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Edgeworth Price Cycles, Cost-based Pricing and
Sticky Pricing in Retail Gasoline Markets

Michael Noel∗

University of California, San Diego

December 10, 2003

Abstract

This paper examines dynamic pricing behavior in retail gasoline mar-
kets for 19 Canadian cities over 574 weeks. I find three distinct retail
pricing patterns: 1. standard cost-based pricing, 2. sticky pricing, and
3. steep, asymmetric retail price cycles that, while seldom documented
empirically, resemble those of Maskin & Tirole [1988]. I use a Markov
switching regression to estimate the prevalence of the regimes, the pat-
tern of markup in each, and the structural characteristics of the price
cycles themselves. Retail price cycles prevail in over 40% of the sample.
I show they are more prevalent in markets and at times where there is a
greater penetration of small, independent firms. The cycle is accelerated
and amplified in markets with very many small firms. In markets with
few small firms, sticky pricing is dominant. Each of these findings is con-
sistent with the theory of Edgeworth Cycles. I discuss both welfare and
policy implications of such pricing behavior, and compare the Canadian
experience with that of seemingly similar retail gasoline markets in the
United States.

JEL Classification L13, L41, L81

“This is why marketers and individual retailers watch one an-
other’s price signs like hawks. When one competitor lowers the price,
others follow right away. Consumers have the impression that the
prices all change in unison, but they don’t — it’s a rapid chain reac-
tion. Eventually, prices spiral down to the point where the margin
disappears altogether, until one competitor restores the price.” —
Roger Purdie, V.P. Imperial Oil Canada, 2000.

∗Comments welcome to mdnoel@ucsd.edu. I would like to thank Glenn Ellison, Sara
Ellison, Nancy Rose, Emek Basker, Bengte Evenson, Dean Karlan and seminar participants
at Berkeley Haas, Chicago GSB, Clemson, Duke, MIT, Michigan, Northwestern, Oregon, UC
San Diego, and Stanford GSB for helpful comments. I gratefully acknowledge financial support
from the Social Sciences and Research Council of Canada and the MIT Schultz Fund.
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1 Introduction

In a retail industry where many firms sell a homogeneous good, one might expect
firms to simply set retail price equal to wholesale price plus the marginal cost of
retailing. However, in retail gasoline markets in Canada, three different pricing
phenomena can be seen. The first pattern is one in which prices cycle rapidly
and in a strongly asymmetric way. The cycle begins with a large price increase
from one week to the next, and is followed by a gradual decline in price over
the next several weeks. It then repeats over and over. These cycles, seldom
documented empirically, appear similar to the theoretical “Edgeworth Cycles”
of Maskin & Tirole[1988]. In contrast, the second pattern is one in which prices
remain fixed for months at a time. A more normal pricing pattern in which
retail prices more closely follow wholesale prices is the least common pattern of
the three.
In this paper, I use a panel set of 19 cities over 574 weeks (January 1989 to

December 1999) to explore these three phenomena in two stages.
The first objective is simply to develop an empirical framework to separate

out the three patterns, measure the prevalence of each, and then measure the
structural characteristics of the cycles themselves, such as period, amplitude,
and asymmetry. I show that a Markov switching regression technique, adapted
from Cosslett & Lee[1985] and Ellison[1994], is well suited to this. I find cycling
activity in 43% of the sample, sticky pricing in 30% and normal pricing in 27%.
The cycles are strongly asymmetric, with prices first rising for 1.3 weeks and
then falling for 2.5 weeks on average. The average amplitude is 3.1 cents per
liter, or 60% of the average markup during cycling activity.1 I also find much
heterogeneity in cycle prevalence and characteristics both within and across
cities.
The second objective is to show that not only do these cycles appear like

Edgeworth Cycles but that their prevalence and characteristics change with the
competitive environment in ways predicted by the theories of Edgeworth Cycles
(Maskin & Tirole[1988] and Eckert[2003]). In particular, I focus on the effect of
small independent firms and show that cycles are significantly more prevalent
and are significantly taller, faster, and less asymmetric when there is greater
penetration of small independents. Each of these results is consistent with the
theories of Edgeworth Cycles. Moreover, the result is robust when controlling for
market size and service outlet density, and also when using alternate measures
of small firm penetration.
I follow with a short welfare analysis and show that cycling behavior is as-

sociated with lower markups. Interestingly, the asymmetric nature of the cycles
themselves may account for the reverse perception by many consumer groups.
I also consider and rule out several alternate explanations for the observed phe-
nomenon. Finally, I conclude with a short comparison between Canadian and
US markets and between gasoline and other product markets. We might have

1Currency in Canadian dollars unless otherwise stated. On average over the sample period,
CDN$1 = US$0.70. Thus, 3.1/c/liter CDN = 8.2/c/gallon US.
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Figure 1: Windsor Rack and Retail

expected to see these patterns in U.S. gasoline markets or in other product
markets and yet it currently seems we do not.
Section 2 previews the results in graphs and preliminary statistics. Section 3

discusses the related literature and Section 4 lays out my empirical framework.
A short discussion of the data is in Section 5. In Section 6, I report results on the
prevalence of retail price cycles, sticky pricing and normal pricing and construct
estimates of the structural characteristics of the cycle. I examine the impact of
small independent firms on cycle prevalence and structural cycle characteristics
in section 7. In Section 8, I conduct the welfare analysis and discuss alternate
hypotheses for the cycles and Section 9 concludes.

2 Data at a Glance
Examination of wholesale and retail prices over time across Canadian cities
reveals sharp differences in pricing behavior. To illustrate, figures 1, 2, and
3 show the average wholesale price (the “rack” price) and the average tax-
exclusive retail price series for three cities over subsets of the sample: Windsor,
St. John’s, and Ottawa.2 The data are average spot prices recorded at the same
time each week, in Canadian cents per liter, and the same wholesalers and the

2The cities and time periods were chosen as good examples of each pattern. In particular,
the time period for St. Johns (the middle third of the time series instead of the first third)
was chosen to emphasize price stickiness even during a period of relatively volatile rack prices.
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Figure 2: St. John’s Rack and Retail
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Figure 3: Ottawa Rack and Retail

4



same retail service outlets are polled each time.
The retail price series shown for Windsor exhibits a rarely documented but

visually striking cyclical pattern that does not appear in wholesale prices. When
the retail price gets too near the rack price, retail prices rise suddenly by more
than three cents on average and often greater than five cents. On average, it
triples the rack-retail markup. The retail price then falls gradually by a small
amount each week until the price is sufficiently low that the cycle begins anew.
In contrast, retail prices remain sticky in St. John’s in the mid 1990s for

months at a time, in spite of fluctuating rack prices. In the Ottawa series,
we observe signs of a more normal pattern where retail prices roughly follow
wholesale prices. Neither show signs of cycles.
It is not just volatility but the strong asymmetry that is distinctive about

these cycles. As a preliminary look at the extent of asymmetry in all sample
markets (rather than just the selected graphs), I report basic summary statistics
on rack prices, retail prices, and markups, and on per-week price changes and
price “runs” in table 1. A “run” is defined as the number of weeks of consecutive
same-sign price changes.
Over the full sample, the average week-to-week retail price increase (2.01

cpl) is significantly greater than the average decrease (1.18 cpl). I report both
the usual two-sample t-statistic and the P-value from the more comprehensive
Kolmogorov-Smirnov distribution test.3 There are highly significant asymme-
tries in retail prices but none in rack prices.
Similarly, the mean length of a run down in retail prices (1.94 wks) is signif-

icantly longer than the mean length of a run up (1.36 wks). While it is rare to
observe runs up of more than two weeks, runs down of four to eight weeks are
common. Rack price runs, in contrast, do not show signs of asymmetry.
These simple statistics are suggestive but not sufficient for my purposes.

They cannot separately identify individual price movements within an Edgeworth-
like cycle from those within a normal cost-based pricing pattern, and therefore
one cannot use them to compute the prevalence of cycles per se or their struc-
tural characteristics (or the influence of small independents on cycles).

3 Theory and Literature

The price cycles observed in these cities are similar in appearance to the theo-
retical “Edgeworth Cycles” of Maskin & Tirole[1988]. In their paper, Maskin &
Tirole consider a dynamic Bertrand price setting game under which two equal
sized firms produce homogenous goods under constant costs. Firms set prices
alternately (along a finite price grid), and each responds to its opponent’s ac-
tion from the previous period. Firms split demand if prices are equal and the
lower priced firm captures the entire market if not equal. The authors show
that even under identical supply and demand conditions there are two distinct
sets of Markov perfect Nash equilibria (MPE).

3The null hypothesis of the K-S test is that the distribution of retail price increases is the
same as that of (the absolute value of) retail price decreases.
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The first set of MPE is the familiar focal price (or focal markup) equilibria
supported under threat of retaliation. The sticky pricing we observe is consistent
with a focal price and the normal pricing observed in the data could come from
a standard, possibly competitive markup over the wholesale price.
The strong cyclical pattern observed in many cities appears consistent with

the second type of dynamic equilibria. Maskin & Tirole call these “Edgeworth
Cycles” and they operate as follows. In the longer downward portion of the
cycle, firms repeatedly undercut one another by one notch on the grid in order
to gain a larger market share. When price reaches marginal cost, each firm has
a positive probability of raising its price back to the “top” of the cycle. A war
of attrition results as each waits for the other to go up first. When one firm
does, the other immediately follows and price undercutting begins anew. Figure
4 shows an example of a time path of cycling prices in their model.
One limitation of the Maskin & Tirole analysis is that the two firms are

identically sized. Eckert[2003] extends the theoretical model to the case of firms
of different sizes, where a firm of a larger “size” simply means it receives a larger
fraction of consumers when prices are identical. When prices are unequal, it is
assumed the lower priced firm (whether it is the large or small firm) can and
does serve the entire market itself. As a result, the smaller the firm, the greater
the incentive to undercut. The author concludes that when the two firms are
sufficiently different in size, only Edgeworth cycling can exist. A focal price
equilibrium cannot.
The shape of the cycle is also affected when firms are of different size. When

the small firm undercuts, a sufficiently large firm is more likely to match the
small firm’s price rather than further undercut it. By matching, the large firm
receives a higher price than by undercutting, and it serves almost the entire
market anyway. As a result, the downward portion of the cycle progresses more
slowly and the cycle appears more asymmetric when the large firm is very large.
The setting of these models lends well to Canadian gasoline retailing markets.
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Gasoline is relatively homogeneous, frequently purchased, and firm level demand
is highly-elastic.4 Retail prices of regular gasoline are displayed on tall billboards
— easy for consumers to compare and easy for competing firms to monitor. Menu
costs are absent: in some markets, retail prices can change several times a day.
Discussions with regional managers also suggest that an alternating moves game
— where each firm monitors and then responds to changes by other firms — is an
appropriate description of behavior.
It should be noted, however, that gasoline retailers are capacity constrained.

A single small firm with few retail outlets can steal only a negligible fraction of
the market by undercutting and is easily ignored by the large firm. Only when
there are many such firms, individually small but collectively large, will more
widespread undercutting steal enough market share to induce a price match or
further undercut from the large firm, and thus generate price cycling. Moreover,
with a sufficiently large number of small firms, one expects that the response
from the large firm will be a further undercut rather than a match. This is
because the large firm (which is not so large anymore) will no longer serve
almost the entire market by matching and, as suggested by the theory, will find
it more profitable to undercut.
The second objective of this paper is to test these propositions. I expect

greater prevalence of retail price cycles in markets when there is a greater pen-
etration of small independent firms and less sticky pricing. Where cycles exist,
I expect a greater number of small or independent firms to speed up the down-
ward portion and therefore the cycle itself and generate cycles that appear less
asymmetric.

A great deal of empirical work has been done with respect to retail pricing
in gasoline markets in the U.S., Canada, and elsewhere but few papers have
specifically addressed asymmetric price cycles of this nature.
For the United States, Allvine & Peterson[1974] note similar patterns in

some western U.S. cities in several episodes in the 1960s and early 1970s. They
argue that the sudden halt to price cycling in these cities in 1972 may have
been the result of suffocation of wholesale supplies to independent retailers in
advance of the oil shortage of 1973, but no empirical analysis is performed. In
a short note, Castanias & Johnson[1993] note the Edgeworth-like appearance
of the cycles in Los Angeles from 1968 to 1972, and present simple summary
statistics on price changes and runs (like table 1).
In Canada, the cycles have been known to industry and government ob-

servers for some time but only a few published academic papers exist.5 Most
4High firm-level price elasticity is an important factor. Imperial Oil reports claim that

many consumers do respond to differences as low as 0.2 cents per liter. (Majors generally only
price in odd decimals so 0.2 is the minimum undercut.) Perhaps additional utility is being
gained from paying the lowest price, since savings would only be about a dime on a fillup.
My own anectodal evidence suggests than a difference of 1 cpl at two nearby Toronto stations
(very rare and very brief) indeed has a large impact on volumes.

5 Slade[1987, 1992] examines a price war in Vancouver in the summer of 1983 but it is
different than the repeated, high-frequency price cycles analyzed here. The price war appears
isolated in an era of stable prices and is postulated to have occurred because of an unan-
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closely related to this work is Eckert[2003] who motivates his theoretical model
(described above and found in that paper) with some interesting correlations
between overall price rigidity and concentration ratios in these retail gasoline
markets. The rigidity variable is defined as the fraction of times prices did
not change from week to week within each year within a given city, and the
concentration ratios are based on year-end station counts for 19 cities and 6
years.
The current paper improves upon the empirical exercise in that paper in sev-

eral important respects. First, the rigidity variable cannot make the necessary
distinction between price changes that are the result of asymmetric Edgeworth-
Cycle-like behavior — which are of special interest — and prices that are not rigid
for other reasons, such as occurs in a normal, symmetric pricing regime.6 My
empirical framework specifically separates out the three distinct pricing phe-
nomena, isolates the asymmetric cycles in particular, and can directly estimate
their prevalence. Secondly, the framework can estimate the detailed character-
istics of the cycles it identifies which is of interest in its own right.7 Thirdly
and more importantly, both of these features allow a more complete and multi-
pronged test of the relationships predicted by the theory: with increasingly more
small independent firms, 1. Edgeworth Cycles (as opposed to moving prices)
should be more prevalent, 2. the upward portion should be unaffected, 3. the
downward portion and therefore 4. the cycle itself should progress more rapidly
and finally 5. the cycle should be less asymmetric.
I am aware of two other recent empirical papers that examine individual

Canadian cities during a period of strong retail price cycles throughout. Using
weekly average price data for the city of Windsor from in the early 1990s, Eck-
ert[2002] shows that the nature of the price cycle results in rack price increases
being passed through to retail prices more quickly than decreases. This contrasts
earlier studies by Hendricks[1996], Lerner[1996], and Godby et. al[2000] that
included non-cycling cities. While the large literature on asymmetric rack-retail
passthrough in the U.S. and elsewhere (Borenstein, Gilbert, & Cameron[1997]
and many others) typically assume reversion to a single long-run steady-state
retail price and are conducted for markets that are known not to exhibit re-
tail price cycles, the existence of cycles suggests a new potential source for
passthrough asymmetry.
Secondly, Noel[2003] uses a self-collected 12-hourly price data for twenty-

two service stations in the city of Toronto over four months to test the reactions
of large vertically integrated chains and small independents along the cycle in
a strongly cycling environment. Without variation in market structure, the
author still shows that both large and small firms are important to cycle gener-

ticipated demand shock. In those papers, the author reports evidence of tacit collusion and
found that rivals respond more quickly to price increases by a major firm than to decreases
while the opposite was true for reactions to independents. I limit my literature review here
to papers about repeated, asymmetric Edgeworth-like price cycles.

6Prices may also be volatile for other reasons, or display an asymmetry that is opposite in
direction to that suggested by the theory.

7Most notably, to confirm the existence and direction of the asymmetry.
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Figure 5: Regimes and Switching Probabilities

ation and in opposite ways. Price competition is intensified and, consistent with
the theory of Edgeworth Cycles, small independents are more likely to initiate
price undercutting while large integrated firms are more likely to initiate price
resetting.

4 Empirical Framework

The first objective of this paper is to build measures of the prevalence of each
pattern and of cycle characteristics directly from parameter estimates. I do this
by taking nonlinear transformations of the parameters produced from a Markov
switching regression.
The Markov structure is important in identifying cycles since it allows for

serial correlation in the estimated regimes. The challenge is that the true under-
lying regimes are really unobservable and cycle and non-cycle price movements
can look identical to the econometrician, even in the absence of sampling error.
The Markov structure helps overcome this by incorporating both current and
past information into regime categorization. For example, an observed price
decrease of a given size is more likely to be considered part of the (downward)
undercutting phase of a cycle if we believe the market was in an undercutting
phase in the previous period. It is less likely to be considered part of the under-
cutting phase if we believe the market was in a normal or sticky pricing pattern

9



in the previous period. A regular switching regression, which relies only on
information contained in the current observation, has no such memory feature.
Of course, it would necessarily be subjective to classify cycles and their

characteristics by eyeballing the price series or selecting minimum and maxi-
mum cutoffs. That in mind, eyeballing the results ex post suggests the model
categorizes data reasonably well.
Guided by the time series, I model the retail gasoline industry as one in

which a given market can be in one of three top-level regimes at a given point
in time. They are

1. the relenting phase of the cycle (regime “R”),

2. the undercutting phase of the cycle (regime “U”),

3. the non-cycle price regime (regime “F”, for focal).

and I later model the switching probabilities between each pair. I further
subdivide the third regime — the non-cycle price regime — into two subregimes:

3a the non-cycle price regime — normal pricing (regime “F”, subregime “N”)

3b the non-cycle price regime — sticky pricing (regime “F”, subregime “S”)

and allow switching between these. Placing non-cycling activity into a single
top-level regime is to make the parameter estimation manageable and allow me
to concentrate on the asymmetric price cycles which are of primary interest.8

Figure 5 outlines the structure of the model.

4.1 The Regimes

The first two regimes capture price evolution within the cycle: the relenting
phase (regime “R”) and the undercutting phase (regime “U”). The portion
during which I anticipate finding prices that rise sharply in a short time I call
the relenting phase and the portion during which I anticipate finding prices
that gradually fall I call the undercutting phase. However, it is important to
note that the form of these within-regime regression equations is completely
symmetric in each case and no a priori restrictions are imposed on the sign or
minimum size of price changes.9 Nothing in the setup tips the model toward
finding any hypothesized asymmetry (in either direction).

8Also for computational reasons, I do not separately model adjustments in the sticky
pricing regime. To the extent that adjustments reestablish a standard markup (which can
vary by market and year) and are in part triggered by movements in rack price, combining
normal and sticky pricing into a single regime helps classify these into normal pricing. More
on computation in the appendix.

9This feature means the model is free to classify, for example, a (small) price increase or
zero price change as part of the undercutting phase if the estimated switching probabilities
and history of play suggest it.
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Specifically, in periods of cycling, I model market m at time t as evolving
according to the function

∆RETAILmt = X
i
mtβ

i + εmt, i = R,U (1)

where ∆RETAILmt is the first difference of the retail price, (Xi
mt)

0 is an Ki×1
vector of explanatory variables, βi is a Ki × 1 vector of parameters and εmt is
a normally distributed error term with mean zero and variance σ2.10

Setting the Xi to a vector of ones, for example, allows a simple estimation of
the average price changes in each phase of the cycle (since non-cycle periods have
now been isolated and excluded) and will contribute to measuring the vertical
characteristics. When I include variables that capture the penetration of small
independent firms and other demand variables into Xi in section 7, the vertical
dimension is allowed to evolve with changes in these variables.11

In the “normal pricing” subregime (subregime “N”) of the non-cycling regime,
I anticipate retail prices following movements in wholesale price more closely,
perhaps with a lag. I model this subregime as:

RETAILmt = X
N
mtβ

N + εmt (2)

where RETAILmt is the retail price, (XN
mt)

0 is a KN × 1 vector of explanatory
variables, βN is a KN ×1 vector of parameters and εmt is normally distributed.
In all specifications discussed below, the rack price, and dummies for city, month,
and year are included in the XN .
In the sticky price subregime (regime “S”), prices do not change from the

previous week, so simply

RETAILmt = RETAILm,t−1 (3)

with no error term.

4.2 The Switching Probabilities

There are nine Markov switching probabilities in total, from and to each of
three top-level regimes. Let Imt be the indicator function equal to “R”, “U”,
and “F” when market m at time t is in the relenting phase, the undercutting
phase, and the non-cycle regime respectively. I model the probability that a
market switches from regime i in period t− 1 to regime j in period t with the
logit form:

λijmt = Pr(Imt = j | Im,t−1 = i,W i
mt)

=
exp(W i

mtθ
ij)

1 + exp(W i
mtθ

iR) + exp(W i
mtθ

iU )
, i = R,U, F, j = R,U (4)

10 In the relenting phase, price returns to the “top” of the cycle, which in turn depends on
the current rack price. To account for this, I add a cycle position variable to XR later in the
paper.
11Particulars of each specification are discussed together with results in later sections.
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and λiFmt = 1− λiRmt − λiUmt, i = R,U, F to satisfy the adding up constraint. Call
Λmt the 3 × 3 switching probability matrix whose ijth element is λijmt. Each
(W i

mt)
0 is an Li × 1 vector of explanatory variables that affects switching out

of regime i and θij is an Li × 1 vector of parameters. Note that the same
set of explanatory variables appear in W i for each j within a given i to avoid
an Independence of Irrelevant Alternatives type constraint on the remaining
probabilities.12

Setting the W i to a vector of ones, for example, yields estimates for average
switching probabilities which I use to measure the horizontal characteristics of
the cycle. When I include variables that capture the penetration of small inde-
pendent firms and other demand variables into W i in section 7, the horizontal
dimension is allowed to evolve with changes in these variables.

Conditional on a non-cycle regime, let the indicator variable Jmt equal to
“N” and “S” when the market is in the normal pricing and the sticky pricing
subregimes respectively. I model the probability of being in subregime “S”,
conditional on being in a non-cycle pricing regime, with the logit form:

Pr(Jmt = “S” | Imt = “F”, Vmt) = γmt =
exp(Vmtζ)

1 + exp(Vmtζ)
(5)

where (Vmt)0 is a Q× 1 vector of explanatory variables and ζ is an Q× 1 vector
of parameters.
The core model parameters (βi, θij , ζ) in each upcoming specification are

simultaneously estimated by the method of maximum likelihood. Numerical
methods are used to calculate robust Newey-West standard errors on the core
estimates. Estimates of the switching probabilities, cycle characterisics, and
partial derivatives are derived by joint non-linear transformations of the core
parameter estimates or by simulation when noted. Standard errors for derived
parameter estimates are calculated using the multivariate delta method or via
simulation. Further detail is in the appendix.

4.3 Prevalence and the Anatomy of a Price Cycle

By combining the switching probabilities and the within-regime parameters, I
can now derive formulae for the prevalence of each regime and for the structural
characteristics of the cycles.
For example, the prevalence of the three top-level regimes is simply z =

(zR, zU , zF )0 where z solves

Λ0z = z, z 6= 0 (6)

and Λ0 is the transpose of the switching probability matrix. It is straightfor-
ward to check that z is the eigenvector of the transposed switching probability
12For example, if variable x is included in λiR but not λiU , a change in x that increases

λiR forces a compensating decrease in both λiU and λiF according to their proportions.
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matrix corresponding to an eigenvalue of one. Within the non-cycle regime, the
prevalence of sticky pricing is just γzF and of normal pricing it is (1− γ)zF .
Turning to the structural characteristics of the cycle, the expected period

of the cycle, or the distance between consecutive troughs, is just the expected
length of a relenting phase plus the expected length of an undercutting phase.
Since the probability of “switching” from regime i in period t − 1 to the same
regime again in period t is λii, I derive the expected duration of regime i as

E(duration of regime i) =
1

1− λii
(7)

and the expected period of the cycle as

E(period) =
1

1− λRR
+

1

1− λUU
(8)

To derive the amplitude of the price cycle, I multiply the expected duration
of the relenting phase with the expected relenting phase price change. One
could also the undercutting phase to calculate the vertical fall (rather than the
vertical rise) and the long term stationarity of prices over the sample period
ensures these measures are about the same. Therefore, I calculate expected
amplitude as

E(amplitude) =
αR

1− λRR
or

−αU
1− λUU

(9)

where αR = E(∆RETAILmt | XR
mt) is the expected per week price change in

a relenting phase and αU is similarly defined.
One of the most interesting characterisics of the cycles is their asymmetry.

There are two dimensions on which to measure this: horizontally and vertically.
I define “horizontal asymmetry” as the ratio of the duration of the undercutting
phase to the duration of the relenting phase:

E(horizontal asymmetry) =
1− λRR

1− λUU
(10)

and “vertical asymmetry” as the (negative of the) ratio of the average price
change in an relenting phase to the average price change of the undercutting
phase:

E(vertical asymmetry) =
−αR
αU

(11)

Again, the long run stationarity of prices ensures this measures to be roughly
the same.
Finally, one might also be interested in the average duration of a complete

cycling spell, which I calculate as

E(spell duration) =
zR + zU

zR ∗ λRF + zU ∗ λUF (12)
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and the expected number of consecutive cycles that make up the spell:

E(# consecutive cycles) =
E(spell duration)

E(period)
(13)

Recall that these measures will yield average values of prevalence and charac-
teristics when XR, XU , W i, and V are columns of ones. Later, I allow them to
covary with the penetration of small independents and other demand variables
by building up the Xi, W i, and V .

5 Data

I examine 19 major Canadian cities for the period beginning the first week of
January, 1989 and ending the last week of December, 1999. Data were collected
on retail gasoline prices, wholesale (rack) prices, outlet populations and other
ancillary information.
Retail gasoline prices, RETAILmt, are the tax-exclusive prices for regular

unleaded 87 octane gasoline, in Canadian cents per liter. Retail price data come
from weekly surveys by the Ministry of Natural Resources of Canada, M.J. Ervin
& Associates, and by the Ontario Ministry of Energy. The same set of service
outlets are surveyed within each city at the same time each Tuesday morning
and the average price across outlets is recorded.13

The wholesale price I use is the average spot rack price, RACKmt, in each
city for unbranded regular gasoline sold at the city terminal. The average is
across major wholesalers, and it is reported weekly by the Bloomberg Oil Buyer’s
Guide (OBG), matching the retail price data.14

Measures of small firm penetration were constructed from bimonthly data on
firm-specific outlet counts, which were purchased from Kent Marketing Ltd.15

Populations and land areas were obtained from Statistics Canada.

Before discussing the results, I mention several data issues. Because retail
price data is weekly, if it is true that the relenting phase is generally completed
in less than a week, the duration of that phase will be somewhat overestimated
13M.J. Ervin & Associates picked up the pricing survey the same week the federal ministry

discontinued it using mostly the same methodology and stations. The stations are branded
self-service stations and number from from four to ten depending on the city. Rarely, a station
will need to be replaced because of exit or other reasons. The Ontario Ministry of Energy
survey is generally more comprehensive, and the number varies by city, but the stations are
again the same each week. Both the Ontario Ministry of Energy and the federal Ministry
of Natural Resources (M.J.Ervin after 1997) samples include Toronto and Ottawa during the
period. There are no systematic differences in the two series.
14As a check, I also estimated the model using rack prices obtained from the Oil Price

Information Service (OPIS), with direct station delivered prices from OBG, and with bulk
wholesale purchase prices for the two cities that post them, all with similar results. There are
between one and four wholesalers for any rack point. For cities that are not rack points, the
nearest rack point is used.
15 Second or “fighting” brands operated by major firms have been grouped as majors. Group-

ing these as independents do not change results.
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(since it is left censored at one week) and the amplitude underestimated (since
undercutting is expected in the days before and the days after.)16 This works
against finding strong, asymmetric cycles and my results may then be a lower
bound. In the extreme case, one worries that cycles with a period of a week or
less may be missed entirely. Fortunately, missing fast cycles does not appear
to be a problem. Noel[2003] closely tracks cycles in Toronto, where they are
especially fast, and which did have a period of about a week in early 2001.
The city was selected specifically because of its fast cycles both at the time
and throughout much of the sample. One finding is that cycles do not follow
a day-of-the-week pattern — each Tuesday morning, prices could be very high
or very low. The result is that fast cycles appear in the weekly datset here as
extremely volatile week-to-week price changes (in contrast to rack prices) and
not as normal pricing patterns. Accordingly, the Markov switching framework
performs quite well. For Toronto for example, it classifies 84% of periods as
cycles overall and better than 98% cycles in five of the last seven years, a time
when cycles were well known to dominate. The issue is less a concern in other
markets but where very fast cycles appear (and are often interspersed in a series
of cleaner ones), the distinction between cycles and normal pricing is more clear.
Another issue is that, if the relenting phase is short but on or over a Tuesday,

I may observe the average price of some firms that have relented and others that
have not. The relenting phase duration would be measured at two weeks.17 For
undercutting phases which generally take many weeks to complete, this is less
of an issue. As before, these data frequency issues will work against finding
tall, asymmetric retail price cycles and my results may again represent a lower
bound.
I model retail gasoline as a non-durable good. While it is possible for con-

sumers to attempt to predict cycle troughs and stockpile large quantities of
gasoline at low prices, my casual observation is that consumers do not and tend
to simply fill up their tank when they run low.18 To the (very) limited extent
that consumers might time their purchases, the Coase conjecture would suggest
a speeding up of the cycles.
I use the rack price as my measure of the wholesale price. This is the per

liter cost of wholesale gas without the right to resell it under a branded name
(and may not include additives in the branded version.) Small independents
typically buy wholesale at a small discount off rack (three quarters of a cent is
large) but for my purposes it is simply important to note that the size of the
discount does not cycle or rapidly fluctuate.19 Large firms are integrated into
refining and retailing and they own and operate some of their branded retail
16Note that the theory does not make and I do not test predictions about amplitudes .
17 In the theory, the periods are very short (discount rates near one) and relenting phase in

fact does take two of these short periods. Noel[2003] that a period in Toronto is as short as
a few hours. One firm raises price in the first, the second firm follows in the second. With
more firms, it may take a few more of these short periods to complete a relenting phase and
the chance of sampling part way through it can be somewhat larger.
18 See Hendel & Nevo [2002] and Hendel & Nevo [2003] for consumer stockpiling behavior

the grocery context.
19 It was worth noting that there are only a few large wholesalers selling in this market.
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outlets while leasing others outlets (or just the brand name) to private dealers.
For outlets operated by a dealer, transactions occur at contract prices ( instead
the rack) and these are not publicly available. For outlets operated by the firm,
no market transaction ever takes place. Given this, the rack price is the best
available measure of the wholesale price. Lerner[1996] among others further
argues the (discounted) rack price measures the wholesaler’s opportunity cost
of wholesale gasoline sold to dealers. Because of close and readily available U.S.
sources of wholesale gasoline that constrain local wholesalers (for example, see
Hendricks[1996]), the rack price is reasonably modeled as exogenous to retail
price setting in Canadian markets.
Finally, it is important to be clear about who controls retail prices. A

private dealer that leases and operates one branded station, for example, has
different incentives than a large integrated firm that sets prices at all its stations.
For my largely urban sample, the wide majority of major branded outlets and
independent chain outlets are in fact centrally controlled and prices set at the
firm’s municipal or district office. Hence, concepts of “large” and “small” firms
are meaningful.

6 A Description of Retail Price Cycles
I now return to my first objective and begin with a simple empirical description
of the prevalence of the three regimes and of the anatomy of the price cycle. To
do this, I first need to introduce the basic descriptive specifications and present
the core results — the within-regime parameter estimates and the switching
probabilites — from which to build that description.

6.1 The Regimes

The within-regime regression results are in table 2. The basic specification is
(1) in which the XR, XU , W i, and V are all vectors of ones. In other words,
the expected price changes in the two cycle regimes (αi = E(∆RETAILmt |
Xi
mt), i = R,U), all nine switching probabilities (λ

ij , i, j = R,U, F ), and the
probability of sticky pricing conditional on not cycling (γ) are all constants.
This specification simply yields a single “average” measure of the prevalence
vector z and of cycle characteristics. In the non-cycle normal pricing regime,
the retail price depends on the current rack price and city, month, and year
dummy variables.
The expected price change in the relenting phase is 2.40 cpl and it is −1.26

cpl in the undercutting phase. In the non-cycle regime, the coefficient on RACK
is 0.800 and sticky pricing prevails just over half the time.
The only change in specification (2) is that I add city, month, and year

dummies to the relenting and undercutting phase equations as well. Results
are similar. Dummies are not reported in the table, but it is noteworthy that
the monthly dummies for the two cycle regimes (which capture the majority of
variation in sales volumes) are all insignificant.

16



For specification (3) I add the current rack price and six lags of the rack
price to specification to the all within-regime equations (except sticky prices).
This accounts for possible inventory effects on the passthrough rate of rack
price shocks into retail prices, although I do not expect inventory effects to be
a concern.20 The sum of the rack coefficients is not significantly different from
zero in each of the two cycle regimes. In the non-cycle regime, the coefficient
rises from 0.800 (in (1)) to 0.937 showing that 80.0% of rack price shocks is
passed into retail prices in the same week and an extra 13.7% is passed through
in the following six weeks.

6.2 Switching Probabilities

Table 3 shows the switching probabilities from the same three descriptive specifi-
cations. In each case, the switching probabilities are just constants so λijmt = λij

and thus Λmt = Λ.
Consider specification (1). A market currently experiencing a relenting phase

has only a 23% probability of staying in a relenting phase the following week
(λRR = 0.23). More than three times as large is the probability that the cycle
has peaked and the undercutting phase begins again (λRU = 0.73). Only rarely
does a market switch from a relenting phase to a non-cycle regime (λRF = 0.04).
A market currently experiencing an undercutting phase has a 59% chance

of continuing in that undercutting phase the next week and a 33% chance of
switching back to a relenting phase. Switching into a non-cycle regime occurs
with 8% probability.
When in a non-cycle regime, a market continues in the non-cycle regime the

next week with a 95% probability.
The switching probabilities are similar in specifications (2) and (3).

6.3 Prevalence and the Anatomy of a Price Cycle

Using the formulae above, I now construct a description of the three pricing
patterns and of the characteristics of price cycles. I begin with results on the
prevalence of the regimes as reported in table 4.
Again, return to specification (1). On a nationwide basis over the eleven

year sample, I find the price cycling regimes in the study markets in 43% of the
sample. The relenting phase accounts for 13% and the undercutting phase for
30%. This suggests asymmetry, a point to which I will return.
Sticky pricing was also very prevalent, occuring in 30% of the sample. This

is not the result of flat rack prices — conditional on sticky pricing, the wholesale
price changed over 70% of the time, by 0.54 cpl on average. I find normal pricing
in 28% of the sample.
In specification (2), where city and time dummies in the two cycle regimes

allow those equations to fit the data, I find price cycling in 47% of periods.
20Hendricks[1996] found lags in crude-rack passthrough but relatively quick passthrough in

rack-retail. See Borenstein & Shepard[2002] and references for a discussion of passthrough
lags in the U.S.
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Specification (3), which includes current and lagged rack prices, yields results
similar to specification (1).
These results argue that retail price cycles and sticky pricing are both real

and prevalent phenomena in these markets.

But are these cycles asymmetric and repeated over and over as the theory
of Edgeworth Cycles would suggest, or is it simply volatile prices that I have
captured? To differentiate between these, I show that the detected cycles indeed
have a particular shape. I describe that shape along three main dimensions of
interest: cycle period, amplitude, and asymmetry. Results are in table 5.
Along the horizontal dimension, I calculate the period of a typical cycle at

3.75 wks using specification (1). This consists of a relenting phase of 1.30 wks
followed an undercutting phase of 2.44 wks on average. Note that the relenting
phase duration is close to one as predicted.21

Vertically, the amplitude of the cycle is 3.13 cpl (relenting phase calculation)
or 3.08 cpl (undercutting phase calculation). This represents a large impact on
firm margins: the amplitude of this price cycle is 60% of the average retailer
markup in cycles, or 86% of the average markup at the bottom of the cycle.22

The asymmetry of the cycles is perhaps the most defining feature captured by
the Markov switching regression framework. I report the horizontal asymmetry
as 1.89 and the vertical asymmetry as 1.91. That is, the average duration of
an undercutting phase is almost twice as long as that of a relenting phase and
the average weekly price increase is almost twice as large as the average weekly
price cut. These are both significantly greater than one at a very high level of
significance.
I conclude that the retail price cycles are tall (relative to markups), relatively

fast, and highly asymmetric in the direction that is consistent with the theories
of Edgeworth Cycles. They are also repeated over and over — the average cycling
spell lasts 14.51 wks. The average duration of a non-cycle price regime, for
comparison, is 19.3 weeks.

Looking beyond average prevalence and the typical price cycle, we observe
much heterogeneity across cities and over time. Using specification (1), I report
in table 6, for each city, the prevalence of cycling activity over the full sample
(column 1), each of its component phases (columns 2 and 3), normal pricing
(column 4) and sticky pricing (column 5). In the last two columns I report
the prevalence of price cycling in the most active year (maximum) and least
active year (minimum) for that city. In Toronto, a dense and highly competitive
21Data from Noel[2003] suggest than the marketwide relent in Toronto in 2001 takes about

a day and a half and individual stations generally do not relent on a weekend. Therefore,
there would be a 1.5/5 or 30% chance that a relent is midway on a Tuesday morning. If the
dataset used in that paper (twice-daily) were instead sampled weekly, it would generate a
relenting phase duration of about 1.3 periods.
22As the two measures of amplitude are never significantly different from one another in

any given specification, I report only the relenting phase calculations in the table. Also, since
the rack price does not capture all marginal costs of retailing, the figure of 60% (or 86%) may
be a lower bound.
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market, retail gasoline prices cycled in 84% of periods in the full sample. In St.
John’s, a market dominated by a few majors, cycling occurs in only 15% of
periods. Between these two extremes are cities that experienced retail price
cycling activity over certain stretches, and none over others. The prevalence of
sticky pricing and normal pricing varies greatly across markets and over time as
well, as do the characteristics of the cycles themselves. In the following section,
I turn to an examination of this heterogeneity and how the penetration of small
independent firms contributes to it.

7 Industry Structure and Price Cycles

The theory of Edgeworth Cycles suggests that a greater penetration of small
firms will increase the prevalence of Edgeworth Cycles specifically (in contrast
to simply increasing the volatility of prices). Moreover, it predicts that a larger
number of small firms will affect cycle characteristics in particular ways: the
relenting phase duration should be unaffected, the undercutting phase duration
and therefore the cycle period should become shorter and finally the cycle should
be less asymmetric. The second objective of this paper is to establish an empir-
ical relationship between small independents and each of these characteristics
consistent with the theory.
Such findings would have two implications. First, they would provide ev-

idence that we are observing the Edgeworth Cycle phenomenon — oftentimes
considered only a theoretical artifact — in actual real world practice. Second,
that undercutting behavior by small firms triggers such a cycle suggests that con-
sumer welfare may improve from increased competition under a cycling regime.
This would contrast the belief by many local consumer groups who, for reasons
explained below, point to the volatility in prices in these markets as evidence of
collusion.

7.1 Striking the Bottom

First, a short digression. As undercutting pushes the retail price closer to the
rack price, profits shrink and the incentive to reset the cycle grows stronger.
That is, λUU should fall and λUR should rise. Conversely, when the relenting
phase pushes the price high above marginal cost, the switching probabilities
should shift to favor a new undercutting phase (λRR falls, λRU rises.)
I use the difference between the lagged retail price and the current rack price,

RETAILm,t−1−RACKmt, as my measure of the distance to the bottom of the
cycle. Call this measure “POSITION” with city and time fixed effects sub-
tracted away. Hereafter, I allow all switching probabilities out of the relenting
phase and out of the undercutting phase to depend on POSITION by adding
it to the WR and WUmatrices.
Specifications (4) and (5) repeat specifications (1) and (2) with this change.

In table 7, I report the partial derivatives of the switching probabilities with re-
spect to POSITION . Looking at specification (4), the probability of remaining
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in an undercutting phase is significantly and sizably smaller when POSITION
is smaller ( ∂λUU

∂POSITION = 0.04.) and the probability of switching to a relenting
phase increases likewise. If starting in a relenting phase, the probabilities change
only slightly, as the probability of having two consecutive relenting phases is al-
ways quite small. The results in specification (5), where city and time dummies
are included in the two cycle regimes, are similar.
Making switching probabilities depend on cycle position allows better mold-

ing to the data, but simulation techniques are now required to obtain coefficient
estimates. Previously the focus has been on intuitive and analytic derivations of
prevalence and characteristics and so I postponed this until now. Repeating the
previous analyses with POSITION , or repeating the following analysis without
does not appreciably change results.

7.2 Small Independents, Prevalence and the Anatomy of
a Price Cycle

I return to my second objective. Since there are four large integrated firms in
most markets (that differ from market to market), variation in the penetration
of small firms is well captured by the fraction of stations operated by all except
the largest four firms. I call this measure SMALLINDEX, simply equal to one
minus the four firm concentration ratio.23

Demand side factors may also be important to the “success” of price cycling
activity. Greater local market size increases the short term demand gain from
undercutting and should lead to more prevalent cycling. I use the driving age
population per retail outlet (POP/RO, measured in thousands of people per
outlet) to capture this.
Where stations are densely situated, consumers can more easily price com-

pare to find the lowest price, which again increases the short term gain from
undercutting and should lead to more prevalent cycling. I capture the spatial
density of retail outlets (DENSITY, measured in outlets per square kilometer)
to proxy for consumers’ search costs.24

Summary statistics for the competitive environment variables are reported
in table 8. There is much variation across markets and within markets over
time. SMALLINDEX, for example, ranges for a low of 0.09 to a high of 0.53
across the full sample.
I allow SMALLINDEX, POP/RO, and DENSITY to enter the system through

three transmission mechanisms. First, they enter directly into the XR and XU

matrices in the price change equation (1) which allows them to covary with α
and the vertical dimensions of the cycle. Second, they enter into theW i matrices
in the switching probability equation (4) which allows them to covary with the
23A large firm is defined by the number of retail outlets operated in a given market and

time.
24Noel[2003] prevents evidence that, at least for Toronto, the relevant market is at the city

level. The resetting behavior by large firms (at all its stations at roughly the same time)
and the uniformity of independent locations effectively ties any “local, intersection-sized”
submarkets together.
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λij ,with the horizontal dimensions of the cycle and with the prevalence of the
regimes. Third, they enter into V in the non-cycle regime switching equation
which allows them to covary with γ, the fraction of sticky prices conditional on
non-cycling regime.25

Results are reported in table 9 and described below. Specification (6) adds
only the SMALLINDEX variable to specification (4). Specification (7) adds all
three competitive variables to specification (4). (Recall that specification (4)
in turn was built from the basic specification (1) by adding the POSITION
variable to the switching probabilities.)
As always, rack prices and a full set of city and time dummies are included in

the normal pricing subregime. Adding city and time dummies and rack prices to
the cycle regimes (like specification (2)) or a full lag structure on rack prices for
all regimes (like specification (3)) also have no appreciable effect on the results.
Because POSITION is always changing along the path of the cycle, simu-

lation techniques described in the appendix are hereafter required. In each cell
of table 9, I report the partial derivative of the characteristic listed in the given
row with respect to the competitive variable listed in the given column. (Each
column represents a different RHS variable, each row a different LHS variable.)
Standard errors are in parentheses. I also report the pseudo P-value equal to
the fraction of simulation runs (out of 1000) that resulted in an estimate with
the sign opposite that of the estimated mean partial derivative.

First, I find when there is a greater penetration of small firms, there is a
substantially higher prevalence of Edgeworth-like price cycles. The coefficient
on SMALLINDEX is statistically significant and 0 out of 1000 simulations
reported the incorrect sign in either specification. For specification (6), an
increase in SMALLINDEX of 0.035, or 10% from its mean, is associated with
an increase in the prevalence of price cycling by 0.036, or 8.6% of its mean. From
minimum up to maximum values of SMALLINDEX in the data, the estimated
increase in the fraction of periods cycling is 0.46 (or 107% of its mean.) Normal
pricing also becomes a little more common. Sticky pricing, in contrast, is much
less common with more small firms. These results are consistent with the theory
of Edgeworth Cycles. More than just a reaffirmation of a simple concentration-
price rigidity relationship, this result shows that retail price cycles — similar in
structure to those of Maskin-Tirole — are more prevalent when there is a greater
penetration of small firms.
The theory of Edgeworth Cycles goes on to predict how the structural charac-

teristics of the cycle are shaped when there is greater penetration of small firms.
The framework developed here can test for these relationships as well. Contin-
uing with specification (6), I find a statistically significant and negative rela-
25Note that there is little concern over endogeneity of the concentration variable in this

setting. SMALLINDEX is an explanatory variable only of price changes, never of price levels.
It is difficult to imagine the reverse causality in which the presence of a price cycle in gasoline
markets vis-a-vis sticky or normal prices and the specific shape of that cycle will encourage new
entry rather than the reverse, or to identify other unobservables both relevant and correlated
with the error term.
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tionship between SMALLINDEX and the duration of the undercutting phase
— that is, the undercutting phase progresses more rapidly when there are more
small firms present. However, I find no relationship between SMALLINDEX
and the length of the relenting phase. Both of these findings are consistent with
the theory of Edgeworth Cycles. According to the theory, the faster undercut-
ting phase occurs because the large firm (which is not as large anymore) will
rather respond to undercutting by small firms with another undercut, rather
than matching price. By undercutting, the large firm again captures the en-
tire market. The relenting phase, which naturally occurs very quickly, remains
largely unaffected.
This combination of results in turn has implications for the period of the

cycle and its asymmetry. The combination of a shorter undercutting phase and
an insignificantly different relenting phase results in a shorter period. Consistent
with the theory, I find that cycles progress significantly faster when there is a
greater penetration of small firms.
Finally, I return to the defining feature of the price cycles — their asymme-

try. According to the theory, the cycles will appear less asymmetric because the
undercutting phase is more rapid while the relenting phase is unaffected (but
still shorter than the undercutting phase). Of course, this is exactly what we
observe. Using horizontal asymmetry as the measure, I find a negative rela-
tionship between SMALLINDEX and cycle asymmetry significant at the 5%
level. Using vertical asymmetry instead, the relationship is again negative and
similar in magnitude and significant at the 10% level.
The theory does not make predictions as to how small firms influence the

amplitude of the cycles, and many different amplitudes are in equilibrium even
for the same market structure. In my sample, I simply note that amplitude is
positively related to the penetration of small firms.
In specification (7), I control for the influence of market size and outlet

density on outcomes. The effects of SMALLINDEX on the prevalence of cy-
cling activity, sticky pricing and normal pricing are equally strong. However,
the effect of SMALLINDEX on cycle characteristics is made even stronger
and the coefficients on the duration the undercutting phase, cycle period, and
asymmetries roughly double. In particular, the negative relationship between
SMALLINDEX and asymmetry, horizontally and vertically, are now statisti-
cally significant at the 1% and 2% levels respectively. The coefficient on ampli-
tude is no longer significant.
As expected, greater market size and higher outlet density themselves are

associated with a significantly greater prevalence of cycling activity and signif-
icantly less sticky pricing. A 10% increase in the driving age population per
retail outlet from its mean is associated with an increase in cycling prevalence
of 0.024 (5% from the mean) and a decrease in the prevalence of sticky prices
by a similar amount.26 A 10% percent increase in outlet density from its mean
is associated with an increase in cycling prevalence by 0.012, or just 2.8% from
26Using total, rather than per outlet, driving age population yields the same-signs but

weaker coefficients, consistent with the notion that firms are capacity constrained.
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the mean.
I find a statistically significant and negative relationship between market

size and the duration of the undercutting phase and again no relationship with
the duration of the relenting phase. Greater market size is also associated with
significantly faster and less asymmetric cycles. The relationship between density
and cycle characteristics all have the correct sign but are generally insignificant
and (adjusting for means) much weaker than that those involving market size
or small firms.

The first key conclusion of this section is that there is a significant and
positive relationship between the penetration of small firms and the prevalence
of retail price cycles and there is a significant and negative relationship between
small firms and the prevalence of sticky pricing. Secondly, with increasingly
more small firms, the undercutting phase of cycle is faster, the period is shorter,
and the cycles appear less asymmetric. Each of these findings is consistent with
the theory of Edgeworth Cycles.

7.3 An Example

To get a sense for what “typical” price cycles look like under different mar-
ket environments, I report examples of cycle and non-cycle characteristics in
table 10 for different values of SMALLINDEX and the driving age popula-
tion per outlet (POP/RO). Specification (7) is used. Given its small effect,
density is set equal to its mean in each case. As one moves from left to right,
SMALLINDEX and POP/RO each increase by one standard deviation per
column. Column (b) corresponds to the means.
As markets become larger and less concentrated, moving from left to right,

there is a much higher prevalence of retail price cycles, from only 29% of periods
in the first column up to 64% of periods in the last. Sticky pricing activity falls
as rapidly.
The duration of the relenting phase is roughly constant while the under-

cutting phase grows shorter. As a result, retail price cycles that are sharply
asymmetric when markets are small and concentrated become less asymmetric
as markets grow and small firms become more influential. Cycles also become
faster and taller.

To check the robustness of my results to the choice of the concentration
ratio, I repeat the specifications (6) and (7) using several alternate measures.
In table 11, I use the actual percentage of outlets operated by independents

(INDEP ). Independents are those firms that do not have upstream refining
capability and range from mom and pop stores to medium sized chains. The
results are similar to before. I also estimated the model with the five firm and
six firm concentration ratios and the Herfindahl index in place of CR4 in the
SMALLINDEX calculation, and again find similar results.
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I also experimented with a separate concentration variable for large depart-
ment and convenience stores who retail gasoline as a loss leader or ancillary
business. There is a strong correlation between the presence of these indepen-
dents and traditional independents in the dataset, and no additional effect of
such retailers could be separated out.

8 Discussion

8.1 Welfare

In past years, some of the most vocal consumer concern have been in cities
where retail price cycles are strong. These groups often point to the large
marketwide retail price increases as evidence of anti-competitive behavior and
reduced welfare. Complaints to federal and provincial competition authorities
also cite the speed and synchonicity of these price increases across stations and
the lack of a justifying increase in wholesale prices. While these increases are
widely reported in the public press, it is interesting that the small and gradual
daily price cuts during the undercutting phase of the price cycle receive no
fanfare. This has in part led to the popular impression that gasoline prices are
“always going up” in cycling markets when in reality they are almost always
going down.
The question remains: are Edgeworth-like cycles a symptom of lower or

higher welfare vis a vis sticky pricing? A simple comparison of (tax-exclusive)
average markups over the full sample shows that markups are lower under price
cycling than under sticky pricing or normal pricing.
To control for differences across cities and over time, I compare markups

across each pair of regimes within each city-year combination. I report a
weighted average across city-year combos where the weight is the squared preva-
lence of the lesser prevalent regime in the pair. Comparing sticky pricing regimes
and cycle regimes, I find markups are 1.02 cents per liter higher under sticky
pricing regimes than under cycling regimes. Normal pricing markups are 0.96
cents higher than cycling markups.27 Unless consumers are unrealistically averse
to short term gas price volatility, the lower average markups in periods of cycling
increase consumer welfare. To the extent that consumers can time purchases to
periods of low prices, the gain is even greater.
A rough back-of-the-envelope calculation gives a sense for magnitudes. To

be conservative, assume consumers in cycling markets do not time their gasoline
27The weights ensure that comparisons are driven by city-year combos that have a good

mix of each of the two regimes. Alternately, one could just exclude city-year combos that
have fewer than a given number of each type. Using only city-year combos where each regime
appears in at least 20% (10%) of periods, sticky pricing markups are 1.05 (0.83) cents greater
than cycle markups in the 36% (61%) of city-years that remain, and normal pricing markups
are 0.94 (0.91) cents greater than cycle markups in the 35% (68%) of city-years that remain.
The difference between non-cycle markups and cycle markups ranges from 0.96 when all city-
years are included to 1.18 cents when requiring 20% of each type (and 56% of city-years
remain.)
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purchases and pay the average price overall. Assume perfectly inelastic aggre-
gate demand over the relevant price range. The approximate average annual
output is 3.5 million liters for each of the 3750 stations in the final year of my
19 city sample. If all current sticky and normal pricing periods were replaced
with periods of cycling activity, all else equal, consumer expenditures on gaso-
line would fall by $75 million a year in the sample cities. If instead all current
cycling activity were replaced with sticky and normal pricing in their current
proportions, consumers in the sample cities would have to pay $55 million a
year more.
With approximately 13,000 stations nationwide each serving an average of

2.5 million liters annually, the difference in expenditure between a situation of
only cycling behavior and a situation with sticky and normal pricing in their
current 15:14 ratio would be $322 million. For comparative reference, there were
180,000 outlets in the U.S. in 1999.

8.2 Alternate Explanations

Other explanations for the cycles observed here, such as changing station in-
ventories or demand fluctuations, are easily dispelled. One argument is that
an asymmetric cycle can occur if firms vary pump prices as their underground
supply tanks empty. However, the direction of prices goes the wrong way —
one would expect a gradual rise in prices followed by a sudden fall. Of course,
firms can and do endogeneously set their delivery schedules to avoid shortages
and the typical ten day interval between deliveries rarely matches the period of
the cycle. Secondly, inventory issues cannot explain the synchronicity of price
jumps across stations within a given market.
Market demand fluctuations do not appear to be the source either. This

would strangely require demand to shift downward gradually week and week
before suddenly rebounding (and then repeating). While the typical cycle is a
bit less than a month (and varies greatly across markets), the relenting phase
can occur any week of the month. It is also not clear why different markets
would possess cycles of different periods under this explanation.

8.3 Other Markets

This study has concentrated on the price of regular gasoline, which comprises
approximately 89% of all retail gasoline sold. Prices on higher grades are not
posted on billboards but are often set above regular by a set formula and so
unsurprisingly I find cycling patterns in both midgrade and premium fuel prices
as well. The patterns are slightly weaker, however, perhaps because the much
lower sales volume reduces the gain from undercutting.
Diesel fuel shows no signs of such cycling at all. This is interesting since the

vast majority of diesel sales are by national or large regional firms with cardlock
facilities for large trucks and transports. Independents have a negligible effect
on the diesel market. For other low volume products for which I have data, such
as propane, there are no signs of asymmetric pricing.
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There remains the question of why cycles are so common in Canada but,
except for several western cities in the 1960s and 1970s, have not occurred
in the United States. Cycles appear to be best generated in markets with
numerous small undercutting independents and at least one very large major
firm capable of resetting the cycle. In some U.S. markets, there may be too few
aggressive independents, or the more decentralized control of prices at branded
outlets may make price resetting difficult. Perhaps historical price cycling in
Canada has created price hypersensitivity of otherwise similar consumers in that
country, which increases the propensity of cycles there. These are directions of
future research. It remains to be seen if the situation in the U.S. will continue.
According to the Energy Information Administration, there has been “ferocious”
rate of growth of independents in the U.S. throughout the 1990s,28 which may
again create conditions prone to price cycling activity.

Finally, I am not aware of similar Edgeworth-like cycles currently in other
product markets. However, the interested observer can look across markets for
certain characteristics that may lend to cycling activity. For example, markets
with many small firms alongside at least one large firm capable of coordinating
marketwide price increases are more likely to experience cycles. The product
itself would likely be relatively homogeneous, highly elastic at the firm level, non-
durable (in practice if not in principle), and frequently purchased. Consumer
switching costs and firm menu costs should also be close to zero. Whether more
cycling markets appear remains to be seen.

9 Conclusion

In this paper, I present evidence that retail price cycles, similar to the theo-
retical Edgeworth Cycles in appearance and behavior, are a real and prevalent
phenomenon in Canadian retail gasoline markets. Using the parameter esti-
mates from a Markov switching regression framework, I estimate measures of
prevalence and build a description of the characteristics of cycles themselves. I
identify repeated price cycling behavior in 43% of periods in the sample, sticky
pricing in 30%, and normal cost-based pricing in 27%. Beyond volatile prices, I
show that these cycles have a specific shape that is consistent with the theory
— they have an expected amplitude of over three cents per liter, an expected
period of just under four weeks, and are significantly asymmetric. Prices rise
quickly from one week to the next and then begin to fall gradually over the next
two to three weeks.
The theories of Edgeworth Cycles further suggest that a greater penetration

of small firms should lead to more cycling activity and less sticky pricing. More-
over, the duration of the relenting phase of the cycle should be unaffected, the
duration of the undercutting phase shortened and therefore the cycles should be
more rapid and less asymmetric. Allowing the horizontal and vertical dimen-
sions of the cycle to vary with a small firm concentration variable, I confirm
28See http://www.eia.doe.gov/emeu/finance/sptopics/restructure/highlite4.html
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each of these relationships. My results are robust when controlling for market
size and outlet density and when using alternate measures of concentration.
A short welfare analysis that shows consumers are better off in cycling mar-

kets stands in contrast with the public perception of competition between cycling
and non-cycling markets. In strong cycles, the largest jumps in price are widely
reported in the popular press but the daily price cuts of the undercutting phase,
which are small and gradual, receive no attention. This seems to have led to the
popular impression that gasoline prices are “always going up” in cycling markets
when, in fact, they are almost always going down. It is true that some market
power is necessary for a firm to effectively reset the price higher, but unlike
sticky pricing markets, the many small firms in cycling markets keep bringing
the price back down. The volatility that has generated so much controversy,
relative to the alternative, is a benefit to consumers.

A Appendix

The Markov framework estimates switching probabilities directly (at the top
level), rather than the probability of being in a given regime. The probability of
firms actually being in regime j in market m at period t is given by the recursive
relationship:

Pr(Imt) =
X

Im,t−1=R,U,F
(Pr(Imt | Im,t−1) ∗ Pr(Im,t−1)) (14)

where Pr(Imt | Im,t−1) is called λijmt in the text.
Switching probabilities and within-regime parameters are estimated jointly

and simultaneously by maximum likelihood. Let φ(·) be the normal density
function and define

G(y, I,W,X) =
TY
t=1

gImt(yImt
mt | XImt

mt )∗
TY
t=2

Pr(Imt | Im,t−1,W Imt
mt )∗Pr(Im1 |W Im1

m1 )

(15)

where gImt(·) = φ(·) for Imt = R,U . For Imt = F ,

g(yFmt | XF
mt) = Pr(Jmt = N | Imt = F, Vmt,WF

mt) ∗ φ(yFmt | XF
mt)

+ Pr(Jmt = S | Imt = F, Vmt,WF
mt) ∗D(pmt − pm,t−1)(16)

where D(·) is an indicator function equal to one if its argument is equal to zero,
and equal to zero otherwise. Note that yImt

mt in each case is just the left hand
side of equations 1 or 2 and Pr(Jmt = S | Imt = F, Vmt,WF

mt) is called γmt in
the text. The log likelihood function is given by

L = ln

 X
IMT=R,U,F

· · ·
X

Im1=R,U,F

"
MY
m=1

G(y, I,W,X)

# (17)
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The likelihood function as written is computationally intractable and so is com-
puted by means of a recurrence relation, as described by Cosslett & Lee [1985]

Qmt(Imt) =
X

Im,t−1=R,U,F

gImt(yImt
mt | XImt

mt )∗Pr(Imt | Im,t−1,W Imt
mt )∗Qm,t−1(Im,t−1)

(18)
where Qm1(Im1) are chosen starting within-regime probabilities. Then the like-
lihood function is computed by

L =
MX
m=1

TX
t=1

ln

 X
Imt=R,U,F

Qmt(Imt)

 (19)

Newey-West standard errors are computed for the core MLE parameters.
All derived parameters and their standard errors in section 6 are found using
the delta method.
The grouping of normal and sticky pricing into a single regime greatly re-

duces computational burden. The number of free switching probabilities is
reduced from 12 to 7 (including γ) vis-a-vis a four top-level regime model and
the number of parameters (θ and ζ) is reduced by as much as 26. There are
82 parameters in the last specification and convergence on a 700MHz processor
takes approximately three days.
In section 7.1, partial derivatives of λii and λij with respect to an element

in W i (whose coefficient in λij is θij1 ) are

∂λij

∂W i
= λij

h
θij1 − θij1 λ

ij − θik1 λ
ik
i
, ∀ i = R,U, F, j = R,U, k 6= j 6= F (20)

and
∂λiF

∂W i
= −θiR1 λiRλiF − θiU1 λiUλiF , ∀ i = R,U, F (21)

Due to the cycle-position-dependent switching probabilities, partial deriva-
tives of each characteristic with respect to competitive variables must be com-
puted by simulation in section 7 if that characteristic depends on the switching
probabilities. For consistency, all estimates were found by simulation.
I conducted 2K sets of simulations S = {S11, S12, S21, S22..., SK1, SK2} for

each regression, where K is the number of included competitive variables. Each
set contained 1000 individual simulations Skji , i = 1..1000, j = 1..2, k = 1..K.
For each competitive variable k, I conducted two simulations sets Sk1and Sk2.
For the first simulation set Sk1, variable k was set equal to xk−∆ where xk is the
sample mean of variable k and ∆ is small and positive. In the second, the mean
of variable k was set to xk+∆. Other included competitive variables s 6= k were
set equal to their respective sample means xs. Actual rack prices were used. For
each i, a vector of parameter values was drawn from the multivariate normal
distribution of the core MLE estimates (using the Cholesky decomposition and
transformation.) Then, for each Skji , a retail price series was generated forward
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100,000 periods. Estimates of prevalence and cycle features, etc. were calculated
in the obvious way (since the current regime is known.) Each partial derivative
of each characteristic with respect to changes in variable k was calculated from
the difference in characteristics estimates across Sk1i and S

k2
i for a given i, i =

1..1000 (and divided by 2∆). The mean and standard error of each partial
derivative is then found by bootstrapping.
The standard errors capture both the error in the core MLE estimates and

also the error inherent in the price generation process. It is the former that is
relevant. To test the degree of intrusion of the latter, I compare estimates from
the core estimation that do not depend directly on switching probabilities with
those from the simulations (such as within-regime price changes αi and sigma
σ). The standard errors in the simulation (at 100,000 periods) are slightly larger
than those from the core parameters and therefore standard errors reported in
the tables are taken as conservative.
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Table 1: Rack and Retail Price Changes and Runs
FULL SAMPLE

Price Decreases Price Increases K-S
Number Average Number Average t-stat P-value

Retail 4092 1.180 2558 2.010 -20.668 0.000
Rack 2436 0.588 2568 0.595 -0.491 0.337

Runs Down Runs Up K-S
Number Average Number Average t-stat P-value

Retail 2110 1.939 1819 1.360 14.430 0.000
Rack 1135 2.193 1219 2.212 -0.291 0.787

BY CITY (19 Cities)
Difference in Price Changes Difference in Run Durations
# signif. # signif. # signif. # signif.
t-tests K-S tests t-tests K-S tests

Retail 19/19 19/19 9/19 9/19
Rack 0/19 0/19 0/19 0/19

OTHER SUMMARY STATISTICS
Mean Std.Dev. Min Max Mean (US /c/gal.)

Retail Price 29.51 4.45 6.8 48.0 78.1
Rack Price 23.05 3.45 13.4 38.5 61.0
Markup 6.45 3.02 -14.1 14.7 17.1
Prices in Canadian cents per liter except as noted.
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Table 2: Within-Regime Results
Specification (1) (2) (3)

CYCLE: RELENTING PHASE (dependent var = ∆RETAILmt)
E(∆RETAILmt | Imt = “R”) 2.403 2.300 2.442
at cycle averages (0.091) (0.085) (0.097)
Constant 2.403 - 2.162

(0.091) (-) (0.463)
ΣRACK 0.012

(0.021)
City/month/year dummies N Y N

CYCLE: UNDERCUTTING PHASE (dependent var = ∆RETAILmt)
E(∆RETAILmt | Imt = “U”) -1.259 -1.149 -1.290
at cycle averages (0.062) (0.061) (0.063)
Constant -1.259 - -1.111

(0.062) (-) (0.297)
ΣRACK -0.007

(0.012)
City/month/year dummies N Y N

NON-CYCLE REGIME (dependent variable = RETAILmt)
RACK 0.800 0.804 0.937
(ΣRACK in (3)) (0.030) (0.031) (0.019)
Fraction Sticky Prices 0.515 0.547 0.491

(0.023) (0.022) (0.020)
City/month/year dummies Y Y Y
σ2 0.714 0.553 0.710

(0.076) (0.058) (0.067)
Standard errors in parentheses calculated by delta method.
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Table 3: Switching Probabilities
Specification: (1) (2) (3)

λRR: R → R 0.233 0.238 0.229
(0.014) (0.013) (0.014)

λRU : R → U 0.730 0.725 0.735
(0.016) (0.015) (0.014)

λRF : R → F 0.038 0.036 0.035
(0.010) (0.009) (0.009)

λUR: U → R 0.327 0.313 0.338
(0.014) (0.014) (0.013)

λUU : U → U 0.592 0.600 0.590
(0.014) (0.013) (0.014)

λUF : U → F 0.082 0.085 0.070
(0.009) (0.011) (0.007)

λFR: F → R 0.001 0.001 0.001
(0.002) (0.002) (0.001)

λFU : F → U 0.052 0.063 0.042
(0.006) (0.008) (0.004)

λFF : F → F 0.948 0.935 0.957
(0.006) (0.008) (0.004)

Standard errors in parentheses calculated by delta method.

Table 4: Prevalence of Regimes — Full Sample
Specification: (1) (2) (3)

Fraction Cycling 0.428 0.475 0.410
(0.046) (0.045) (0.050)

Fraction Relenting 0.126 0.136 0.123
(0.017) (0.017) (0.018)

Fraction Undercutting 0.302 0.339 0.286
(0.029) (0.028) (0.031)

Fraction Non-cycle 0.573 0.525 0.590
(0.046) (0.045) (0.050)

Fraction Normal 0.278 0.239 0.300
(0.022) (0.021) (0.024)

Fraction Sticky 0.295 0.287 0.290
(0.023) (0.023) (0.024)

Standard errors in parentheses calculated by numerical methods.
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Table 5: Key Cycle Characteristics
Specification (1) (2) (3)

CYCLE CHARACTERISTICS
Relenting Phase Duration 1.303 1.312 1.297

(0.024) (0.023) (0.023)
Undercutting Phase Duration 2.449 2.504 2.441

(0.083) (0.082) (0.085)
Cycle Period 3.752 3.816 3.738

(0.088) (0.088) (0.091)
Horizontal Asymmetry 1.889 1.907 1.882

(0.075) (0.074) (0.078)
Cycle Amplitude 3.131 3.018 3.168
(relenting phase calculation) (0.109) (0.101) (0.125)
Vertical Asymmetry 1.909 2.002 1.893

(0.062) (0.060) (0.070)
Cycle Spell Duration 14.51 13.93 16.62

(3.32) (3.31) (3.90)
City/month/year dummies N Y N

NON-CYCLE REGIME CHARACTERISTICS
Fraction Sticky Prices 0.515 0.547 0.491
cond. on non-cycling (0.023) (0.022) (0.020)
Non-cycle Spell Duration 19.31 15.46 23.56

(2.379) (1.975) (2.622)
City/month/year dummies Y Y Y
Standard errors in parentheses calculated by delta method.
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Table 6: Prevalence of Regimes by City (Specification 1)
Full Sample Prevalence of: Min. Max.

City: Cycling Rel. Und. Norm Sticky Cycling Cycling
Vancouver 0.437 0.100 0.327 0.300 0.272 0.05 0.98
Calgary 0.347 0.087 0.260 0.344 0.309 0.11 0.84
Edmonton 0.401 0.094 0.308 0.293 0.305 0.11 0.74
Regina 0.329 0.075 0.244 0.263 0.417 0.05 0.85
Winnipeg 0.236 0.040 0.197 0.289 0.475 0.03 0.56
Toronto 0.839 0.359 0.480 0.146 0.014 0.58 0.99
Ottawa 0.621 0.223 0.398 0.213 0.165 0.04 1.00
London 0.476 0.114 0.362 0.354 0.169 0.07 0.89
Windsor 0.713 0.238 0.474 0.247 0.040 0.32 0.90
Sudbury 0.557 0.169 0.388 0.296 0.146 0.03 0.94
Sault Ste. Marie 0.307 0.063 0.244 0.346 0.346 0.05 0.61
North Bay 0.373 0.097 0.274 0.349 0.277 0.06 0.83
Thunder Bay 0.312 0.076 0.235 0.373 0.314 0.17 0.64
Timmins 0.229 0.041 0.188 0.288 0.482 0.07 0.46
Montreal 0.665 0.224 0.441 0.179 0.156 0.02 0.99
Quebec City 0.632 0.231 0.402 0.200 0.168 0.06 1.00
Saint John 0.317 0.082 0.235 0.267 0.415 0.07 0.65
Halifax 0.265 0.049 0.216 0.242 0.493 0.04 0.64
St. John’s 0.147 0.033 0.113 0.229 0.623 0.02 0.32
Min. Cycling is fraction of cycling periods in least active year (of 11 years.)
Max. Cycling similarly defined. Rel.=Relenting, Und=Undercutting, Norm=Normal

Table 7: Partial Derivatives of Switching Probabilities w.r.t. POSITION
Specification: (4) (5)

λRR -0.012 -0.009
(0.003) (0.004)

λRU 0.002 0.000
(0.008) (0.011)

λUR -0.040 -0.045
(0.006) (0.005)

λUU 0.040 0.046
(0.006) (0.005)

Each entry is ∂λij

∂POSITION calculated at average cycle position.
Standard errors in parentheses calculated by delta method.
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Table 8: Summary Statistics — Competitive Variables
Mean Std.Dev. Minimum Maximum

SMALLINDEX 0.356 0.099 0.090 0.533
INDEP 0.332 0.121 0.007 0.585
POP. PER OUTLET 1.843 0.659 0.802 4.166
OUTLET DENSITY 0.443 0.314 0.050 1.288
Population in thousands. Outlet density is total number of outlets per
square kilometer.
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Table 9: Effects of Competitive Variables on Prevalence and Cycle Features
Specification: (6) (7)

SMALLINDEX SMALLINDEX POP/RO DENSITY
Prevalence 1.039 0.956 0.132 0.261
of Cycles (0.235) (0.223) (0.042) (0.100)

[0.000] [0.000] [0.000] [0.003]
Prevalence -1.456 -1.519 -0.132 -0.210
of Sticky Pricing (0.121) (0.101) (0.036) (0.054)

[0.000] [0.000] [0.000] [0.000]
Prevalence 0.417 0.562 -0.000 0.049
of Normal Pricing (0.121) (0.151) (0.025) (0.046)

[0.000] [0.000] [0.475] [0.138]
Duration of -0.261 -0.361 0.002 -0.049
Relenting (0.366) (0.352) (0.040) (0.112)
Phase [0.227] [0.148] [0.480] [0.338]
Duration of -2.125 -4.162 -0.632 -0.475
Undercutting (0.829) (1.121) (0.132) (0.331)
Phase [0.004] [0.000] [0.000] [0.078]
Period -2.387 -4.524 -0.630 -0.524

(0.951) (1.161) (0.139) (0.356)
[0.004] [0.000] [0.000] [0.070]

Horizontal -1.238 -2.583 -0.481 -0.284
Asymmetry (0.772) (1.036) (0.112) (0.295)

[0.053] [0.006] [0.000] [0.168]
E(∆RETAIL | “R”) 1.800 1.381 0.096 0.498
(Relenting Phase) (1.047) (0.914) (0.104) (0.362)

[0.043] [0.076] [0.172] [0.080]
E(∆RETAIL | “U”) -1.631 -1.907 -0.309 -0.476
(Undercutting Phase) (0.502) (0.457) (0.068) (0.178)

[0.000] [0.000] [0.000] [0.003]
Amplitude 2.473 1.430 0.227 0.615
(relenting phase (1.147) (1.095) (0.144) (0.432)
calculation) [0.011] [0.097] [0.058] [0.080]

Vertical -1.020 -1.852 -0.408 -0.338
Asymmetry (0.762) (0.855) (0.111) (0.270)

[0.082] [0.014] [0.000] [0.091]
Fraction Sticky -1.742 -1.864 -0.123 -0.117
Prices Conditional on (0.182) (0.015) (0.002) 0.006
Non-cycling (γ) [0.000] [0.000] [0.000] [0.000]
Cell contains ∂(ROW)

∂(COLUMN) ,standard errors in parentheses, pseudo P-values

(equal to fraction of simulation pairs that yield wrong sign) in square brackets.
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Table 10: Effects of Competition: An Example (Specification (7))
(a) (b) (c)

SMALLINDEX 0.100 0.356 0.455
POP PER STATION 1.183 1.842 2.501
Prevalence 0.291 0.401 0.639
of Cycles (0.011) (0.017) (0.021)
Prevalence 0.521 0.286 0.083
Sticky pricing (0.018) (0.015) (0.008)
Prevalence 0.188 0.313 0.278
Normal pricing (0.035) (0.041) (0.040)
Duration of 1.311 1.348 1.254
Relenting Phase (0.031) (0.023) (0.034)
Duration of 3.404 2.746 2.049
Undercutting Phase (0.105) (0.064) (0.025)
Period 4.716 4.095 3.303

(0.110) (0.073) (0.038)
Horizontal 2.596 2.036 1.633
Asymmetry (0.099) (0.056) (0.029)
E(∆RETAIL | “R”) 1.971 2.306 2.650
(Relenting Phase) (0.072) (0.050) (0.034)
E(∆RETAIL | “U”) -0.764 -1.214 -1.663
(Undercutting Phase) (0.031) (0.030) (0.025)
Amplitude 1.851 3.094 3.324
(Rel. phase calculation.) (0.113) (0.077) (0.050)
Vertical 2.583 1.900 1.593
Asymmetry (0.154) (0.061) (0.030)
Cycle Spell 5.203 11.826 32.959
Duration (0.202) (0.642) (2.448)
Non-Cycle 16.033 17.624 18.530
Duration (0.494) (0.873) (1.218)
Fraction of Sticky 0.735 0.477 0.230
Prices (Non-Cycle) (0.005) (0.006) (0.006)
Column (b) at means. Population in thousands.
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Table 11: Effects of Competitive Variables on Prevalence and Cycle Features
Specification: (8) (9)

INDEP INDEP POP/RO DENSITY
Prevalence 0.758 0.832 0.076 0.347
of Cycles (0.296) (0.237) (0.077) (0.120)

[0.000] [0.000] [0.161] [0.006]
Prevalence -1.178 -1.217 -0.071 -0.261
of Sticky Pricing (0.124) (0.100) (0.034) (0.055)

[0.000] [0.000] [0.028] [0.000]
Prevalence 0.420 0.384 -0.004 -0.085
of Normal Pricing (0.241) (0.150) (0.043) (0.066)

[0.035] [0.003] [0.446] [0.103]
Duration of -0.242 -0.684 0.025 -0.109
Relenting (0.293) (0.587) (0.044) (0.207)
Phase [0.184] [0.180] [0.268] [0.330]
Duration of -2.073 -3.704 -0.439 -0.816
Undercutting (0.951) (0.951) (0.136) (0.351)
Phase [0.013] [0.000] [0.000] [0.008]
Period -2.316 -4.389 -0.414 -0.926

(1.036) (1.100) (0.136) (0.382)
[0.012] [0.000] [0.000] [0.006]

Horizontal -1.236 -1.762 -0.377 -0.482
Asymmetry (0.785) (0.834) (0.142) (0.457)

[0.060] [0.011] [0.005] [0.138]
E(∆RETAIL | “R”) 0.242 0.708 0.059 0.704
(Relenting Phase) (1.089) (1.047) (0.130) (0.441)

[0.398] [0.246] [0.326] [0.049]
E(∆RETAIL | “U”) -0.712 -1.086 -0.439 -0.684
(Undercutting Phase) (0.462) (0.539) (0.135) (0.174)

[0.055] [0.023] [0.000] [0.000]
Amplitude 0.107 0.277 0.237 0.824
(relenting phase (1.394) (1.188) (0.159) (0.433)
calculation) [0.457] [0.406] [0.071] [0.026]
Vertical -0.872 -1.107 -0.368 -0.510
Asymmetry (0.805) (0.714) (0.107) (0.397)

[0.139] [0.060] [0.000] [0.091]
Fraction Sticky -1.420 -1.411 -0.062 -0.173
Conditional on (0.184) (0.013) (0.001) (0.006)
Non-cycling (γ) [0.000] [0.000] [0.000] [0.000]
Cell contains ∂(ROW )

∂(COLUMN) , standard errors in parentheses, pseudo P-values

(equal to fraction of simulation pairs that yield wrong sign) in square brackets.
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