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Abstract. Evaluation studies on interconnection networks for distribu-
ted memory multiprocessors usually assume synthetic or trace-driven
workloads. However, when the final design choices must be done a more
precise evaluation study should be performed. In this paper, we describe
a new execution-driven simulation tool to evaluate interconnection net-
works for distributed memory multiprocessors using real application wor-
kloads. As an example, we have developed a NCC-NUMA memory model
and obtained some simulation results from the SPLASH-2 suite, using
different network routing algorithms.

1 Introduction

Interconnection network evaluation studies usually assume that the workload ge-
nerated by actual applications can be modeled by synthetic workloads. Constant
message generation rate (equal for all nodes), uniform distribution of message
destinations (with or without locality) and fixed traffic patterns are frequently
used. However, when the designer must do the final choices, a more precise eva-
luation study should be performed.

Some studies have relied on trace-driven simulations [9,8]. However parallel
traces generated for one architecture may never happen on another. For instance,
some messages should not be generated until some other has been arrived at its
destination, and this depends on the interconnection network performance, which
is not being simulated when the trace file is being created.

The definitive tool to get accurate evaluation results is an execution-driven
simulators [4,5]. In such simulator, an application runs on the host processor and
special call-outs are inserted into the original code to instrument the required
events. These events are scheduled as requests to the simulator. In our case,
the events are the message send/receive primitives, and the simulator is the
interconnection network simulator. In addition, a parallel application simulator
is also required in order to execute the parallel code on a single processor.

In this paper, we present a new simulation tool, called EDINET, that allows
executing a shared-memory application on a simulated DSM system. Our goal
will be accurately to analyze the interconnection network performance using real
application workloads.
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2 Edinet

The EDINET simulator is composed of two simulators. The first one is Limes [5],
an execution driven simulator that allows parallel program execution and models
the memory subsystem. The second one is the interconnection network simulator
(NetSim) that we have already used in several evaluation studies [3,6]. The
memory simulator part of Limes (MemSim) simulates the memory subsystem
sending requests to NetSim in order to simulate the advance of messages.

MemSim drives the network simulator using the following commands: In-
itNetSim (starts the simulation process), InsertRequest (injects a new message
into the network), Simulate (simulates from the last simulated time to the actual
simulation time), EndNetSim (ends the simulation and collects statistics). On
the other hand, NetSim issues the following commands to MemSim: MessageAr-
rived (a message has just arrived at its destination node), TimeSimulated (the
requested time has just been simulated).

The memory simulator controls the applications threads. When it needs to
send a request into the network, the involved thread is stalled until all the
messages due to the request has been completed.

3 Performance Evaluation

In this section we present some simulation results for a DSM system with a
NCC-NUMA memory model [7]. Data distribution and process allocation are
crucial in this model. In fact, some SPLASH-2 [1] applications recall that good
distribution has great impact on performance. In addition, each process should be
assigned to the proper processor in order to improve data locality. The best data
distribution and process allocation strategies have been used in the evaluation.

The interconnection network is a 64-node wormhole switched bidirectional
k-ary 2-cube. Three routing algorithms have been compared: deterministic, par-
tially adaptive and fully adaptive. These routing algorithms were proposed in
[3,2]. The PRAM (Perfect RAM) model is also evaluated for comparison purpo-
ses. In this model, each request served in only one cycle. Thus, we will use PRAM
results as an approximation of an ideal memory subsystem and interconnection
network.

Different complexity problems for OCEAN and FFT applications (SPLASH-
2) are simulated. Each process is assigned to one single processor.

Performance evaluation is mainly done by means of application execution
time. Taking into account that initialization phase can not be paralellized, we
will not include it in the evaluation. This approach is also used in [1].

3.1 Simulation Results

Figure 1 shows the execution time for the OCEAN application. The partially
adaptive routing algorithm improves performance by almost a 40 % with respect
to the deterministic one. The fully adaptive routing algorithm outperforms both
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Fig. 1. OCEAN execution time.
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Fig. 2. FFT execution time.
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Fig. 3. Throughput for OCEAN.
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Fig. 4. Average latency for OCEAN.

the deterministic and partially adaptive one, reducing execution time by 70 %
and 20 % respectively. However, the execution time achieved by the fully adaptive
routing algorithm is still far from the PRAM model (by a factor of 7, approx.).
Remember that the memory model considered is highly inefficient, as it does not
cache remote requests.

Figure 2 shows the execution time for the FFT application. Partially adap-
tive reduces execution time by a 30 % over deterministic routing. Although fully
adaptive routing slightly improves over partially adaptive routing, the impro-
vement is smaller than in OCEAN. This behavior is due to the fact that the
FFT application does not generate so many traffic as OCEAN does, so that the
greater routing flexibility offered by fully adaptive routing is useless.

As figure 3 shows, OCEAN application generates very low network traffic
rate. The maximum network throughput is reached with the fully adaptive rou-
ting algorithm at the highest complexity (0.06 flits/node/cycle). As known, the
network bisection bandwidth limit is more than one order of magnitude higher.
It is important to note that only a single process is assigned to each network
node and a sequential consistency memory model has been assumed. Thus, glo-
bal message injection is limited to 64 (the number of nodes) messages at a time.
Figure 4 shows differences between the average latencies achieved by each of the
routing algorithms for OCEAN application. When using adaptive routing, the
improvement on the application execution time is given by the combination of
lower contention and higher network bandwidth. The analysis of throughput and
latency for FFT (not shown) leads to similar results.
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The performance improvement of adaptive routing even with the low traffic
generated by these applications and the analyzed memory model, lead us to
expect important improvements of the execution time from other applications
that make a more intensive use of the network. Also, more efficient memory
models (CC-NUMA, COMA [7]) may demand more network traffic.

4 Conclusions

In this paper we have proposed an execution-driven network simulator that al-
lows the evaluation of DSM’s interconnection network using real application wor-
kloads. This tool can also be used to analyze the impact of memory subsystem
on performance. As a consequence, both subsystems can be jointly evaluated
in order to achieve the best overall performance. As an example, we have im-
plemented the NCC-NUMA memory model and some applications have been
executed using different network routing algorithms. The results show that ad-
aptive routing improves performance over deterministic routing by a 30 %.

As for future work we plan to evaluate interconnection network performance
using more realistic memory models like CC-NUMA, COMA, Simple COMA and
other memory consistency models. We are also interested in evaluating irregular
interconnection networks for NOWS using real applications workloads.
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