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Abstract: Obesity, usually indicated by a body mass index of more than 30 kg/m2, is a worsening
global health issue. It leads to chronic diseases, including type II diabetes, hypertension, and cardio-
vascular diseases. Conventional treatments for obesity include physical activity and maintaining a
negative energy balance. However, physical activity alone cannot determine body weight as several
other factors play a role in the overall energy balance. Alternatively, weight loss may be achieved by
medication and surgery. However, these options can be expensive or have side effects. Therefore,
dietary factors, including dietary modifications, nutraceutical preparations, and functional foods have
been investigated recently. For example, edible mushrooms have beneficial effects on human health.
Polysaccharides (essentially β-D-glucans), chitinous substances, heteroglycans, proteoglycans, pepti-
doglycans, alkaloids, lactones, lectins, alkaloids, flavonoids, steroids, terpenoids, terpenes, phenols,
nucleotides, glycoproteins, proteins, amino acids, antimicrobials, and minerals are the major bioactive
compounds in these mushrooms. These bioactive compounds have chemo-preventive, anti-obesity,
anti-diabetic, cardioprotective, and neuroprotective properties. Consumption of edible mushrooms
reduces plasma triglyceride, total cholesterol, low-density lipoprotein, and plasma glucose levels.
Polysaccharides from edible mushrooms suppress mRNA expression in 3T3-L1 adipocytes, contribut-
ing to their anti-obesity properties. Therefore, edible mushrooms or their active ingredients may help
prevent obesity and other chronic ailments.

Keywords: edible mushroom; obesity; lipid profile; body mass index; gut microbiota; anti-obesity
agent; dietary habit

1. Introduction

Obesity is an illness in which the amount of body fat is elevated. Hence, it increases the
risk of other illnesses such as diabetes, hypertension, and CVD. Multiple factors, notably
heredity, nutrition, environment, lifestyle, and infectious agents are the main causes of

J. Fungi 2022, 8, 211. https://doi.org/10.3390/jof8020211 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof8020211
https://doi.org/10.3390/jof8020211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0002-3957-9713
https://orcid.org/0000-0001-8867-7603
https://orcid.org/0000-0003-3941-7164
https://orcid.org/0000-0002-3196-7746
https://orcid.org/0000-0002-1480-3555
https://orcid.org/0000-0002-3312-3264
https://orcid.org/0000-0002-6547-7227
https://doi.org/10.3390/jof8020211
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof8020211?type=check_update&version=2


J. Fungi 2022, 8, 211 2 of 21

obesity [1]. Obesity is a complex disease characterised by excessive fat accumulation.
Heftiness is beyond the actual issue. It is an ailment that builds the danger of different
illnesses, such as coronary illness, diabetes, hypertension, and a few types of cancer.
Obesity is a multifactorial metabolic ailment characterised by secondary complications,
gut epithelial hyperpermeability, and dysregulation of digestive microbiota. It has become
a global issue due to the consumption of high-fat food and lack of sufficient physical
activity worldwide. It causes increased incidences of lifestyle disorders such as type
2 diabetes, cardiovascular illnesses, and cancer, usually resulting in reduced lifespan [2].
Safe, affordable, and extensively accessible anti-obesogenic methods are needed to address
obesity and its consequences. Weight is fundamentally a disparity between energy intake
and its expenditure. A weight loss of 5% further leads to medical issues and decreases the
likelihood of cardiovascular sickness and type 2 diabetes mellitus (T2DM) [3]. Although
a low-calorie diet combined with continuous standard exercise prompts weight loss and
has been the most effective strategy for forestalling and treating obesity, it is challenging to
execute. It has inconsistent success owing to the adaptive processes that conserve energy
stored in the body. Several anti-obesogenic pharmaceuticals have also been licenced for
use. When taken for a year, orlistat, the most commonly used long-term anti-obesogenic
medication, reduces body weight by 3% on average. However, it may cause gastrointestinal
side effects, subacute liver failure, and acute renal damage. Surgery for weight loss via
gastric bypass or gastric banding is more successful than anti-obesogenic medications.
However, the procedure is expensive, physically intrusive, and not suitable for most people
who are overweight.

Mushrooms are spore-bearing fruiting bodies of fungi that grow above the ground.
They are rich in starches and proteins but are a poor source of fat [4]. Many researchers
have reported the nutritional value of various mushrooms. Reis et al. reported the com-
position of Agaricus bisporus as 14.1% protein, 2.2% fat, and 74.0% carbohydrates, while
another mushroom Pleurotus ostreatus contains 7.0% protein, 1.4% fat, and 85.9% carbohy-
drates [5]. Mushrooms also contain micronutrients, mainly various types of vitamin B such
as riboflavin, niacin, and pantothenic acid [6]. The consumption of 100 g of mushrooms
provide 22 calories. Oyster mushrooms are common in South Asian countries. They are
used to make oyster sauce in Chinese cuisine. The cremini mushroom is also known as
the baby Bella mushroom. The portobello mushroom is mainly used for highly woody
flavours and has immunomodulatory properties [7]. Aromatic shiitake mushrooms in
Italian foods have antiviral properties [8]. Maitake mushrooms have immune-protective
and anti-tumour properties [9,10]. The pioppino mushroom (Cyclocybe aegerita) is a good
source of nutrients (amino acids, malic acid, and sugars) and has anticancer, antifungal,
and antiviral properties [11,12].

Mushrooms are used as food and nutraceuticals. They are essential nutrient supple-
ments that play a vital role in health and illnesses. They have low polyunsaturated fat.
Therefore, eating mushrooms helps to reduce weight, as a low fat, low glucose, and high
mannitol diet can prevent diabetes [13]. Mushrooms also have low sodium and no choles-
terol, which prevents hypertension [14]. Mushrooms have high levels of antioxidants. Few
researchers have reported their preventive effect against cancer [15,16]. Mushrooms possess
antioxidant properties, which aids in the antioxidant defence mechanisms of cells [17]. They
have anti-inflammatory properties and reduce the risk of obesity-related dyslipidaemia and
hypertension [7,8,18–28]. Mushroom consumption on a regular basis is useful in curing
metabolic disorders that include obesity. Therefore, they could be nutraceuticals of choice
in the future for anti-obesity treatment. P. ostreatus, frequently called the oyster mushroom,
is one of the world’s most widely consumed mushrooms after white button mushrooms
(A. bisporus). P. ostreatus is especially significant since it can colonise and make use of a
broad range of lignocellulosic substrates from natural deposits. It grows more rapidly than
other edible mushrooms. In addition, P. ostreatus contains bioactive substances, including
β-glucans, which aid in cardiometabolic health [29,30]. P. ostreatus has two-fold more
β-glucan content compared to A. bisporus. They are nutritional fibres that have gained
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popularity due to their ability to reduce insulin obstruction, hypertension, dyslipidaemia,
and obesity. β-glucans are exceptionally good supplements for human gastrointestinal
health, and their fermentation is believed to contribute to the wellbeing of the intestine.
These effects have been widely reported in studies with oat and grain β-glucans. Mevi-
nolin, also known as lovastatin, has an inhibitory effect on 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase and is also involved in decreasing cholesterol synthe-
sis. In addition, in vitro digestion of P. ostreatus produces bioactive peptides that inhibit
angiotensin-converting enzymes [31]. P. ostreatus contains abundant phenolic compounds
which may be involved in lowering the blood pressure [32,33]. P. ostreatus has been used
in animal studies and showed hypoglycaemic, hypolipidemic, and antioxidant effects.
Animals consuming P. ostreatus exhibited reduced food intake and weight gain, suggesting
the anti-obesogenic potential of this edible mushroom [32–37].

Ergosterol peroxide is a compound found in mushrooms that decreases the accumu-
lation of fatty acids in 3T3-L1 cells (Figure 1) [38]. This compound inhibits the mRNA
upregulation of sterol regulatory element binding protein-1c (SREBP-1c). SREBP-1c is a
sterol response limiting protein that regulates the response of sterol in the body. In ad-
dition, ergosterol peroxide treatment inhibits the expression of unsaturated fat synthase,
unsaturated fat translocase, and acetyl-coenzyme A carboxylase involved in the synthesis
and transportation of long-chain unsaturated fatty acids. Since it aids in the prevention
of obesity and related metabolic conditions, these reports suggest that ergosterol perox-
ide obtained from G. lucidum might be a potential drug for anti-obesity treatment [38].
AMP-activated protein kinase (AMPK) is a key regulator of homeostasis. Increased AMPK
activity showed antihyperglycemic and anti-hyperinsulinemic effects which resulted in
reduced obesity in mice. Consumption of H. erinaceus (a mushroom) powder reduced total
plasma cholesterol and leptin levels in mice that were fed a diet containing the amount of
fat tissue [39].

Figure 1. Pharmacological effects of ergosterol peroxide derived from mushrooms on obesity [38].
Ergosterol shows anti-obesity effect by reducing triglycerides accumulation, inhibiting expression of
FAT, FAS, AAC, inhibiting metabolic syndrome, enhancing AMPK expression, increasing antihyper-
glycemic, and anti-hyperinsulinemic activities.

G. lucidum has anti-diabetic properties and has been used in conventional Chinese
medicine. In mice following a high-fat diet (HFD), administration of water concentrate of
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G. lucidum mycelium (WEGL) reduced bodyweight, irritation, and insulin obstruction [40].
Along with reducing HFD-induced gut dysbiosis (as seen by lower Firmicutes-to-Bacteroidetes
ratio and increased abundance of endotoxin producing proteobacteria), WEGL administration
alleviates metabolic endotoxemia [41]. The weight-reducing and microbiota-regulatory effects
can be passed on from WEGL-treated mice to HFD-administered ones by faecal exchange. In
addition, high molecular weight polysaccharides (>300 kDa) present in the WEGL have
shown anti-obesity and microbiota-regulating properties. G. lucidum and its high atomic
weight polysaccharides can be used as prebiotics in overweight individuals to treat gut
dysbiosis and metabolic disorders [40].

Pleurotus citrinopileatus is another potential source of bioactive mixtures and therefore,
can be used in anti-obesity treatment [42–44]. One study assessed the anti-obesity and
hypolipidemic effects of P. citrinopileatus water extract (PWE) in high-fat diet-induced
obese (DIO) C57BL/6J mice. They were administered with PWE in gradually increasing
concentrations (400 to 800 mg/kg of body weight, independently) along with a high-fat diet
for 12 weeks [45]. Within 12 weeks, the weight gain, fat build-up, and food utilisation of DIO
mice were drastically reduced in mice administered with PWE. PWE also decreased fatty
acid, cholesterol, and low-density lipoprotein levels in the blood, simultaneously increasing
the activity of aspartate transaminase, non-esterified unsaturated fats, creatinine levels, and
high-density lipoprotein levels. Moreover, PWE also enhanced glucose tolerance in HFD
mice and showed a high potential for managing obesity and other metabolic diseases [45].

The focus of this review is the aetiology and pathophysiology of overweight and the
anti-obesity effects of edible mushrooms. We will discuss the effect of consumption of
mushrooms on food processing, food intake, reducing food craving, energy consumption,
lipid accumulation, and gut microbiota.

Relevant studies pertaining to the application of mushrooms for anti-obesity effects
were selected from several scientific databases such as Google Scholar (http://www.scholar.
google.co.in) (accessed on 10 December 2021), PubMed (http://www.ncbi.nlm.nih.gov/
pubmed) (10 December 2021), Elsevier (https://www.elsevier.com/en-in), ScienceDirect
(http://www.sciencedirect.com) (accessed on 10 December 2021), Springer (http://www.
springer.co.in) (accessed on 10 December 2021), and Scopus (http://www.scopus.com)
(accessed on 10 December 2021). Publications that had the full text available and book
chapters in English were only reviewed.

2. Aetiology of Obesity

Obesity is not an acute condition that develops instantly. It takes time to develop. It
is a chronic condition and its development results from a complex interaction between
an individual’s genetics and environment. Leptin and ghrelin hormones regulate energy
homeostasis and obesity develops due to a long-term imbalance in the energy homeostasis.
A sedentary lifestyle and low metabolic rate trigger the onset of obesity [46,47]. Several
sociocultural factors accelerate the development of obesity. They include ready access to
abundant foods, low physical activity, and mechanisation [48,49].

Genetics significantly influence the development of obesity. However, the exact
mechanism responsible for this development is not yet known. Genetic causes could not be
easily identified through pedigree analyses. The effect of genotype is generally reduced by
non-genetic factors. The tendency to gain weight is familial. Additionally, the tendency to
gain weight also depends on dietary habits and lifestyle [50–52].

Some sociodemographic factors including age and sex also influence the development
of obesity. A study conducted in Spain showed that obesity is much higher in men than
in women [53]. The highest rate of obesity is observed in the 60 years age group. Level of
education is also associated with obesity. Most of the epidemiological studies on obesity
revealed an inverse relationship between the prevalence of obesity and level of education.
Socioeconomic factors also affect obesity development [54–56]. Obesity is more common in
advanced and well-developed countries. As adoption of Western culture is increasing in
under developed countries, and the incidence of obesity is also increasing [57,58].

http://www.scholar.google.co.in
http://www.scholar.google.co.in
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
https://www.elsevier.com/en-in
http://www.sciencedirect.com
http://www.springer.co.in
http://www.springer.co.in
http://www.scopus.com
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It is commonly known that obesity is caused due to societal changes such as reduced
physical activity and dietary habits. Obesity is a multifactorial disease. Its onset occurs
during childhood and adolescence. Genetics alone are not the causative agents of obesity;
the environment could also result in obesity. The primary cause of obesity in majority of
people is the imbalance in the consumption of energy and its use. Presently, various inves-
tigations have reported that nutrigenomics and gut microbiota are the major determinants
of obesity [59–63].

Dietary habits are one of the primary determinants of health and diseases. It is difficult
to quantify the exact portion of food to determine its health-promoting effects. In the
past few decades, increasing scientific evidence has shown an association between dietary
factors and chronic diseases [64,65]. These chronic diseases include cardiovascular diseases,
osteoporosis, cancer, diabetes, and obesity.

3. Pathophysiology of Obesity

Obesity leads to several health-related problems and affects most of the body’s vital
organs, resulting in serious complications. Increased food intake and lack of physical
activity adversely affect the body in several ways. The initial manifestation of increased
food intake is the increased triacylglycerol storage in the body’s adipose tissues. The size of
fat cells increases as the body weight increases. When their maximum capacity is reached,
additional adipocytes are synthesised to accommodate more triacylglycerol. When the BMI
crosses 35 kg/m2 (or 75% higher than expected weight), it results in hypercellular obesity.
One consequence of hypercellular obesity is the increased expression in lipoprotein lipase,
which increases linearly with the increase in BMI up to 50 kg/m2. Few factors influence the
storage of triacylglycerols in subcutaneous and visceral depots. Corticosteroids affect the
redistribution of fat in stomach or fat-storing tissues. Fat storage in the lower body or gluteal
muscles is increased at lower cortisol levels and higher oestradiol levels than testosterone.
The increase in fatty acid storage is directly related to the synthesis of cholesterol. Increased
level of cholesterol synthesis is related to the increased cholesterol release into the bile,
which eventually results in the formation of gallstones and a nervous bladder [66–69].

4. Appetite Suppressing Effect of Mushrooms

Mushrooms are widely used in foods, medicines, and nutraceuticals. Studies have
shown the effect of A. bisporus (white button mushroom) consumption on food intake and
satiety. Mushroom-and meat-based meals have equivalent protein content. However, they
differ in portion size, fibre and carbohydrate contents, and calorie intake [47]. Despite
having differences in the fibre content and portion size of sandwiches made of mushrooms
and meat, consumption of a mushroom sandwich was more satisfying. However, there was
no effect on energy intake. In a randomised controlled investigation of 32 members who
consumed two servings of meat and mushrooms for 10 days, it was shown that replacing
meat with mushrooms reduced the energy intake, resulting in weight reduction [70].
Studies have shown that mushrooms have higher water content than meat. Additionally,
mushrooms require a longer time to chew. Chewing enhances gastric acid and saliva
secretion, which leads to increased gastric distention and gives a feeling of fullness [70].
Mushrooms also have more fibre content, which upon consumption increases the food
volume in the stomach, leading to an increased satiety. Mushrooms have both fermentable
and non-fermentable fibres. Depending on the type of fibres, consuming mushrooms slows
down gastric emptying, enhances gastric distention, and ultimately promotes satiation
(Figure 2) [70]. Additionally, it has been reported that consumption of cholesterol obtained
from the root of another mushroom called thunder, reduces appetite and results in weight
loss. It decreases stress of the endoplasmic reticulum and reduces leptin resistance [71].
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Figure 2. Effect of mushrooms on gastric emptying and salivary secretion.

Natural products have been used for many years to combat obesity. In this context, the
appetite-suppressing effects of UP601 are well known. This standardised botanical blend
of Magnolia officinalis, Morus alba, and Yerba mate was shown to suppress appetite in lab rats.
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The rats also lost weight, indicating its beneficial effects on the management of obesity and
diabetes [72].

The appetite-suppressing effects of M. alba can be attributed to two chemical com-
pounds isolated from its root bark: kuwanon G and albanin G. Lab rats were fed 250 and
500 mg/kg of the extract for seven days. Remarkable reduction of 58.6% and 44.8% weight
loss was observed at 250 mg concentration. When the dose was increased to 500 mg, 50.1
and 44.3% weight loss was observed. Overall, total calorie intake was reduced by 20% [73].
Table 1 summarises the weight loss, anti-obesity, and hypolipidemic properties of different
types of mushrooms.

Table 1. Weight loss, anti-obesity, and hypolipidemic properties of mushrooms.

Name of Mushroom Summary of Methods Outcome of Study References

Tremella fuciformis
Water-soluble fraction obtained by
water extraction and polysaccharides
from ethanol extraction

The differentiation of 3T3-L1 adipocytes
was inhibited by mushroom [74]

Agaricus bisporus

Equivalent amounts of mushroom fibre
and sugar beet fibre-fed to rats for
4fourweeks; liver weight studied for
both groups of rats

The cellulose powder group should higher
HDL cholesterol concentration than the
mushroom fibre group.

[75]

Pleurotus geesteranus
Exopolysaccharides were extracted from
mushrooms and tested on
diabetes-induced mice

The hypolipidemic impact of the
polysaccharide explored in
streptozotocin-prompted diabetic mice,
diminished plasma glucose levels, all-out
triacylglycerol and cholesterol focuses by
17.1%, 18.8%, and 12.0%

[76]

Hericium erinaceus

Mice were fed a high-fat diet along with
extracts of Yamabushitake mushroom

A substantial diminution in increased
body mass, fat weight, and triacyl-glycerol
level in serum and hepatic were observed
after 28 days of a high fat diet.

[77]

Exobiopolymer extracted from mycelial
culture of mushroom was studied on
hyperlipidemic mice

A major reduction in the overall plasma
cholesterol (32.9%), cholesterol (45.4%),
Low-Density Lipoprotein (LDL)
atherogenic index (58.7%), triglyceride
(34.3%), phospholipid (18.9%), and hepatic
HMG-CoA reductase activity (20.2%) was
observed after administration of
200 mg/kg dose.

[78]

Lentinula edodes

The diet containing varying proportions
of mushroom with a high-fat diet was
fed to mice for 4 weeks against a normal
diet and high-fat diet control.

The mRNA expression of cholesterol
7-α-hydroxylase 1 (CYP7A1) was reduced
in hypercholesterolemic mice and
amplified by eritadenine and L. edodes (5,
10, and 20%) supplementation. Treatments
with eritadenine and L. edodes were
shown to decrease lipid build-up in
hepatic tissues.

[79]

Hypercholesterolemia Albino rats were
fed a diet containing fruiting bodies of
mushrooms and checked for plasma and
faeces biochemistry and liver histology.

A diet containing 5% L. lepideus fruiting
bodies decreased total plasma cholesterol,
triglyceride, LDL, total lipid,
phospholipids, and LDL to HDL.

[80]

Wister rats were fed a high-fat diet and
mushroom extract for 30 days, and then
biochemical parameters, including the
stress markers, were determined.

Lentinula edodes decreased levels of
glucose and urea. Lipid peroxidation was
augmented in rats receiving the HFD, and
L. edodes reduced malondialdehyde levels,
thus preventing fatty acid oxidation.

[81]

Lentinus lepideus

Hypercholesterolemia Albino rats were
fed a diet containing mushroom fruiting
bodies and checked for plasma and
faeces biochemistry and liver histology.

Total plasma cholesterol (TC), triglyceride
(TG), LDL, total lipid, phospholipids, and
the LDL/HDL ratio was decreased in
hypercholesterolemic rats after a diet
containing 5% Lentinus edodes fruiting
bodies.

[59]
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Table 1. Cont.

Name of Mushroom Summary of Methods Outcome of Study References

Pholiota nameko SW-02

The mice hyperlipidemic model was
established to study the effects of
mycelia zinc polysaccharide (containing
zinc, glucose, mannose, galactose, and
arabinose) on lipid profile and
oxidative stress.

The supplementation of mycelia zinc
polysaccharide might progress blood lipid
levels (TC, TG, HDL-C, LDL-C, and
VLDL-C), liver lipid levels (TC and TG),
and antioxidant status.

[82]

Pleurotus eryngii

Hypercholesterolemia Albino rats were
fed a diet containing fruiting bodies of
mushrooms and checked for plasma and
faeces biochemistry and liver histology.

Total plasma cholesterol (TC), triglyceride
(TG), LDL, total lipid, phospholipids, and
the LDL/HDL ratio was decreased in
hypercholesterolemic rats after a diet
containing 5% Pleurotus eryngii
fruiting bodies

[83]

Pleurotus ferulae

Hypercholesterolemia Albino rats were
fed a diet containing mushroom fruiting
bodies and checked for plasma and
faeces biochemistry and liver histology.

Supplementation with 5% P. ferulae
fruiting bodies to hypercholesterolemic rat
decreased low-density lipoprotein (LDL),
total plasma cholesterol, triglyceride, total
lipid, phospholipids, and
LDL/high-density lipoprotein ratio by
71.15%, 30.02, 49.31, 30.23, 21.93, and
65.31%, correspondingly.

[84]

Pleurotus ostreatus

Hypercholesterolemia Albino rats were
fed a diet containing fruiting bodies of
mushrooms and checked for plasma and
faeces biochemistry and liver histology.

Total plasma cholesterol, triglyceride,
low-density lipoprotein (LDL), total lipid,
phospholipids,
And LDL/HDL ratio was reduced in
hypercholesterolemic rats after 5% powder
of Pleurotus ostreatus fruiting bodies.

[85]

Pleurotus salmoneostramineus
L. Vass

Hyper and normo cholesterolemia rats
were fed a diet containing fruiting
bodies of mushrooms and checked for
plasma and faeces biochemistry and
liver histology.

P. Salmoneostramineus fruiting bodies (5%
administration) in hypercholesterolemic
rats reduced LDL/HDL ratio, total plasma
cholesterol, triglyceride, LDL, total lipids,
and phospholipids.

[86]

Pleurotus tuber-regium

Mushroom extracellular polysaccharides
were orally administered to obese
diabetes-induced mice for 8 weeks, and
liver PPAR-α expression was studied.

Serum TG, LDL, and total cholesterol
concentration were decreased, and HDL
level was increased after P. tuber-regium.

[87]

Pleurotus ostreatus

Hypercholesterolemic Wistar rats were
fed a 5% dried mushroom diet and
studied for biochemical markers of
cholesterol metabolism.

Pleurotus ostreatus administration reduced
serum and liver cholesterol level, LDL
production, cholesterol absorption,
HMG-CoA activity in the liver, and
redistribution of cholesterol in favor
of HDL.

[88]

Adiantum capillus-veneris L.

Pharmacological modulation of
pancreatic lipase and
α-amylase/α-glucosidase studied using
in-vitro and in vivo study on high
cholesterol diet fed Wistar rats

capillus-veneris showed antiobesity and
triacylglycerol-reducing effects compared
to rats fed with a high cholesterol diet for
10 weeks.

[89]

Aster spathulifolius Maxim
Rats fed a diet with mushroom extract
supplementation for 4.5 weeks were
tested for hepatic and serum lipid levels.

Aster spathulifolius Maxim extract (ASE)
treatment includes fat intake and
lipogenesis-related genes. It also increases
the level of phosphorylated AMPKα in
obese rats.

[90]

Kluyveromyces marxianus

Hyperlipedimic rats were fed a diet
supplemented with three different
dosages of mushroom extract and
measured for serum and hepatocyte
lipid concentrations.

K. Marxianus administration significantly
reduced serum and liver total cholesterol,
triglyceride, LDL cholesterol, and
atherogenic index in rats while HDL
cholesterol level and the anti-atherogenic
index were increased.

[91]

Auricularia auricula-judae

Rats were fed with high-fat diet along
with mushroom extract. The impacts on
preventing hepatic steatosis were
studied. In vitro study was carried out
for the mechanistic study of
mice adipocytes

Plasma lipid and liver enzymes were
reduced after supplementation of
Auricularia auricula-judae.

[92]
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Table 1. Cont.

Name of Mushroom Summary of Methods Outcome of Study References

Collybia confluens

The effects of three weeks of
mycelial powder administration
on plasma glucose and
biochemistry were studied on
diabetic mice.

TG and TC level in the liver was
decreased by Collybia confluens.
AST and ALT activity was
also reduced.

[93]

Cordyceps militaris SU-12

The structure of residue
polysaccharides of mushrooms
was studied using gas
chromatography. Rat study was
carried out to see its impact on
plasma lipid profile and
anti-oxidant potential.

Residue polysaccharide reduced
blood and liver lipid levels,
improving glutamate pyruvate
transaminase and
antioxidant activity.

[94]

Flammulina velutipes

The effect of active components in
the mushroom extract was
studied through administration
for eight weeks into diets of
hamsters. The outcomes
investigated included serum and
liver lipid profiling.

Flammulina velutipes (3%) powder
and extract reduced the
concentration of TC, TG, LDL,
and HDL in the serum and liver.

[95]

Grifola frondosa

The cholesterol-lowering effects of
mushroom fibre were investigated
after feeding the cholesterol-free
supplemented diet for four weeks.
Serum cholesterol concentration
and LDL receptor mRNA
were determined.

Grifola frondosa fiber depressed the
serum total cholesterol level by
augmentation of faecal
cholesterol excretion.

[96]

Auricularia polytricha

anti-hypercholesterolemic effects
of the mushroom extract on
hypercholesterolemic mice
models were studied.

The total cholesterol in the
Soluble Polysaccharide Auricularia
polytricha ingestion groups
considerably reduced 34.6 ± 7.6%
and 33.3 ± 7.9% with doses of 4.5
and 9.0 mg/kg BW on the
29th day.

[97]

Ganoderma lucidum

Invitro analysis of mushroom
extracts was carried out to
determine free radical scavenging
potential. In vivo antioxidant
potential was determined through
blood levels of stress markers in
mice fed with the supplemented
diet. Cardiovascular risk factors
were determined through serum
lipid profiling of mice

Hot water extract at 200 mg/kg
b.w. lowered plasma levels of
total cholesterol, triacylglycerol,
and LDL cholesterol and
increased HDL cholesterol.

[98]

Ergosterol peroxide potential to
inhibit triglyceride synthesis was
determined at protein and mRNA
levels and through differentiation
of 3T3-L1 adipocytes

The mitotic clonal expansion
(MCE) stage blocked the
phosphorylation of
mitogen-activated protein kinases
(MAPKs), which play a part in cell
production and the stimulation of
early differentiation transcription
factors. Ergosterol peroxide also
significantly reduced triglyceride
production and differentiation in
3T3-L1 cells.

[38]

Pleurotus eryngii

Invitro analysis was performed on
DPPH and hydroxyl radical
scavenging potential. Three-week
administration of supplemented
diet on hyperlipidemic mice
model was carried out to
investigate the antiatherogenic
potential (through lipid profiling
and inflammatory
enzyme markers)

Hepatic lipid accumulation was
significantly reduced by Pleurotus
eryngii administration.

[99]
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Table 1. Cont.

Name of Mushroom Summary of Methods Outcome of Study References

Echigoshirayukidake

Feeding supplemented diet to rat
models for 15 weeks on obesity
(weight gain), and insulin
resistance was investigated.

Supplementation to the eating
routine altogether (p < 0.01)
smothered the body weight gain
and furthermore instinctive fat
aggregation throughout the
taking care of period contrasted
with the control diet

[100]

Ganoderma applanatum

The effect of feeding diet
supplemented with mushroom
polysaccharides for two months
on serum, and tissue lipid profile
and weight gain were determined

Organization of Ganoderma
applanatum remove at various
portion levels essentially
diminished the all-out cholesterol,
TG, LDL, cholesterol levels, and
the atherogenic file from 50 to
150 mg/kg body weight.

[101]

Sparassis latifolia

Six weeks trial through feeding
the diet supplemented with the
fruiting body of mushroom was
carried out. Outcome measures
were weight gain, food efficiency
ratio and serum lipid profile.

Significantly suppressed the
occurrence of non-alcoholic fat
deposits in the liver

[102]

Dictyophora indusiata

The modulatory impact of
mushroom polysaccharide on
obese mice model fed a high-fat
diet were determined through
studying the lipid profile and
inflammatory markers.

Bodyweight, adipocyte size, fat
accumulation, adipogenic and
liver-associated markers, glucose
levels, endotoxin
(Lipopolysaccharide, LPS) levels,
and inflammatory cytokines were
diminished significantly.
Furthermore, the study exposed
that Dictyophora indusiata
polysaccharide treatment inverted
the dynamic variations of the gut
microbiome community by
causing a decrease in the
Firmicutes to Bacteroidetes ratio

[103]

Flammulina velutipes

Mushroom chitosan fed for five
weeks to rats was tested for its
effects on serum lipid profile, liver
function enzyme markers, and
weight gain.

Mushroom chitosan complex
acted to stifle amplification of the
liver from fat affidavit coming
about due to a high-fat eating
routine and re-establish hepatic
capacity. The lipid content of
dung indicated a stamped
increment corresponded with the
mushroom chitosan portion.

[104]

Grifola gargal

A human clinical trial was
performed to study the effect of
four weeks of feeding the
mushroom extract on Triglyceride
levels. The mice model was also
used to study blood glucose,
triglyceride, and adipose tissues.

Decreased blood glucose and fatty
oil levels, and fat tissue. Grifola
gargal (2.0 mg/mL) essentially
stifled the expression of the
cytokine interleukin-6 in 3T3-L1
cells contrasted and control cells.

[105]

F. velutipes, H. marmoreus, L. edodes,
G. frondosa and P. eryngii

Lipid metabolism was
investigated in mice fed with
Japanese mushrooms.

Utilization advanced the
corruption of lipids in instinctive
fat and restricted the ingestion of
food lipids. Also, the high-fat
eating routine that took care of
gathering exhibited higher
convergences of phospholipids;
some of them had odd-chain
unsaturated fats.

Pleurotus eryngii

Effect of feeding mushroom
supplemented diet to mice
models was investigated on
obesity (adipose tissues and blood
parameters) and gut microbiota
(gene sequencing)

Serum all out cholesterol and LDL
cholesterol levels diminished, and
lipid and complete bile acids in
dung expanded

[106]
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Table 1. Cont.

Name of Mushroom Summary of Methods Outcome of Study References

Ganoderma resinaceum

The antiobesity effect of the
biologically active component
was determined using extensive
spectroscopic analysis. In vitro
analysis was also performed on
brown adipocytes.

Resinacein S reduced lipid drops
size by overseeing lipid
absorption anyway didn’t impact
the detachment of C3H10T1/2
cells. Resinacein S extended the
assertion of brown and beige
adipocytes markers and updated
the activity of brown and beige
adipocytes in isolated
C3H10T1/2 cells.

[107]

5. Alteration of Adipocyte Function

Adipocytes are mesenchymal cells. Their essential function is to store energy in
the form of lipids and protect the body from external environment. Pre-adipocytes are
undifferentiated fibroblasts that can be induced to differentiate into adipocytes. A variety
of hormones are produced by adipose tissue, including leptin, oestrogen, resistin, TNF and
ALP, type 1 collagen, OPN, Runx2, and Ocn. The primary energy storage sites in the body
are adipocytes.

Adipocytes are divided into two groups: white adipocytes, which store energy in a
large and single lipid molecule and perform key endocrine functions, and brown adipocytes,
which store energy in a few tiny lipid beads. However, brown adipocytes are used to gener-
ate the body heat (i.e., thermogenesis). In brown adipocytes, the activation of mitochondrial
uncoupling protein 1 generates heat [108]. However, this differentiation often depends
upon temperature and diet; few white adipocytes have the attributes of brown adipocytes
(called brite or beige adipocytes) and vice versa. Adipocytes have more lipid-containing
vacuoles that store fatty acids and cholesterol esters. In the absence of energy, lipolysis can
hydrolyse these fatty acids into free unsaturated fats, which enter the circulatory system
and reach various parts of the body where they oxidise to generate energy [109,110]. In
obese people, due to an overabundance of lipids, white adipocytes increase in size and
number compared to the normal levels.

6. Effect of Mushroom Consumption on Gut Microbiota

The beneficial effects of edible mushrooms and their polysaccharides on the gut mi-
crobiota, which are closely linked with the body weight, are currently a major focus in the
field. A study in mice reported that administering the concentrates of G. lucidum reduced
the body weight by modifying the microbiota, suggesting that mushrooms might be used
as a potential probiotic for weight reduction [40]. The effect of HFD on gut microflora
is more pronounced than the effect on energy balance. HFD-induced changes in the gut
microbiota have been shown to reduce Firmicutes to Bacteroides ratio, which is related to
high energy accumulation, fat storage, and intestinal homeostasis over time. Through the
provocative rundown and platelet markers, obesity negatively affects the immunity. Several
studies have examined the anti-obesity effects of polysaccharides from various mushrooms
in vitro and in vivo [87,103,111]. Polysaccharides from Coriolus versicolor initiated an im-
munomodulatory effect in mice splenocytes through the MAPK-NF-B pathway [112]. A
polysaccharide from Tremella fuciformis hindered the differentiation of 3T3-L1 adipocytes
by reducing the mRNA expression, suggesting that this polysaccharide could be a poten-
tial prebiotic for obesity [74]. Cure of adipocytes with G. lucidum diminished adipogenic
record factor articulation, which increases glucose and lipid transport and activates AMPK
pathway, suggesting its potential as an anti-obesity drug [113].

Being overweight could cause several other illnesses and result in a reduced lifespan.
A recent study suggests that changes in the gut microbiota are associated with obesity and
other related metabolic syndromes [114–116]. The gut microbiota comprises trillions of
microorganisms that perform several functions, including nutrient metabolism, maintaining
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the gastrointestinal cells, modulating the immune system, protecting against the invasion
of pathogens, and balancing the endotoxins. The gut microbiota generate energy from food
and can cause overweight and T2DM. It has been observed that in overweight mice, the
gut microbiota draws out more energy from food than lean mice [117]. In healthy people,
vancomycin treatment for one week modifies the gut microbiota, which results in reduced
insulin sensitivity [118]. Additionally, the transfer of gut microbiota of any lean person to
an overweight person leads to the development of insulin sensitivity in the recipient. These
results suggest that changes in gut microbiota could cause obesity and T2DM.

In HFD animals, the levels of proteins that play a role in maintaining tight junctions of
the intestine are lower than those in chow-fed animals. Administration of G. lucidum extract
could recover the levels of those proteins, which resulted in the maintenance of the integrity
of the intestine and prevention of the translocation of pro-inflammatory endotoxins from
gut bacteria to blood (for example, lipopolysaccharides) [40]. Using a mouse obese model,
it has been observed that feeding of high-fat diet for eight weeks increased the body
weight, liver weight, fat accumulation, and lipid deposition in hepatocytes and adipocytes
compared to the control group that were fed with chow. Supplementation with the water
extract of G. lucidum reduced the weight gain and accumulation of fats in HFD mice. G.
lucidum also improved glucose tolerance and insulin sensitivity. Compounds in G. lucidum
that reduce obesity are high molecular weight polysaccharides (greater than 300 kDa).
Fungal polysaccharides cannot be digested in the stomach or small intestine. However,
the large intestine can digest them and produces short-chain fatty acids, consequently
secreting GLP-1. GLP-1 and short-chain fatty acids ultimately enter the blood and affect the
brain, muscles, adipose tissues, and liver. Additionally, GLP-1 reduces gastric emptying
and thereby, the appetite. It also reduces the deposition of fats, resistance to insulin,
and inflammation. It also upregulates the proliferation and downregulates apoptosis in
β-cells [40]. This suggests that Escherichia coli in the large intestine releases proteins that
enhance or aid in the production of GLP-1 and peptide YY, which increases satiety [103].
These results indicate that the water extract of G. lucidum could be a potential prebiotic
agent that can be used for the treatment of obesity and related complications [40]. Button
mushrooms (A. bisporus) and L. edodes contain several polysaccharides, indicating their
potential to stimulate the growth of beneficial bacteria in the gut.

Hirsutella sinensis is the asexual form of Ophiocordyceps sinensis. It modifies the compo-
sition of the gut microbiota and is beneficial in reducing obesity, inflammation, and diabetes
in HFD mice. Table 2 presents the effects of various mushrooms on gut microbiota.

Table 2. Effect of various mushrooms on gut microbiota.

Name of Mushroom Effect on Gut Microbiota References

Pleurotus eryngii P. eryngii polysaccharides altered the abundance of SCFA
producing gut bacteria [106]

Pleurotus sajor-caju Growth of SCFA producing bacteria was reduced, and
E.Shigella was decreased by Pleurotus sajor-caju. [113]

Flammulina velutipes

increase in lactic acid-producing bacteria (Lactobacillus,
Lactococcus, and Streptococcus) and SCFA-producing bacteria
(Allobaculum, Bifidobacterium, and Ruminococcus)

[119]

Hypsizygus marmoreus

Lentinusedodes

Grifola frondosa

Pleurotus eryngii

Ganoderma lucidum G. lucidum enhanced SCFAs producing bacteria and abridged
sulfate-reducing bacteria in a time-dependent manner [120]

Lentinula edodes LESDF-3 was found to stimulate the synthesisof Bacteroides [121]

Bulgaria inquinans
increase of Faecalibaculum and Parabacteroides abundance and
the decrease of Allobaculum, Candidatus_Saccharimonas, and
Rikenella abundance at the genus level

[122]
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Table 2. Cont.

Name of Mushroom Effect on Gut Microbiota References

Ganoderma lucidum

There was an increase in Bacteroides/Firmicutes ratio, Clostridium
clusters IV, XVIII, XIVa (Roseburia spp.), Eubacterium spp.)
SCFAs production bacteria, reduction in Oscillibacter spp. and
E. fergusonii.

[40]

Increase in Alloprevotella, Barnesiella, Parabacteroides, Bacteroides,
Bacteroidales S24-7 and Alistipe. Decrease in Blautia, Roseburia,
and Enterorhabdus.

[123]

Increase in Blautia, Bacteroides Dehalobacterium,
and Parabacteroides,
Decrease in Proteus, Aerococcus, Ruminococcus,
and Corynebactrium.

[124]

Increase in Alloprevotella, Prevotella, Ruminococcus and, Alistipes,
Peptococcaceae, Alloprevotella, and Defluviitalea,; Decrease in
Turicibacter, Clostridium XVIII and Phascolarctobacterium.

[125]

Grifola frondosa

Increase in Akkermansia muciniphila, Bacteroidetes/Firmicutes,
Porphyromonas gingivalis, Lactobacillus acidophilus, Roseburia
intestinalis, Tannerella forsythia, and Bacteroides acidifaciens.

[124]

Increase in Barnesiella Helicobater, Intestinimonas, Defluvitalea,
Flavonifractor and Paraprevotella and Ruminococcus.
Decrease in Butyricicoccus, Clostridium-XVI, and Turicibacter.

[126]

Increase in Alistipes.
Decrease in Streptococcus, Enterococcus, Staphlococcus,
and Aerococcus.

[127]

An increase in Bacteroidetes/Firmicutes ratio increased the abundance
of Oscillibacter, Defluvitalea, and Barnesiella. [128]

Increase in Intestinimonas and Butyricimonas.
Decrease in Turicibacter and Clostridium XVIII. [129]

Phellinus linteus
Increase in Lachnospiraceae-NK4A136, Roseburia, Prevotella
Lachnospiraceae-UCG-006, Anaerotruncus, Blautia,
Eubacterium_xylanophilum, Ruminiclostridium-9, and Oscillibacter.

[130]

Coriolus versicolor Increase in Akkermansia muciniphila [131]

Hericium erinaceus

Increase in Bifidobacterium, Coprococcus, Desulfovibrio,
Lactobacillus, Parabacteroides, Prevotella; Decrease in
Corynebacterium, Dorea, Roseburia, Ruminococcus,
Staphylococcus, Sutterella

[132]

Ganoderma lucidum

Increase in Firmicutes, Proteobacteria (Helicobacter), Rikenella;
Decrease in Acinetobacter, Actinobacteria (Arthrobacter,
Corynebacterium), Bacteroidetes (Bacteroides, Parabacteroides,
Prevotella), Blautia, Brevundimonas, Clostridium, Coprobacillus,
Cyanobacteria, Facklamia, Jeotgalicoccus, Sporosarcina,
Staphylococcus, Streptococcus

[133]

Boletus edulis, Boletus pinophilus, Boletus
aureus (Porcini), Armillaria mellea(Honey
fungus), Lactarius piperatus (blancaccio),
Pleurotus eryngii (King oyster)

Increase in Bifidobacterium and Lactobacillus genera [134]

Cyclocybe cylindracea (poplar mushroom),
Hericium erinaceus, Pleurotus eryngii, Pleurotus
ostreatus (Oyster mushroom)

Increase in Bifidobacterium spp. Faecalibacterium prausnitzii
(Ruminococcaceae), Eubacterium rectale/Roseburia spp. [135]

Flammulina velutipes (Enoki), Hypsizygus
marmoreus, (White beech mushroom),
Lentinula edodes (Shiitake), Grifola frondosa,
(Maitake) Pleurotus eryngii

Increase in Allobaculum, Bifidobacterium, Ruminococcus,
Lactobacillus, Lactococcus, Streptococcus [119]

7. Mushrooms as Potential Anti-Obesity Agents

Numerous clinical studies have reported the anti-obesity effects of mushrooms. A
clinical trial was conducted on 73 obese adults in which mushrooms were substituted
for red meat as a part of the regular diet. At the end of one year, less energy intake,
reduced body weight, low body mass index, low waist circumference, and low systolic and
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diastolic blood pressure was reported in the subjects on mushroom diet [136]. Few animal
studies have also reported the anti-obesity effects of mushrooms. One study showed the
anti-obesogenic effect of mushroom (Grifola gargal- 2%) after its administration in mice
for 42 days. This study observed a reduction in blood glucose, triglyceride, and adipose
tissue [105]. In another study, six weeks mice were divided into six groups: (1) low-fat diet
control group, (2) low dose of mushroom (G. lucidum)- 100 mg/kg in the low-fat diet group,
(3) high dose of mushroom (G. lucidum)- 300 mg/kg in the low-fat diet group, (4) high-fat
diet control group, (5) low dose of mushroom (G. lucidum)- 100 mg/kg in the high-fat diet
group, (6) high dose of mushroom (G. lucidum)- 300 mg/kg in the high-fat diet group. Mice
in each group were divided into two cages, with three mice in each cage. The temperature
was maintained at 25–28 ◦C. G. lucidum was administered once a day to each mouse for
12 weeks, and weight and food intake were monitored regularly. Weight was significantly
reduced in the low-fat diet group [137].

8. Discussion

Epidemiological findings suggest that the intake of plant-based foods could have
health benefits related to the incidence of T2DM, obesity, cardiovascular diseases, and some
cancers. These effects have been attributed to the high content of fibres, phytonutrients,
vitamins, and minerals found in these plant-based foods, in addition to their low content
of saturated fat. Plant extracts or isolated phytochemicals and herbal concoctions are
consumed as health supplements.

This review aims to provide an overview of the effects of edible mushrooms that
exhibit anti-obesity effects. We emphasised the cellular and physiological mechanisms
underlying the effects of mushrooms on obesity and highlight the effects related to the
variation of hormones that regulate satiety, adipocyte function, and insulin sensitivity.
The reports of previous studies discussed in this review suggest the potential impact of
bioactive compounds in mushrooms in regulating the complications of obesity by the
modulation of biochemical or cellular pathways. This review also focuses on the studies
that reported the effectiveness of P. ostreatus intake in adults. The anti-obesity effects of all
of the oyster mushrooms were investigated in a total of eight clinical trials.

Obesity is the most common global health challenge. It is a metabolic syndrome
and its complications such as hypertension, atherosclerosis, T2DM, and dyslipidemia, are
usually caused by an imbalance in energy expenditure, sedentary lifestyle, dietary habits,
environmental factors, and behavioural factors such as tobacco.

Mushrooms are cholesterol-free and have a low-fat content. They contain selenium,
ergothioneine, and other bioactive compounds such as terpenes, glycans, comatin, fibres,
flavonoids, sterols, polyphenols, polysaccharides, alkaloids, and other highly beneficial
nutrients including vitamins, minerals, and phytochemicals, which are similar to those
present in vegetables. Mushrooms have been used for thousands of years as food and to
treat several diseases.

Hunger and satiety are controlled by diverse neural and endocrine collaborations
between the gut, brain, and adipose tissues. The hormone ghrelin, produced by the
gastrointestinal tract when the stomach is empty, is believed to act on hypothalamic
brain cells in the central nervous system. The presence of food in the gastrointestinal
tract galvanises the vagus nerve of the afferent pathway prior to the inhibition of the
hunger centre in the brain. Similarly, food intake induces the discharge of cholecystokinin
by the epithelial cells of the small intestine, which alternatively inhibits the action of
hunger-stimulating neuropeptide Y in the hypothalamus. Leptin is a satiety-inducing
hormone released by adipocytes upon stimulation by insulin. Leptin hinders the action of
neuropeptide Y and the hunger-stimulating fatty acid neurotransmitter anandamide and
triggers the hunger-suppressing peptide α-melanocyte-stimulating hormone.

The anti-obesogenic medicine orlistat impedes the action of human pancreatic lipase
by establishing a covalent bond with the enzyme at its catalytic site. Phytochemicals such
as polyphenols and dietary fibres could reduce the cholesterol in bile acids formed by
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the liver. Bile is secreted into the small intestine to ease the digestion and absorption of
dietary lipids. In enterohepatic circulation, bile acids are reabsorbed by enterocytes and
transported back to the liver. When phytochemicals in the food mix with bile acids, they
inhibit enterohepatic circulation and increase the excretion of bile acid through faeces. This
could ultimately cause the reduction in blood cholesterol levels and have positive effect on
the blood lipid profile.

Dietary fibres have a bulking effect upon ingestion that can influence satiety and
interrupt gastric emptying, thereby reducing glycaemic index. Fibres generate less energy
than carbohydrates. Some fibres are digested by fermentation in the large intestine and
add to dietary energy intake. However, plant fibres can also obstruct the absorption of
prescription drugs, although this can be prevented by following the prescription guidelines.
We will now go through the fibres and phytochemical effects of mushrooms.

Mushrooms such as button mushrooms (A. bisporus) and shiitake (L. edodes) which
have high polysaccharide content have been shown to promote the growth of beneficial
gut bacteria. H. sinensis also alters the composition of the gut microbiota and has demon-
strated anti-obesogenic, antidiabetic, and anti-inflammatory effects in HFD mice. Several
substances, such as fibres and polysaccharides in mushrooms are beneficial to the human
body via modulation of the gut microbiota without being directly absorbed by the body.
These substances can act as prebiotics and are potential candidates for the development of
antidiabetic and anti-obesogenic treatments.

Mushrooms significantly affect plasma blood sugar levels in the fasting state and at
2 h after breakfast. They could be included with vegetables in a hospital setup for patients
with diabetes. One trial included men and women taking medication. Women were fed
with cooked mushrooms in the place of vegetables along with the medication. However,
men were provided with a powdered form. There was a significant decrease in fasting
plasma glucose and Hba1 levels. These effects of mushrooms are due to the presence of a
bioactive chemical, which is similar to that found in vegetables. This bioactive compound
in the mushrooms protects B cells of the pancreas from dysfunction, which is caused by the
pro-inflammatory cytokines. Mushrooms are rich in β-glycans which are responsible for
the anti-inflammatory effect of mushrooms. They also increases the uptake of glucose by
the peripheral tissue. In addition to the enhanced glucose absorption from the intestine, P.
ostreatus consumption reduced glycogen synthase kinase levels and increased the secretion
of insulin.

Diets that include mushrooms have a significant effect on lipid profiles. Low-density
lipids and triglyceride levels were reduced in subjects with and without diabetes upon
consumption of mushrooms. Similarly, blood pressure was also reduced upon mushrooms
intake. Previous reports suggest that diastolic pressure increases upon consumption of
vegetables. However, with mushrooms, it is reduced. Consumption of powdered form of
P. ostreatus produces significant antioxidant activity of glutathione in red blood cells and
glutathione peroxides in the plasma. Oxidised low-density lipid levels were reduced in
test group patients with hyperlipidaemia upon the consumption of mushrooms. However,
this change was not observed in the control group. In another study, it was reported
that modification of gut microbiota was associated with the prevention of cardiovascular
diseases. G. lucidum modifies the gut microbiota and the absorption of dietary polysac-
charides. It stimulates the secretion of short-chain fatty acids when digested by bacteria
in the large intestine. Short-chain fatty acids secrete GLP-1 from the enterocytes. They
also enhance insulin sensitivity and intestinal integrity and reduce inflammation. Both
GLP-1 and short-chain fatty acids enter the blood, modify the physiological mechanisms of
different organs, and are associated with a decreased incidence of obesity. They also reduce
lipid accumulation in the muscle and liver and reduce insulin resistance.

9. Recommendations and Implications for the Future

Different clinical trials have been conducted on mushrooms in various forms and
their beneficial effects on health have been analysed. They include fresh, cooked, and
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powdered forms. This manuscript reviewed in vitro and in vivo studied on the anti-obesity
effects of edible mushrooms by modulating gut microflora. The findings of the clinical
trials suggest that edible mushrooms can be used as alternative to vegetables; they contain
several bioactive compounds and could be used as nutraceuticals. They also contain
essential nutrients such as vitamins and minerals and have low sodium and cholesterol
contents. Therefore, it is an excellent alternative food source for patients with hypertension.
They also contain trace elements such as selenium which aids in improving human health.
Therefore, edible mushrooms are potential candidates for preventing obesity and several
other chronic ailments.
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