; is odd and g, = g otherwise.
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ProoF. Write Eg(S) = EE(g(S)|,), where , £ o(U,Us,...,U,). Let
B=(@1,1,1,...,1)and 8 =(1,0,1,...,1). Then

|Eg(S)* < E|E(&(s)| )
(3.25) = EE(8(5,)2(%) )
= Eg(8;)&(S5)-
Iteration of this argument with (3.25) and
‘%‘é O(Up U2’ ij29---9[Jj—1’ l_];'—ly l]j+1’ l_];"+17"'7Up’ _p)’ .] = 39"'9 p
yields the result (3.24). O

COROLLARY 3.26. Let F* E — R denote a pth order polynomial as defined in
the introduction with p > 1. Then we have with the notation of Lemma 3.23

(327)  |EexplitF(S)][* < E‘E(exp(itDpF‘[Ul, ﬁz,...,ﬁp])|z72,...,tj;,)

b

where U'J = U, - l—fj and DPF is constant and a p-linear functional.

This probabilistic inequality is due to Goétze (1979) for the case p = 2. The
immediate extension to p > 2 has been mentioned in Yurinskii (1981). A related
inequality where U,,...,U,_, and S are uniformly distributed on the lattice
points in d-dimensional rectangles is known as the generalized Weyl inequality
in analytic number theory. [See Weyl (1916) for a special version of it.]

Proor. Use Lemma 3.23 with g(x) = exp[itF(x)] and the fact that the pth
order difference and the pth order derivative coincide for polynomials. O

LEmmA 3.28. Let V, j=1,..., N, denote the random vectors defined in

(34), put U, 2V, + --- +Vy and write f - x for f(x), f € E*.

(i) Let H(Uy) = h[Uy,..., Uy] denote a symmetric continuous d-linear form.
For f € E* we have for d > 2,

|Eexp[if~ UN]h(UN)|
< cllB)I74(1 + (1 £7119)( B, + BE)| E explif - V;

where B, = E|| X,||"
(ii) Furthermore,

(3:30) |Eexp[if - V,]1|" ¢ < cexp[ —r°E(f - X,)*/4] + O(N~-N-Do-2/2)
provided that
(3.31) E(f-X,)"=2/3E|f - X,|’m~ V2.

(3.29) e
1
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Proor. Since both estimates are rather standard we will only sketch them.
(i) Centering V,, define Y, = V;— EV. Then Uy=EUy+ Y, + -+ +Yy,
where E||Uy|| = O(tN~¢~2/2) by Chebyshev’s inequality. Expanding A(Uy) we

obtain (using the convention X” = X, ..., X » times)
d
(3.32) r(UY) = X h[Uy], whereUj2 Y, + .- +¥y
v=0

and &, denotes the y-linear symmetrlc form h,(-) £ ¢, h((EUy)® %, ) such that
2,0 < e (TN~ (s=2/2yd=»| p||. In view of (3.32) it suffices to consider h,. Expand-

ing the sum we obtain

Iy, & Eexplif - Uy 1h,(Uf)

3.33 N

@3)  _ ¢ .35 [ Besplif - 5] B [T exlif - 1] [T-o0 % |
k=1 k,=1J€1 k,

where I denotes the set of different indices among k..., k,. We write
ALY, .. , Y3 for A[Y,,. Y], Il < v, where a, denotes the mu1t1p11c1ty of j,
among kl, R, W.lo. g assume in estlmatmg a single term of (3.33) that

= {1,. l} and a,= -+ =a,=1,a;>2for j > «. Using the decomposition

2 BT explif - Y1, [%ens %o Xox .o, Y7

jel

=E[1(exp[if - Y] —1) TI explif- V]A, [0, X, Yo, .., VY]

J=<x k+1l<j<l

and |exp[if - ¥;] — 1| < || f | |Y;]l, we obtain
l

(3.34) 1Ty < I fIF(ENYL12) _I'IHEnY,-nafnhyn.
J=K

This together with E|Y}|* < E||Y; |27%~2 for @ > 2 applied to (3.34) yields, after
estimating the combmatorlal multiplicities of »-tuples with exactly / indices
different,

13 l
(3.35) |INv|sc(lZ Z||f||"Béf“+")||hy||lEexp[if-YJI”“”
=1 x=0

The first factor in round brackets on the r.h.s. of (3.35) can be bounded from
above by

cf”lZ B[+ (1F1m) IR < et i”(By + B + (11 £117)"),
=1

which immediately proves the result via (3.32) and the estimate for ||4,|.
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(i) Since |Eexp[if - V;]| < |E exp[if - X,]| + O(N~*/2) by Chebyshev’s in-
equality and by standard inequalities
|Eexplif - X,]| <1 - 3E(f- X,)’m™" + LE|f - X,|’m~%?
< exp[—1E(f - X,)’m ]
for every f satisfying (3.31), the inequality (3.30) follows. O
LEmMaA 3.36. Let G,,G,,..., G, denote i.i.d. Gaussian random vectors with

mean zero and with the same covariance operator as X,, which are independent
of Z;, j=1,...,m, as defined in (3.2). Define [see (1.2) and (3.10)]

¥(t; T,,) £ Eexp| ~t%2(T,,; Gy, ..., G;_,)].
Then we have uniformly in
lt| < n°/27%,  for arbitrarily small n > 0,
sup ¥(t; T,,) < c¥(¢; G,) + O(n™%), L arbitrarily large.

mz2n

(3.37)

PROOF. The proof is based on the Lindeberg—Feller method and a recursion
argument. In order to simplify the estimates we shall use the following approach.
Applying Lemma 3.12(ii) with A(x) £ Eexp[—tzaj?(x; G,,...,G;_))] we obtain
with Sy, £ Z0 + Zp + Z2+ Z, + - - - +Z);, where m has been replaced by M
in the definition (3.1) of Z 2

(£ S,) — ¥(t; G,)|
33

< m‘l/zsup{

. (3.38) WW: Sw, )

e <M™V2 M>m, e +ay+a; = 3}.

The r.h.s. of (3.38) can be estimated using condition (Dys-3) for F by
3k

3
mV%(1 + tﬁ)sup{E L+|YeX,| +Z,+--- +Z,)%*
1

3 3 3
X TTIGACT TN\ DT Toy( M/ X,1)

Xexp| —t%6%(Sy, ; Gy, .. .,Cj_l)];

(3.39)

M=>m,le] <M V2T, + B, = 3},

where D# = D#v£25) denotes the partial derivative with respect to ¢, €y, €3



FUNCTIONAL LIMIT THEOREMS 1617

Using Lemma 3.14(i), (ii) we obtain by Holder’s inequality the following upper
bound for (3.39) in view of (3.13) for s > 4:

C(n)m 21 + ts)sup{El/" exp[-—nt“’oj?(SM,s; Gy,..., Gj_l)]

(3.40) 4

3

XTT(L+1Z)1*): leff < M™%, M > m}

1
for some n > 1 sufficiently close to 1. Using Taylor expansion, condition
(Dy) for F, (3.3), |lg;Zy]| = O(n~°/*) and the inequality E(f(G) + A(G))? >
Ef(G)2 /7 — (n/(47q — 1)) — 1)EAXG) for 7 > 1 arbitrarily close to 1, we arrive
at

tQGJ-Q(SM’ o Gyyenns Gj_l) > t20j2(SM; G,,..., Gj_l)/ﬁ

J-1
(3.41) — c(@)| 2n7(1 + 1S,)1%*) LTiG?
2 t2/ﬁ012(SM; Gl""’Gj—l) - C,

where the last inequality holds on an event E,; dependingon Z, + --- +Z,, and
Gy, ..., G, only such that

P(Ey)=1-0(M™")

for L > 0 arbitrarily large and ¢ fulfilling (3.37). Hence, (3.41) leads to the
following upper bound for (3.40):

O(m™%) + e(m)m™'/*(1 + ¢°) sup E'/"exp| ~n/it*o}(Sy; G, - Gy

which implies by monotonicity of ¢ in |¢| and /7 > 1,

Y 2 sup ¥(t S,) < ¥(& Gy) + m, sup ¥/ (t; Sy) + O(m™1),
M>=m M>m

where 7,, = O(m~?), 8§ > 0, by (3.37). Hence
Um < 20(8; Go) + O(m™*)

provided ¢, > in?/"~D, gince 3,7 > 1 are arbitrarily close to 1, thus proving
Lemma 3.36. O ’

In the following we shall use the variance condition V, , of the introduction
for 1 < I < r derivatives. Assume

(V. ) P(E(D’F(GO)[GI,...,G]2|G2,...,G,) <) = O(eF),  el0.
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Then we have

LEMMA 3.42. Let n,(t) denote the absolute value of the c.f. of
D'F(G)IG,, ..., Gy Then:

(i) Condition (V, g) = m,(¢) = O(|1t] %), |¢| 1 co. A

(ii) Condition (V, ;) with k as in Theorem 1.3 implies condition (V, p),
I=1,...,r — lwithR, & 2¢,2 /¢ — q for 4 > 0 arbitrarily small and c, defined
as in Theorem 1.3.

Proor. (i) We have for ¢ > 0,

n/(t) = Eexp| - 3t%}(Go; Gy,..., Gy)]
(3.43) o
= %t“’/o exp| —t%x/2] P(6}(Gy; G, ..., G;) < x) dx.
Hence, condition (V] ») implies |n,(¢)] = O(|¢| ~B), |1 o0, and
n(t) = exp[— 1 - 12] P(t%}(Gy; Gy,..., Gy) < 1)

proves the equivalence (V; z) < n,(t) = O(|t| F).
(ii) Let !> 1. Notice that Gy 2 )G, + .G,y + -+ +&,G, where o2 +
(r — 1)a? = 1. Applying Corollary 3.26 to the function

x = D'F(aG, + x)[ G4, ..., G,]
with j £ r — I we obtain
7,(¢) < E*” exp[itA’D'F ],
" where

ADF 2 ¥ (-1)*DF(a Gy + a BGriy + (1 — B)G s,
B

b 4G+ (1 B))
and the sum extends over all tuples 8 € {0, 1}/. Hence,
(3.44) n,(t) < E?” exp| - t?E(A'D'F?|2,) /2],
where 7, 2 o(G,,» # 1,G,,,,...,G,). Expanding in a, around 1 and in «
around 0 yields
ADF~dF-of +(1+ nGouL)lquG,u ,Hl (IGI2 + IGN1> + 1)O(of "),

where d.F £ D'F(G,)G,,...,G;y; — Gyyy...,G.— G]. .
Hence, by Lemma 3.14(ii) we have for «, [0, A/D'F =d.F-aof +
O(a{*17%)||G,|| with probability 1 — O(af), where L > O is arbitrarily large and
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8 > 0 arbitrarily small. Therefore,

PlE A‘ 15 np 2
(3.45) (E(ADFYst)) < €2)
< P(E(d,F?,) < ¥/a?) — O(a}"2)) + O(af).

Choosing a; < ce?/ @j+1-28) condition (V, ,) yields the upper -bound
O(&*@7=28)/@7+1-28) for (3.45). This inequality together with (3.44) implies

n,(2) = O(|g|~+*7@//@/+ A=) for some & > 0,
thus proving assertion (ii). O

We mentioned that Lemma 3.23 and Corollary 3.26 contain the key tools to
show that the d.f. of F(S,) has jumps of sufficiently small order only. The
following lemma applies these inequalities in order to bound the remainder terms
of the expansion of the c.f. of F(S,) by n~"/2"%g(t), where g(t) decreases
sufficiently fast.

LEMMA 3.46. Assume that F satisfies condition (Dy_,)) with some con-
stants ¢y > 0 and K >0 and assume g satisfies condition (Dys_g_p) With
constants c, and K, where M < s. Then (recall T, = Z, + - -- +Z,):

() sup{|E exp[itF(T,)]t"g(T,)| m = n} < cc,(1 + [¢))~" for some n >0
and every t such that |t| < T, & mn/? [see (3.78)], where c is independent of n.
(i) |E exp[itF(T,)]| < O(n~7727=") for Ty < |t| < T, & n™/2"~.
(iii) Let m > 0 be sufficiently small. Then

sup %R, (8)l = O(n”7/27e7)

O<i<r-1
for every |t| = T, and x, € C3" D72 je,
R, (£) = O(jg =2 =D*27)
forj=1,...,r — 1 and arbitrarily small 1 > 0.
REMARK 3.47. Under the conditions of Lemma 3.46(i) we have
esssup{|E(exp[itF(Z1El b A Zp A+ Zy g+ +2,)]
(3.48) xtMg(T ) Zo, vy =1,..., l) |:m >n,le| <m™V? Zjv}

< cc (1 + 1) ~".

ProoF. We shall develop the estimation techniqu‘es in general steps which
when combined or selectively used will prove Lemma 3.46(1)—(iii).

STEP 1. (Additional truncation of Z,,...,Zy.) Let Z; be defined as in
(3.2) and denote by AY the event that exactly p=0,1,..., N+ » of the
random vectors Z,,...,Zy,, (N,#» €N, to be chosen later) have norm
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|Z,]|? > 72 £ N/m < 1. Define p(r) 2 P(|Z,)| > 7) and
AMé {||Zl||>'r,l=N+v,...,N+v—u+1,||Z,||S'r,lsN+V—u},

PuéP('IAM)’ Euféffd[:t'

Then we may write for integrable f,
N+v

(3.49) Ef=E }_:0(le ")y!P(AF)EFf.

We have by Lemma 3.14(i) applied to Z, + -+ +Zy,,_, and Zy,, ..., Z,
together with |Zy,, .., + --+ +Zy, |l < pn~°/? and the differentiability of g,

(3.50) E,g(T,)| < cc(1 + pFn=/2 + C(k)).

Since
a(r) & (N7 Jutp(4,) < a(+)",

where a(7) £ (N + »)p(r7), it follows that

N+v
(3.51) Y p.kq“(’r) < ca(7)"",

p=vr+1
because a(7) = O(N~¢~2/2) for bounded » € N. From (3.51) and (3.50) we
conclude

EexplitF(T,)|2(T,) = ¥ q,(v)E, exp[itF(T,)] &(T,,)
(3.52) p=0

+ O(N-C+D6-2/2)
which shows that for N > em?, 8 > O, » may be chosen as a constant indepen-
dent of m such that the error in (3.52) is O(m~L) for arbitrarily large fixed
L>0.

STEP 2. (Conditioning on M — N random vectors in 7,,.) We split the sum 7},
into two parts:

J 1

N
T,2Uy+T,n, Uy® XY Z, O0<N<m.
J=E—

By Taylor expansion we have

p—1
&(T,) = ) &, t Rp(_g), where g, = D’g(Tm’N)[UI\}]y!—l,
(3:53) 7=0

F(T,) = Fy_y w+ By(F), where F, y & 3_o DF(T,, )[Ux]v!
Conditioning on 7, 5 we have by Lemma 3.14(i) applied to Uy and to
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Zyniyir T o +Z, together with ||Z)|| <n 2 forI=N+1,..., N+ »,
(3.54) E R, (g) < ccpr? and E,|g(T,)R5(F)| < ccpr®.
Define A;,, v £ F; v — F; y. Then we have by expansion
|E, expitF(T,,)| &(T,)l
< IEuexp[itF},N]exp[itAjH’N]g(Tm)| + O(72|t))

q(y, H-1

EF exp[itl"}’z\,]gy 3 A”jH,Nt"v!_le,N
y=0

p-1
(8.55) < Y E,
v=0

p—1
+ O(7? + |trP]) + Y ({90 DO(79),

y=0

for some g > p and q(v, j) £ [(g — v)/(J + 1)}, where [ x] denotes the smallest
integer larger or equal to x.
Furthermore, expand

&, n= (termsof order /< g —y — 1in Uy) + O((1 + T, NI NUNNY),
which yields by means of Lemma 3.14(1),
|E, exp|itF(T,,)] g(T,,)

(3.56) < X° B B,(expitf, v] H, (T, ) [UR1 [T, v )

+ O(7? + |trP|) + O('rq(l + |t|[q/(j+1)7)),
“ where H_ , denotes a continuous y-linear form, such that
1Hy, ()]l < e(L + 1))

for some L > 0 sufficiently large and where the summation * extends over [, y
such that y<g¢—1and I(j+1) <q - 1.

STEP 3. [The symmetrization inequality (Lemma 3.23, Corollary 3.26).] In
view of (3.56) it is sufficient to estimate

(3.57) on(t) £ E,(explitFy, ;| R[U]|T,,, ~),

where & denotes a continuous k-linear form with norm | A|| < CQ + ||T,, yII%),
L > 0 sufficiently large. Notice that E(f|T,, y = T) = E(f|T,, y = T). Split-
ting Uy into j sums of independent summands of approximately equal length
yields Uy = Uy, + - -+ +Uy;. By Lemma 3.23 and Corollary 3.26 we obtain

Tm, N

b4

E(exp[itAfFN] Il h(“)[U,’GaH%)

as{0,1}/7!

(358) lpn(t)¥ '<E

where € £ o(T,, v, Uys, Uns, .., Uyj» Uy;), Uy; denotes an independent copy of
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Uy;s Uy, is defined as S, in Lemma 3.23 and
(3.59) AJFN é D"F(Tm, N)[UNI’ UNZ - UN2’ se ey UN] - UN]] .

Notice that conditionally on € the mapping Uy, — A’Fy is a continuous linear
functional, i.e., itA’Fy = f - Uy,, where f € E* depends on % and ¢.

Furthermore, H(Uy,) £ I, AY[U%,] is a polynomial of degree 2/~ % in U,
given ¢. Expanding H(Uy,) = H(Uy,) + * -+ + Hyi-1,(Uy,) into homogeneous
forms of degree » for H,(Uy,) we may assume w.l.g. that H is a form of degree
v < k2771 in Uy,.

STEP 4. (Estimate of the c.f. of sums of i.i.d. random variables conditionally on
%.) Applying Lemma 3.28(1)) and (ii) with f defined above, we obtain for
v < k27, some A >0and M = (N/j — v)s — 2)/2,

lon (12" < cE(IH(E)I{"(1 + | f=]I" Jexp| —Ar2%6%(%)]

(3.60) +1(02(%) < 2/3181Bs(@)m~ /) } 'Tm, ~)
+ O(N~M),
where f_ & I?IF(Tm,N)[Xl: Uny — ﬁN2’ ) UNj - U—Nj]’ Oz(g) & Ey( f_2|%),
B«%) £ E«(If1%1%),
(3.61) NH(Z)I| 2 11121 + 1T, M=) (UNall* + [1Tal* + -+ +1Tp01%)
for some L > 0 and x £ 22/~ — p. Notice that
(3.62)  NIfll < ep(l + 1T, NIIF ) Unz — Tsll -+ - [U; = Tl 18]-
By Lemma 3.14(i) we have for & > 0 arbitrarily small, I = 1,..., j,
(3.63) P(|lUyll > TN%) = O(m~%), L > 0 arbitrarily large,

provided N > m?’. Furthermore, again by Lemma 3.14(i) with N =m and
IZ|| < n=°% for j= N +1,..., N + », we have

(3.64) B(IT,, vl > m*) = O(m™").
Hence, by E,||H(%)|[15 < E}/Y|H(%)||LP(B)' ~'/* we conclude by (3.61)-(3.64),
E(lH() L) < 2/3108500ym-%) | T, )
(3.65) < cq-kzj_lE&_l/L(exp[—Ao2((€)ml/2|t|“1‘3(j_1)£N]) ‘
+ 0O(m™1t),

where ey = m~%, § > 0 small.
Using Hdlder’s inequality and the last result we obtain from Lemma 3.14(i)
and (3.60) for some A, A, >0,

low (2)] < cllAllT*Eo((1E721* + 1)¥n(A72%8) + Ypn(Agm )T, &)

(3.66)
+ O(m™1),
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where
yn(a) 2 BZ V70V (exp| - a%%(€) /r*(j ~ D]|T,, v),
m? & NYV2|¢r/) gy

Furthermore, we would like to get rid of ther.v. Z;, N+ v —p+ 1< I<N+v,
which satisfy r < ||Z,|| < n~°/? and the expectations E,. Notice that in (3.52) we
have to estimate g, (7)E,(-- ). By definition of A, and (3.51) from the first step
it follows that

0,(T)E (1 + 1T, slI*)¥n(a) < q,()P(A,) " BLyf1 + 1T, vl )¥n(a)
(3.67) < C(N ,‘f ”)M!P(Au)“Eﬂ¢N(a)l/ﬂ (Holder)

< CEﬁlPN(a)l/B

for every p < » and a + 8 < 1, a > 0. Hence, choosing an appropriate constant
a, it follows from (3.52), (3.56), (3.57), (3.66) and (3.67) that

|E explitF(T,,)] &(T,)t"|
< (1 + 7 Y)|gM(1 + |77+ 1gle/UH DY)
(3.68) X [(1 + |¢r9)97Y) El/ﬂpN()\l(tT)zTi’(j—l))‘*
+ EV4% (A ym,)* + O(m_L)]
+ O((r? + [t|rP)tM) + O(#M(1 + ¢19/0U* D) r2),

STeEP 5. [Replace Uy — Un, 1= 2,..., J, by Gaussian rv’s in Yy(a).]
Rewriting ¥, (a) as a c.f. we have for y £ 270791 — L™,

yn(a) = E§(exp(iaD’F(T,,, x)[Gr, U - - UA )| T v )»

where G, denotes a Gaussian r.v. with the same covariance functional as X, and
i 2 Uy — U,)m?N~V 2, Thus EQU,y = 0 and Uy = G, weakly, where
Gy, ..., G, denote ii.d. Gaussian r.v.’s. Since

Uy = DjF(Tm, N)[Gh Ugns Usns -+ Uy

is linear given %, % o(T,, n,G1, Usy,.-.,Ujy), Lemma 3.28(1) and (ii) imply
[using arguments similar to (3.60)—(3.66)]

yn(a) < Eg(exp[—}\3o2(%2)a2]|Tm’N)
(3.69) + cEg(exp[—?\4N1/2|a|_1eNlo2(%)] |Tm,N)

+0(m™%),  L>O0 arbitrarily large,

where A;, A, > 0 denote positive constants ey; = O( m~®%) and

HIAE EO(DJF(Tm,N)[GD Xos Us'lv""’lj}fv]zl%)
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and X;, j=0,1,2,..., are iid. r.v. independent of Gy,..., G,. Iterating the
estimate (3.69) above, we obtain by the monotonicity of N @ sum of ¢,
function values for arguments like @ = ay < N™**1/2m~" (g, k > 0 small) and
a1 £ NV%;'m™". Hence for [ > 1, N > m", a, > 1 we have N*m™" < a; <
N~**1/2mj =", This implies for |a| < N™**1/2p

Yn(a) <y(a) + CY(cN*m™") + O(m~L), where

(3.70) N
v(a) £ EV(eXP[—a“’}\,OjZ(Tm,N; G,..., Gj)”Tm’N)

and A, > 0.

STEP 6. (Replace T,, 5 by a Gaussian r.v. G,.) In view of (3.68) and (3.70) we
have for ¢ > 0 by Hélder’s inequality

EV%(a)* < ey(ca; T, )+ Cy(cN*m™™; Tm’N)Y + O(m™1),
where
tIj(a; Tm,N) & EeXp[_azojz(Tm,N; Gl,“'y Gj—l)]

for every |a| < N™**'2m™". Using Lemma 3.36 we obtain with a, = n°d-"/2
for arbitrarily small n > 0 by monotonicity of ,

(3.1) ¥(a; T, v) < ¥(a; Gy) £ ¢(min(lal, a,); G,).

Using the inequality (3.41) in the proof of Lemma 3.36 we may replace
F(Zg + -+ +Zp + x) by F(x) uniformly in ZF [since ||Z%|| = O(n~°/%)] in the
definiton of the function . Summarizing, we have by (3.68), (3.70) and the last
inequality,

|E exp|itF(T,,)] &(T,)t"|
L < cltM(1 + |ragle/Dn)
(872) X [(@(ct'rj; G,) + ¥(cN*m™™; G,))(1 + tr/1971) + O(m~1)]
+O((72 + 7P|¢))tM) + O(¢M+19/G+ D1 a)
for every ¢ such that
(3.73) |tr2)] < N=*+1/2p -0,

STEP 7. [Proof of (i)-(iii) by appropriate choice of N, k, p, q, M and g.]
Choose for 0 < ¢ < } defined in (1.4) and j > 1, '

li>

k24, 8 2ae/(j+1), where

(3i74) af2(r+1)(r—2¢) (1 - 26)(r—1+2x)7",

N2 ¢[mjg)~2-94] |4 = 1.



FUNCTIONAL LIMIT THEOREMS 1625

Notice that
a~1/r, rtoo, T~ |f 00 (piy ~ (g,
a = 1.34,0.64,0.41,0.3,0.232,0.19,0.16 forr=2,...,8.

Defining T} as the maximum frequency such that (3.73) holds for every m=n
we obtain after some computations,

(3.75)

T, £ cn/%i/2, where for > 0 arbitrarily small,

1-m—(j—-1+26)8/(1-2c+ (j—1+2x)5) 2 1-v.

(3.76)

>

)
Notice that 7, = O(n~"/2%¢) by the choice of a.
Using these choices of parameters we obtain by Lemma 3.42 the following
upper bound for (3.72):

tM+1—q(1_£a)/j(j+1) + tM+8j(q—1) min t‘si, N", a —Rj2—<i—l)(1_n)
37 (1 14 (1t ")
+ | MAL-PA=8)/T 4 |y M-PA=9/J]( g # const.) + m"'),
where
R;& c*2/7'/e,  n > 0small, L > 0 arbitrarily large,
a,2n/"D71 and X > 4c,.
This means c* = 6r2 for r > 7 and ¢*/r?=2.8,2.9,34,38,4.1for2<r < 6.
Proof of (i). Let j = 1. Then we have
(3.78) 1, =1 — 2kea/(1 — 2k + eae) <1 — 2e.
Choose
g2 [2(M+1)/(1-ea)],
p2[(M+1)/Q - ea/2)],
£ [M/(1 - ae/2)].
Notice that p derivatives of g exist since p <3r— (r+2)+ M —-1and M <
r + 2. This holds true for our choice of a for r > 2 provided that & < 1.
Let j=1 in (3.77). The various terms in (3.77) are bounded by O(n~") +
O(t|™), > 0, for |t| <n"/? provided that c* > max(¢, &, £;), with § £

2Ar + 2e/(1 —ea), &2 (r+2)((r+2) + (r+3)ae/(1 — ae))y,/2 and &, 2
el /((r + 2)v,6(1 — ae/2) — «xe) which follows from our choice of ¢x*.

Proof of (ii). Let M =0 in (3.77), let g=1 and m=n. Fix a j with
2 < j < r. Choose .
b2 (r-2/((-Dvo),  B2[(b+1)i/(1-8)],
g2 [(1-ea)j(j+1)(b+1)] and p2 [bj/(1- )]

Notice that p < j(r — 2¢)/(v;-41 — ag/(j + 1))(j — 1)) < 3r. Thus this choice
is allowed by our differentiability constraints on F provided that ¢ < 1. By the
choice of R; and T;_, we obtain with the choices (3.79) after elementary

(3.79)
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calculations the upper bound O(n~"/2*¢~"), 5 > 0, for (3.77) in the intervals
T;_, < |t| < T; provided that c* > max(§,, &5, £¢), where

£.2 (J+ 1)1 = (j+ Dae) /(a1 - ae)),

52 (@r—e)(r+2) +eb(j+1)j/(1 - ae)) /2,

£e 2 e(r — 2 + jy;bjae/(1 — as))/(ZIc(vj + Sj-yj)).
This follows from the choice of ¢, in condition (V, ,) and completes the proof of
part (ii).

Proof of (iii). By the definition (3.6) and (3.7) of the expansion of the c.f. §,(¢)

of x,(a) we have

31
(3.80) X:(t) = XL tMEexplitF(G)] gy(G),
M=1
where g,, consists of sums of products of derivatives of F such that g,, fulfills
the differentiability condition (Djy,_;_(y_ps) for some c, —sufficiently large.
Starting with relation (3.77) we let m = n tend to infinity and define N, 7, §; as
in (3.74). Thus N*, @, - 0. Let d 2 3r — 1 — 3/ + M and let

381) j=1, gqg2[2(d+1)/(1—-¢ea)] and p 2 [(d-1)/(1 - ac/2)].

Notice that the choice of p is possible since g € C¢ provided that ¢ < 1 which
given the choice of a forces p = d. From (3.81) and (3.77) we obtain for a
particular term of (3.80) the following upper bound for j = 1 and arbitrary t by
choosing ¢* > 2(3r — 2)(1 — 2¢/(1 — ag))/a (which follows by the choice of c,),

M+ (g —1) ctsl;G Y+ O(1gM—PA-ae/2)+1
sz M ¥ (cldl”; Go)” + O(1t )
+ O(tM—p(l—ae/2)) + O(Ith—q(l—ea)/2) < Cltl_a(r-l)”-"-
Hence, for |{| = n"/? we have
n=2R,(¢t)) = O(n~n@r=b/2=D=12) = Q(n~7/2*) forO<li<r-1

by the choice of vy, in (3.78). The differentiability of x; follows by Fourier
inversion from (3.82). This proves part (iii) and completes the proof of Lemma
3.46.0

Proor oF REMARK 3.47. The proof is immediate by the argument following
inequality (3.71). O

With the notation of 1.12 we have
LEMMA 3.83. Assume that F; satisfies conditions (V; 2 J=r,...,v+h,
and let g denote a homogeneous polynomial of degree d. Let R 4 r — 2¢. Then:

(@) sup{(L + |8 )| E exp[itF( T,)18(T,)l: m 2 n} < cc(l + [t for ev-

ery t such that |t| < n/2,
(ii) sup(|E exp[itF(T)}}: n/* < |t| < n®/%} = O(n~B/2=m),
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(iii) sup{n 7/?P(D)E exp[itF(G + X, + -+ +gX)]|._¢0 n"/? < |f| <
nR/2} = O(n=R/27") for some 4 >0 andj=0,...,r —1. =
(iv) For |t| < n"/? we have

r—1
Y n_j/ZPj(D)E exp[itI:’n(G + X, + - +elX,)] g=0
Jj=0
r—1 )
=Y n=2% (t) + O(n~R/2-m),
Jj=0

where % ; denote the Fourier transforms of differentiable functions x ; € Cc3r-H-2
(x, nondecreasing) which do not depend on n.

PROOF.

1. The frequency range |t| < n Here the proof of (i) and (iii) is similar
to the case where F does not depend on n. We use Lemma 3.42 in order to verify
conditions of the type (V; ,) for T,_, <t < T, Jj=1,...,, as defined in (3.76).
Moreover, since the derivatives of order [ > v of F, are of order O(n=¢="+/2)
instead of (3.72) we obtain for T;_, < |¢| < T}, p AG=-n,B2{G-rv+1),
and some polynomial of degree d

v/2—¢

sup |E exp|itF,(T,)] g(T,,)t"|

m=n
(384) < CIth(l + |Tj+1tn—ﬁ/2|q/(j+1))(¢(ctq-j; GO)Y + J(ann—n+lL/2; GO)Y)
X (1 + |f%9°V) + O(n~L) + O(|r/*'tn"#/%|9/U*D)

for every ¢ such that
(3.85) 8% < eN~=*1/2,

This inequality is derived similarly as (3.73) but since we deal with polynomials
we do not need to consider the Taylor expansion remainder terms for g and F;.

Furthermore, we adjusted all expressions for the order of the jth derivative of E,
for j > v. As parameters we choose similarly as in (3.74) for 0 <& < o

k=4 Sfa/(j+1), N2 [am' iy 20-0/],

T~ )T Igp /@D i ~ |tfSmr2,

(3.86)

For 1 < j < » these are precisely the definitions of (3.74). Choosing « as in (3.74)
yields the same intervals [T;_,, T;] as in (3.76) with T, proportional to n=Y/2%e
Furthermore, choosing g exactly as in (3.78) and (3.79) we can prove part (i),
since k, in the condition has been choosen large enough (depending on r) such

that the error in part (ii) is O(n~#/%) for T, < |¢| < n*/?7=
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2. The case |t| = n*/>7¢. For j > v+ 1, (3.86) defines a new scaling. The
definition of N here is still meaningful (i.e, 1 < N <n) provided that
nt/Cl=9) < |f| < pU+W/E1-%5) Fyurthermore, (3.85) yields

(3.87) T; £ cnWU*wW/2 j=y,...,v+h

Here v; is defined as in (3.76) and with the choice of a in (3.74) we obtain
T,. , > n®/2 Choosing

g=|Ri(G+1)/(va(p +7— 2)(1 — ea) +j = )]

2

and choosing in Theorem 1.13, c; , £ r2, we obtain after some tedious but

straightforward calculations that
2¢; . > max({(ayj_l)_lR(j +1)(u+j-2)"" + (g~ 1)8},
{(r+ 2R + yja(p+7)(j + 1) (g - De(r + 2)},

([14G+ 1) ealq = 1) + 1+ jR(u +5) Je/2¢})

implies that (3.84) is bounded by O(n~#/2-") in [T}_,, T;]. This proves part (ii)
of Lemma 3.82.

Proor or (iii). Consider the limit m — « and fix n in the stochastic

expansion F (x). By the arguments of Lemma 3.46(iii) we obtain, since %, is
chosen depending on r, that the choices (3.81) yield for the expansion x; , of F,,

(3.88) %1, a(8)] = Ot =¥ =D+277),

which in turn proves part (iii) as in (3.82).
PROOF OF (iv). Expanding exp[itF,(G)] in terms of tn~'/? and multiplying
this expansion (in n~1/2?) with the expanded derivatives of F,(G) we obtain the

desired expansion with an error term of the type

o _

]E(exp[itﬁz(a)lza*(tﬁ—lﬂ) n R, o))

+0((1 +1IG1%)(tn"%)Q),

(3.89)

where the sum Y * extends over all «,, @, > 0 such that Aal ta,>r,a; <Q -1,
Q is chosen such that @1 — y,) >r + 1 and F, s(G) denotes a polynomial
funetion of G. Hence, ’

202 Y Blexplith(Go)] gGo))

l=j+2
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where g, denotes a polynomial of degree at most 3I(» — 1). For %, = 2%, /¢ and
¢, as defined in Theorem 1.3 we obtain similar as in (3.82) that |x (¢)| =
O(|t)~3=H*+2=m) for 1 <j < r — 1 and by the choice of v, in (3.78) it follows
that |£,(£)n"72 = O(n"%/27") and x, € C*" )72, thus proving part (iv) of
Lemma 3.83. O

4. Proof of the results.

ProOF OoF THEOREM 1.3. By means of (3.22) we obtain with m = n uni-
formly in «a,

(4.1) P(F(S,) < a) = P(F(T,) < a) + O(n""72*%).

Define ~(t) £ E exp[itF(T,)]. Using the well-known Berry-Esseen lemma [see,
e.g., Bhattacharya and Ranga Rao (1986), Lemma 12.1, page 100] we have

A o di
wplP(FT,) < a) bl < Wwlt) = 0N

(4.2) +cysup|f’(a)n="/2"e

a

4 I + I,, say,

where

r—1
b(a) & X x,(a)n” "2
=0

By Lemma 3.46(ili) we have sup,|6,(a)| < c/[ﬁ(t)| dt <c¢ < oo. Thus I, =
O(n~"7%**). In order to estimate the term I, we split the domain of integration
into two parts,

(it cn?7) = O o,, wheredJ; 2 {J¢| < n"/?}

and
<]2 S {n71/2 < |t| < nr/z_f}_
Then
- A dt dt . dt
I < t) — 6y(t)— + [ |EexplitF(T,)]|— + [ 16,(¢)l—
g 1S [ = o + [ Bl T)]Ig + [60

AL+ 1,+1;, say.

Define Te,méZf1 ‘oA Z5+ Zo g+ o+ 2, a=(ay...,q,), =1, B=
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(By,.-.,B)and j=(j;... ), 1 <j,<r. By Lemma 3.12(i) we have

Won(2) = Ou(2)] < en™2 sup{ r

o B,

Eexpl[itF(T, ,)|¢* [1 DF(T, ,)| X3
p=1 *
(4.4) X nlBlo/2 1‘[ I X115 ( e, | X, In°2) + I :

mz=n,le,| < m“1/2},

where the sum extends over all vectors a, 8 and j such that |a| + 8] < r + 2
and I denotes the second term in the estimate of Lemma 3.12(i).

For t € J; we obtain by Lemma 3.12(i), Lemma 3.46(i) and (iii) the following
estimate of (4.4):

O(n~=+2e/2-1/2-7) ° ]_[ E|| X, [|%¢B( &, X,|In"?)
(4.5) Aoy pmt
+ 7721+ |t) "= O(n77/2*7), where |y| < r + 2.

This implies I; = O(n~"/**¢). Furthermore, by Lemma 3.46(ii), I, = O(n""/2*%)
and Lemma 3 46(111) entails I, = O(n™"" 2+£) Thus (4.2)-(4.5) together complete
the proof of Theorem 1.3. O

Proor oF THEOREM 1.13. Let ¢,(a) denote the expansion. We have
sup|P(T, < a) — ¢,(a)|

sup|P(Fy(a) < a) — y,(a)l + P(A,| > ne*1/2)

IA

(4.6) + suply,(a + O(n~F72)) — y,(a))

sup|P(F(a) < a) — y,(a)l + O(n"R/2),

by assumption and the uniform differentiability of ¢,(a). The expansion scheme
of Lemma 3.12 is still working for E(T,) provided that we fix the n in the
expansion of F and approximate the limit distribution lim,, _, F (T, ) ZF (G).
This together w1th Lemma 3.83(iv) yields the expansion terms of Theorem 1.13.
Using Lemma 3.83(i)—(iii) the proof is now analogous to the proof of Theorem
1.3.0

PROOF OF EXAMPLE 2.1. Let = denote the covariance matrix of G; and let A
denote its maximal eigenvalue. Then there is a constant c(Z) dependlng on =
only, such that @, 5(x) < c(2)@yr14(x) holds for every x € R*, where ¢,
denotes the multivariate normal density with mean zero and covariance =.
Hence in proving condition (V, ,) we may assume w.Lg. that G ; has independent
components G, ..., Gy. Then we have by conditioning b Gy -G, j=
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1,..., &k, and (2.2)

k
P(0X(Gy; Gy, G,) < 8%) = EP| ¥ f(Gy;)"b} < 87
Jj=1

bb)

(4.7)
<cIl E(8%/(82 + b}))w.

Let 8 = 1/(a™! + r — 1). Since P(|b;| < 87 ~V) < rP(|Gpy| < 8#) we obtain the
upper bound O(T1%_, 8#) for (4.7), thus proving (2.4). O

PROOF OF COROLLARY 2.7. Given the proof of Theorem 1.13, the proof is
similar to the proof of the result of Hall (1986). Therefore we shall confine
ourselves to a brief outline of the arguments. .

Since the limiting d.f. x,(a) is independent of P by virtue of the normaliza-
tion [provided that the minimum eigenvalue of the covariance matrix of g(X;)
given P, say Ap is positive], we obtain that for every constants 8, ¢, > 0 there
exist constants c,, ¢, > 0 such that

r—1
sup P(F(Sn(P)) <q,+ X \I/j(PalP)n“j/Z) _ alnr2-e:
Jj=1
(4.8)
Psuchthat A\p > 8, Ep| X|||"*? < ¢, n> cl}

Let = (resp. 2,) denote the covariance matrices of g(Z,) given P (resp. Pn). By
Chebyshev’s inequality it follows that [xT(Z — =,)x| < 8p/2||x||” holds on a set
€, of samples X such that P(%,) =1 — O(n~"%5"). Hence, Ap > op/2 26>
0 on %, and if M denotes the (sample) expectation of ||Z||}, I <r + 2, given P,
we obtain P(M < EpM + ¢,) =1 — O(n""/?). Let €, denote the latter event.
Since F(x) and the condition (V; ;) do not depend on P we conclude that the
expansion in (4.8) holds uniformly with error c,n”"/2%¢ for every sample in
€2 € N %,

Let x, a) denote the expansion (1.4) of length r. Since xi(g,) >0 by
assumption it follows x/, (g,) > 8xi(q.) for n sufficiently large and 1 > o > 0.
Hence there exists a constant c; (independent of n) such that the exact
a-quantile g* can be bounded from below and above by the Cornish-Fisher
expansion quantile g7, defined as in (1.18) for the bootstrap distribution P = 13n
with ¢; = ¢ (-|B,) uniformly for all samples in €:

(:19) qk,— esn /A < ¥ < g}, + cgn /2t

Let g, , denote the Cornish—Fisher expansion quantile defined in (1.18). Since
¥,(+|P) is proportional to the third cumulant of g(x,) given P and y,(:|P)is a
polynomial in the third and fourth cumulants given P, we may expand ¢,(-|F,)



1632 F. GOTZE

in terms of the empirical process measure e, & (P, — P)n'/2. 1t follows that
there are functions ¥ J( |P) such that

9= Qont 77" [$1(IP) dey(y)
(4.10)

+ 072 [y 5|P) de,(3) + Op(n7?).

Hence, (4.8), (4.9) and (4.10) together imply for r = 3
|P(F(S¥(B)) <t¥, X €)—a/+P(X %) =0(n"),

thus proving the first part of Corollary 2.7. Choosing r.> 5 and F symmetric it
follows that i, = 0 in (4.10). Furthermore, j%( y|P) de,(y) converges weakly
to a r.v. G* with normal distribution which drops out of condition (V k)
for F(G,) — G*n~%? by differentiation. Hence, (4.8) holds for F, £
F(S(P)) — n=*"*[{,(y|P) de,(y) as well. Since in the expansion of the c.f. of F
the term ¢, does not enter hnearly because of the symmetry of the region
F(x) < q it follows that |[P(F(S*(P)) < t,) — a| = O(n"2) [resp. = O(n"2%%)
for r = 4], which completes the proof of Corollary 2.7. O

ProoF oF COROLLARY 2.12. The proof follows immediately from Theorem
1.13 and the known results on the formal expansion terms x ;(a) mentioned in
Section 2.9 which imply x (a) =0 for j =1,2,3.0

Proor or ExaMPLE 2.13. With the notation of the proof of Example 2.1 we
have

k+1

(4.11) E(DlFl[Glj,...,Glj]2‘G2,...,Gl) —¢, Y, 0,(b670- - B)’,
J=1

where ¢, > 0and b £ £*1167¢"Pb; Since (G,y, ..., G2y LE Gp)), P = 2,..., ],
are Gaussian vectors W1th pos1t1ve covariance, we may replace them as in the
proof of Example 2.1 by Gaussian r.v. w1th independent components. Therefore
(4 11) can be bounded from above by o7 £ cXf~'8,(5;6; *~" — b) Furthermore,
o} < 82 implies |b; — b,| < &c(8) for j = 2,. k 1 Whlch in turn implies the
cla1m by condltlomng on b, and using max P(|b — 2| <8) =08y, O

PROOF OF REMARK 2.16. Assume a = 0 and let V(¢ x) denote the rth
derivative with respect to x. Then |Vt t1/2logt )| > c>0forO0 <t <m, q
sufficiently small which implies |V)(¢, w(¢))| > ¢ with probability 1 — O(n¥)
for 0 < ¢t <n and K arbitrary large. Furthermore, the event c%j w (¢)? ---
w,_(t)?dt < 8 has probability O(8%), L arbitrary large. (Use conditioning and
the well-known properties of the Brownian bridge.) O

ProOF oF REMARK 2.17. Exactly as in Remark 1.12 of Gotze (1986) we
conclude that (2.15)(i)—(iii) implies condition (V, ,) for F(x(-)). O
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