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Fig. 1. Our approach generates photo-realistic and editable free-viewpoint videos for dynamic scenes using a layered neural representation from 16 RGB

streams. Our framework enables various editing functions, i.e., manipulating the scale and location, duplicating, adjusting transparency, or retiming for

individual neural layers while supporting space-time viewing experience. From left to right in each row: two rendering results of different viewpoints without

editing, the edited results in a novel viewpoint, and the corresponding 3D illustration.
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Generating free-viewpoint videos is critical for immersive VR/AR experi-

ence, but recent neural advances still lack the editing ability to manipulate

the visual perception for large dynamic scenes. To fill this gap, in this paper,

we propose the first approach for editable free-viewpoint video generation

for large-scale view-dependent dynamic scenes using only 16 cameras. The

core of our approach is a new layered neural representation, where each

dynamic entity, including the environment itself, is formulated into a spatio-

temporal coherent neural layered radiance representation called ST-NeRF.

Such a layered representation supports manipulations of the dynamic scene

while still supporting a wide free viewing experience. In our ST-NeRF, we

represent the dynamic entity/layer as a continuous function, which achieves

the disentanglement of location, deformation as well as the appearance of

the dynamic entity in a continuous and self-supervised manner. We propose

a scene parsing 4D label map tracking to disentangle the spatial information

explicitly and a continuous deform module to disentangle the temporal

motion implicitly. An object-aware volume rendering scheme is further
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introduced for the re-assembling of all the neural layers. We adopt a novel

layered loss and motion-aware ray sampling strategy to enable efficient

training for a large dynamic scene with multiple performers, Our frame-

work further enables a variety of editing functions, i.e., manipulating the

scale and location, duplicating or retiming individual neural layers to create

numerous visual effects while preserving high realism. Extensive experi-

ments demonstrate the effectiveness of our approach to achieve high-quality,

photo-realistic, and editable free-viewpoint video generation for dynamic

scenes.

CCS Concepts: · Computing methodologies → Computational pho-

tography; Image-based rendering.

Additional Key Words and Phrases: free-viewpoint video, novel view syn-

theis, neural rendering, visual editing, neural representation, dynamic scene

modeling
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1 INTRODUCTION

Novel view synthesis, one of the core tasks in computer vision

and graphics, provides unique viewing experiences and has been

widely used in visual effects from gaming to education, from art

to entertainment. One of the most famous examples is the łbullet-

timež effects presented in the feature film The Matrix, which creates

the stopping-time illusion with smooth transitions of viewpoints

surrounding the actor. Such novel view synthesis further evolves as

a cutting-edge yet bottleneck technique with the rise of Virtual Re-

ality (VR) and Augmented Reality (AR) over the last decade, which

presents information in an immersive way unthinkable before. How

to generate editable free-viewpoint videos of dynamic scenes for

fully natural and controllable viewing experiences in VR/AR re-

mains unsolved and has recently attracted the substantive attention

of both the computer vision and graphics communities.

For free-viewpoint video generation of human-centric dynamic

scenes, early model-based solutions [Collet et al. 2015; Mustafa

et al. 2016] rely on multi-view dome-based setup for high-fidelity

reconstruction and texture rendering in novel views. However, they

are restricted by the limited reconstructed mesh resolution and

suffer from the uncanny texturing output, especially for large-scale

captured scenes. On the other hand, traditional image-based ren-

dering (IBR) techniques [Carranza et al. 2003; Gortler et al. 1996;

Zitnick et al. 2004] interpolate textures in novel views directly from

the dense captured viewpoints. The free-view results, however, are

vulnerable to occlusions and suffer from limited view interpolation

along with the dense captured views, leading to uncanny texture

details due to view blending. The recent neural rendering tech-

niques [Tewari et al. 2020] bring huge potential for compelling

photo-realistic free-viewpoint video generation via neural view

blending [Meshry et al. 2019a; Thies et al. 2018] or neural scene

modeling [Bemana et al. 2020; Mildenhall et al. 2020a; Wu et al.

2020b]. Open4D [Bansal et al. 2020] generates a free-viewpoint

video enabling occlusion removal and time-freezing effects using

around 15 mobile cameras, which is similar to our work. Such data-

driven approaches get rid of the heavy reliance on reconstruction

accuracy or the extremely dense capture setting. Recent work [Ost

et al. 2020; Park et al. 2020; Rebain et al. 2020; Tretschk et al. 2020]

extend the NeRF approach [Mildenhall et al. 2020a] into the dy-

namic setting. However, the above solutions for dynamic scene

free-viewpoint synthesis still suffer from limited capture volume

or fragile human motions. More importantly, they focus on recon-

struction only, without any editing functions for the visual effects

that can change the perception of the dynamic scenes. Recently,

the work [Lu et al. 2020] enables the neural retiming effects of

human motions using a monocular video. However, it is limited

in the temporal effect only, without exploring the rich 3D spatial

editing functions for novel view synthesis in free-viewpoint videos.

In this paper, we address the above challenges and present the

first approach to generate editable photo-realistic free-viewpoint

videos of large-scale dynamic scenes, using only 16 cameras to cover

a view range up to 180 degrees. As illustrated in Fig. 1, our approach

marries the free-viewpoint videos with a new neural layered space-

time representation. It enables various spatial and temporal editing

functions for numerous photo-realistic visual effects whilst still

supporting free viewing in a wide range.

Generating such free-viewpoint videoswith the photo-realistically

editable new effect from a much sparser camera setting than tradi-

tional systems is non-trivial. Our key idea is to model the space-time

correlations of all the dynamic entities, including the environment

itself, into a consistent neural representation so as to fully support

perception and realistic manipulation of the dynamic scene. To this

end, based on the input multi-viewpoint videos, we first adopt an

effective scene parsing stage to generate the coarse space-time 4D

label maps of all the dynamic performers in the captured scene.

Our scene parsing utilizes the multi-view geometry prior as well as

label-level cross-view tracking so as to provide an initial high-level

layer-wised perception of the dynamic scene. Then, as the core

of our approach, a new neural layered representation is proposed.

Each entity is formulated as a separated continuous function of

both space and time, forming a spatially and temporally consistent

neural radiance field (ST-NeRF) to support various editing functions.

In our ST-NeRF for a dynamic entity, a continuous deform module

is introduced to encode the temporal motion information of each

dynamic entity. At the same time, the corresponding 4D label map

with bounding-box from scene parsing serves as a spatial anchor

to fuse the appearance information across views and timestamps.

A novel layered loss and a motion-aware ray-sampling strategy

are further adapted to enable the efficient training of our ST-NeRF

of a large dynamic scene with multiple dynamic performers, as

well as an object-aware volume rendering for the re-assembling

of all the neural layers. Notably, when the performers interact

closely, it is hard to give the correct decomposition results due

to the bounding boxes of performers are highly overlapped. After

training our ST-NeRF, during the inference, our layered represen-

tation and explicit space-time disentanglement enable a variety

of editing functions upon each dynamic entity so as to generate

photo-realistic editable free-viewpoint results. Our neural editing

includes the basic operation of manipulating the input position and

timing of the continuous representation of each dynamic entity.

Thus, various spatial editing like affine transform or duplication as

well as temporal editing like retiming performers’ movements can
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be applied to each layer/entity in a depth-aware and photo-realistic

manner. To summarize, our main contributions include:

• Wedemonstrate the new capability of editable free-viewpoint

video generations from only 16 cameras, which enables vari-

ous photo-realistic space-time visual editing effects whilst

still supporting wide-range free viewing.

• We introduce a novel neural layered representation for large-

scale dynamic scene modeling and manipulation, enabled by

the disentanglement of location, deformation as well as the

appearance of all the dynamic entities.

• We propose a layer-wise 4D label map tracking to disentangle

the spatial information explicitly, as well as a continuous

deformmodule to disentangle the temporal motion implicitly.

• We propose a novel layered loss and a motion-aware ray-

sampling strategy to efficiently train our layered neural rep-

resentation for a large-scale dynamic scene with multiple

performers.

2 RELATED WORK

Image-based Rendering without Deep Learning. Traditional image-

based rendering (IBR) approaches interpolate textures in novel

views directly from a set of input images [Carranza et al. 2003;

Chen and Williams 1993; Matusik et al. 2000; Zitnick et al. 2004].

Many methods [Buehler et al. 2001; Chaurasia et al. 2013; Debevec

et al. 1996; Hedman et al. 2017; Snavely et al. 2006] rely on building

an explicit 3D scene geometry first for rendering in novel views.

The method [Hedman et al. 2016] further utilizes an RGBD sensor

to enable fast rendering. However, the reliance on explicit geometry

makes it difficult to apply these methods to a large-scale dynamic

scene. On the other hand, light field rendering methods [Gortler

et al. 1996; Levoy and Hanrahan 1996] synthesize novel views only

using implicit soft geometry representations derived from densely

sampled images. As the representative techniques, the light field ren-

dering [Levoy and Hanrahan 1996] synthesizes novel views by fil-

tering and interpolating view samples while the lumigraph [Gortler

et al. 1996] applies coarse geometry to compensate for non-uniform

sampling. Numerous other works [Davis et al. 2012; Penner and

Zhang 2017] explore the special structure of light fields to improve

the rendering quality. Another direction is using the multiplane

images (MPIs) as 3D representation, which have been applied to

model complex scene appearance [Broxton et al. 2020; Choi et al.

2019; Mildenhall et al. 2019; Srinivasan et al. 2019]. However, these

approaches above still cannot provide a wide-range free-viewing

of a large dynamic scene, let alone editing various dynamic enti-

ties. To model dynamic scenes, the prior works [Bansal et al. 2020;

Carranza et al. 2003; Lipski et al. 2010; Zitnick et al. 2004] require

multi-view, time-synchronized videos as input for rendering vari-

ous space-time visual effects. Zitnick et al. [Zitnick et al. 2004] use

depth maps estimated from multi-view stereo to guide viewpoint

interpolation. Carranza et al. [Carranza et al. 2003] uses a multi-

view system to recover 3D models from silhouettes for synthesizing

novel views from arbitrary perspectives. Kumar et al. [Kumar et al.

2021] uses a monocular video as input to recover a dynamic scene

by a conventional optimization approach with two assumptions

of scene and deformation, which is 1) The dynamic scene can be

approximated by multiple piece-wise planar surfaces with rigid

motions, 2) the deformation of the scene is locally rigid but global

as-rigid-as possible. However, these methods above have limited

ability to model and manipulate the complicated scene geometry

for further visual effect rendering.

Neural Rendering. The recent progress of neural rendering tech-

niques brings huge potential for photo-realistic novel view blend-

ing [Hedman et al. 2018; Meshry et al. 2019a; Mildenhall et al.

2020b; Zhang et al. 2021] and constructing neural scene representa-

tions [Flynn et al. 2019; Lombardi et al. 2019; Mildenhall et al. 2020a;

Sitzmann et al. 2019a,b; Zhou et al. 2018]. For neural blending, var-

ious methods learn the mapping of features from source images

to novel target views, where the learned additional deep features

are assigned on top of reconstructed meshes [Hedman et al. 2018;

Mildenhall et al. 2020b; Thies et al. 2019] or the depth maps [Flynn

et al. 2016; Xu et al. 2019a], while some recent works further models

the view-dependent effects [Thies et al. 2018; Xu et al. 2019b] or

large scene rendering in-the-wild [Meshry et al. 2019b]. However,

these neural blending approaches above rely on static scene mod-

eling. Only recently, the method [Shin Yoon et al. 2020] enables

dynamic scene rendering by performing explicit depth-based 3D

warping. However, this method suffers from limited free-viewing

range and fragile dynamic motion modeling.

For reconstructing neural scenes, various data representations

have been explored, such as point-clouds [Aliev et al. 2020; Wu

et al. 2020b], voxels [Lombardi et al. 2019; Sitzmann et al. 2019a]

or implicit representations [Mildenhall et al. 2020a; Sitzmann et al.

2019b; Suo et al. 2021]. Researchers [Jin et al. 2018; Kwon et al. 2020]

also utilize the underlying latent geometry for novel view synthesis

of human performance in the encoder-decoder manner, which still

suffers from limited representation ability of a single latent code for

complex human inferior texture output. The most notable approach

Neural Radiance Field (NeRF) [Mildenhall et al. 2020a] combines

the implicit representation with volumetric rendering to achieve

compelling novel view synthesis with rich view-dependent effects.

However, these neural representations above can only handle static

scenes, and the literature on dynamic scene neural representation

remains sparse. Recent work [Li et al. 2020; Ost et al. 2020; Park

et al. 2020; Pumarola et al. 2020; Rebain et al. 2020; Tretschk et al.

2020; Xian et al. 2020] extend the approach NeRF [Mildenhall et al.

2020a] using neural radiance field into the dynamic setting. They

decompose the task into learning a spatial mapping from the canon-

ical scene to the current scene at each time step and regressing the

canonical radiance field. However, the above solutions using dy-

namic neural radiance fields still suffer from limited capture volume

or fragile human motions, without additional editing functions for

the visual effects that can change the perception of the dynamic

scenes. Recent work [Lu et al. 2020] uses a monocular video as

input, and it enables the neural retiming effects of humans. How-

ever, without multiview input, as we have, it has no free-viewing

ability for space-time visual effects. In contrast, our novel layered

neural representation extends the neural radiance field to model

large-scale dynamic scenes and provides unique spatial and tem-

poral editing functions for photo-realistic visual effects while still

supporting free viewing.
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𝑡𝑡0 Background

Layered ST-NeRFs

Layer A Layer B

Scene Sensing

𝑡𝑡1𝑡𝑡0 𝑡𝑡1𝑡𝑡0

Neural Editing

15°

𝑡𝑡0-2𝑡𝑡0-1𝑡𝑡0 𝑡𝑡0 𝑡𝑡0-1𝑡𝑡0-2
𝐁𝐁𝑡𝑡0𝑖𝑖

Trajectory Prediction

Fig. 2. The algorithm pipeline of our approach for editable free-viewpoint video generation. Given the 16 synchronized RGB video covering a view

range up to 180 degrees as input, our approach first includes a scene sensing stage to provide a layer-wised label map tracking with a 3D corresponding

bounding box B𝑖
𝑡0

and initial geometry for the 𝑖-th dynamic entity in the captured scene at time 𝑡0. Then, a new layered neural representation is adopted to

model each dynamic entity into a spatio-temporal coherent neural radiance field (ST-NeRF). Finally, various neural editing functions are introduced based on

our layered representation to fully support perception and realistic manipulation of the dynamic scene. Our approach for the first time enables various

spatial editing like affine transform or duplication as well as temporal editing like retiming performers’ movements in free-viewpoint videos.

Dynamic Scene Reconstruction. Different than the reconstruction

of static scenes, tackling dynamic scenes requires settling the illu-

mination changes and moving objects. To obtain a reconstruction

for dynamic objects with input data from either camera array or

a single camera, methods involving silhouette [Kim et al. 2012;

Taneja et al. 2011], stereo [Li et al. 2019; Luo et al. 2020; Lv et al.

2018; Xu et al. 2018], segmentation [Ranftl et al. 2016; Russell et al.

2014], and photometric [Ahmed et al. 2008; He et al. 2021; Vlasic

et al. 2009] have been explored. Early solutions [Collet et al. 2015;

Dou et al. 2017; Mustafa et al. 2016] rely on multi-view dome-based

setup for high-fidelity reconstruction and texture rendering of hu-

man activities in novel views. Recently, volumetric approaches

with RGB-D sensors and modern GPUs have enabled real-time

dynamic scene reconstruction and eliminated the reliance on a

pre-scanned template model. The high-end solutions [Dou et al.

2017, 2016; Joo et al. 2018; Xu et al. 2020] rely on multi-view studio

setup to achieve high-fidelity reconstruction and rendering, while

the low-end approaches [Newcombe et al. 2015; Su et al. 2020; Xu

et al. 2021] adopt the most handy monocular setup with a temporal

fusion pipeline [Newcombe et al. 2011] but suffer from inherent

self-occlusion constraint. However, all these volumetric reconstruc-

tion suffers from the inherent limited captured volume constraint,

especially for reconstructing a large-scale dynamic scene. Differ-

ently, our approach models the dynamic scene into a layered neural

representation, where all the dynamic entities, including the envi-

ronment itself, are represented as several spatio-temporal coherent

neural radiance fields.

Video Editing. Video Editing encodes various visual effects that

can change the perception of the recorded videos. Effects like time

warping and object editing can be achieved by manipulating videos.

For instance, the representative work [Goldman et al. 2008] tracks

2D object motion to enable novel interactions with video, includ-

ing annotations, navigation, or direct manipulation, creating an

image frommultiple video frames. In this paper, we focus on human-

related elements editing in videos. For human motion manipulating,

various methods have been proposed for transferring motion be-

tween different people in different videos [Aberman et al. 2018;

Chan et al. 2019], or manipulating the appearance from a low-

dimensional motion signal like skeletons [Gafni et al. 2019; Liu et al.

2019]. Abe et al. [Davis and Agrawala 2018] manipulate the dancing

appearance of performers in the video by warping and aligning

the visual beats with the musical beats. The recent work [Lu et al.

2020] utilizes a learning-based layered video representation to ma-

nipulate the timing of the motions of different performers in the

video. The layers in [Lu et al. 2020] can be re-assembled into a new

video with various retiming visual effects. By combining such lay-

ered representation with neural rendering, high-quality rendering

with temporally visual effects can be achieved. However, the video

manipulation methods above only consider the monocular capture

setting or limited in the temporal effect only, without exploring

the rich 3D spatial editing functions for novel view synthesis in

free-viewpoint videos.

3 OVERVIEW

The presented approach marries the free-viewpoint videos with

a new neural layered space-time representation, which generates

editable free-viewpoint videos for large-scale dynamic scenes with

multiple performers. Our system takes only 16 synchronized RGB

videos to cover a view range up to 180 degrees as input and enables

various spatial and temporal editing functions for numerous fancy

visual effects whilst still maintaining high realism and supporting

wide-range free viewing. Fig. 2 illustrates the high-level compo-

nents of our approach, which models the space-time correlations

of all the dynamic entities, including the environment itself, into a

consistent neural representation so as to support fully perception

and realistic manipulation of the dynamic scene.
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Scene Parsing. We first adopt a scene parsing stage to generate

the coarse space-time 4D label maps of all the dynamic performers

in the captured scene from the input multi-viewpoint videos. To

this end, we utilize the inherent geometry before our multi-view

setting via the patch-based Multi-view stereo (MVS) technique [Luo

et al. 2019] to generate coarse dynamic point clouds for all the

frames. Then, we adopt a 4D label map tracking to generate the 3D

bounding-box of each dynamic entity with moving point-clouds in

each timestamp. Such tracking combines the SiamMask [Wang et al.

2019] tracker with the trajectory prediction network from [Wu et al.

2020a] for robust position correction. We further perform label map

refinement to handle the occlusion between various performers in

the camera views so as to provide the initially tracked bounding-

box with coarse geometry inside as well as the layer-wise label map

for each dynamic entity in each timestamp.

Layered Neural Representation. The core of our approach is a

novel layered neural representation for space-time photo-realistic

manipulation of the dynamic scene based on the scene parsing re-

sults. In our neural representation, we formulate each dynamic en-

tity as well as the environment itself into the individual neural layer

to support per-entity editing. Then, such a neural layer/entity is for-

mulated into a continuous function of both space and time, forming

a spatially and temporally consistent neural radiance field using

multi-layer perceptrons (MLPs) called ST-NeRF. In the ST-NeRF

for a dynamic entity, a continuous deform module is introduced to

encoded the temporal motion information across all the views and

timestamps. Besides, the tracked bounding-box of the entity serves

as the inherent spatial anchor in our ST-NeRF. Thus, we extend

the ray sampling strategy in the original NeRF [Mildenhall et al.

2020a] to a multi-segment version and propose an object-aware

volume rendering scheme to re-assemble all the neural layers into

the editable synthesis results in novel views. A motion-aware ray

sampling strategy is further adapted to enable efficient training for

a large dynamic scene with multiple dynamic performers.

Neural Editing. Our various space-time editing functions are en-

abled by the disentanglement of location, deformation as well as

the appearance of all the dynamic entities in our layer neural repre-

sentations. Recall that the input of each ST-NeRF is the position and

timing of the corresponding dynamic entity, which can be explicitly

manipulated by the users during the inference. Such basic opera-

tions of neural editing enable a series of space-time visual editing

effects, while our layer-wised representation with neural radiance

field enables the generation of photo-realistic free-viewpoint re-

sults. To this end, various spatial editing like affine transform or

duplication as well as temporal editing like retiming performers’

movements can be applied to each layer/entity in a depth-aware

and photo-realistic manner.

4 METHOD

4.1 Scene Parsing

The goal of our scene parsing stage is to generate the coarse space-

time 4D label maps of all the dynamic performers in the captured

scene. Here, the label map is a per-pixel segmentation mask with

human object identities in the image, denoted as {L𝑐𝑡 }
𝑛𝑡
𝑡=0 in camera

Refined mask

Low resolution mask

Coarse depth

Fig. 3. Illustration of our scene parsing stage. It provides the tracked

bounding-box with coarse geometry inside as well as the layer-wise label

map for each dynamic entities in each timestamp.

view 𝑐 for a sequence with 𝑛𝑡 frames. A label map L𝑐𝑡 is the merged

pixel sets {M𝑐,𝑖
𝑡 }

𝑛𝑖
𝑖=1 where M

𝑐,𝑖
𝑡 is a pixel set belonged to the 𝑖-th

performer; 𝑛𝑖 is the total object number. What is more, we also

obtain 3D axis-aligned bounding boxes of the dynamic entities

denoted by {B𝑖𝑡 }
𝑛𝑖
𝑖=1 with a coarse geometry of each dynamic entity.

The whole stage of scene parsing is represented in Fig. 3.

Geometry Estimation. Since the𝑛𝑐 calibrated cameras have enough

overlaps to cover the dynamic scene, we utilize the inherent geom-

etry prior to our multi-view setting and reconstruct a dense depth

map sequence of each viewpoint using the patch-wise learning-

based Multi-view stereo (MVS) method [Luo et al. 2019] under a low

depth resolution (half of the input resolution). The reconstructed

depth maps {D𝑐
𝑡 } also serve as a cue for label map refinement later.

Multi-view Label Map Tracking. In order to track the 3D bound-

ing boxes of a dynamic entity, we apply a multi-view visual object

tracking scheme and then restore the 3D information. The key role

of our tracking scheme is to provide human object 2D bounding

boxes and trajectories, which consists of tracklets with the same

identity across cameras. However, occlusions will cause tracking

failures in a multi-object scene during cross-view identity associa-

tion. To tackle this issue, we adopt the SiamMask [Wang et al. 2019]

tracker, which is a one-shot single object tracker with mask estima-

tion to multi-view tracking. Specifically, we manually annotate the

initial 2D bounding boxes {b𝑐,𝑖0 }
𝑛𝑐
𝑐=1 for the 𝑖-th human objects in

all the views. The tracker is conducted on each object separately in

each view and forms tracklets G𝑐
𝑡1,𝑡2

= {g𝑐𝑡 ∈ R2}
𝑡2
𝑡=𝑡1

, where g𝑐𝑡 is

the center of b𝑐𝑡 in a consecutive time period from time 𝑡1 to time 𝑡2.

To handle occlusion scenarios and enhance multi-view constraints,

we exploit a trajectory prediction network (TPN) from [Wu et al.

2020a] to regularize the predicted position of the object among 2D

views. The tracking result is corrected as follows:

g𝑏
′

𝑡 = 𝑞𝑏g𝑏𝑡 +
1 − 𝑞𝑏

𝑤

∑

𝑐,𝑞𝑐 ≥𝜏

𝑞𝑐ΘTP (G
𝑐
𝑡0,𝑡

,G𝑏
𝑡0,𝑡1), (1)
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𝜙𝜙𝑎𝑎

Fig. 4. Layered spatio-time neural rendering. The input consists of multi-layer videos and their bounding boxes. For each layer, our approach feeds

sampled points to the corresponding ST-NeRF 𝜙𝑖 , 𝑖 ∈ {𝑎,𝑏,𝑏𝑔} in this example. Note that each sampled point has three attributes: the position p, the

direction d, and the timestamp 𝑡0. The output of 𝜙𝑖 has three attributes as well, the deformed position p′, density 𝜎 , and color c. Then, object-aware volume

rendering is applied to obtain the predicted pixel color in canonical space. Finally, we supervise the result to be consistent with the ground truth pixel color.

where 𝑤 =

∑

𝑐,𝑞𝑐 ≥𝜏 𝑞
𝑐 is a normalized coefficient and ΘTP (·, ·) is

the TPN for predicting the object location g𝑏𝑡 in camera 𝑏. Here

we regard the confidence score 𝑞𝑐 from the last softmax layer of

the tracker’s result as the criterion to trigger tracking correction.

Since we track each human object independently, tracklets will

keep identity consistent and associated with camera views, while

TPN also manages to avoid identity-switch by exploiting multi-view

data.With the above robust tracking results, we further estimate the

3D bounding boxes of each performer in the scene. Once we have

2D bounding boxes of each object, we use them as the silhouette

masks to reconstruct coarse geometry of individual human using

the shape from space carving algorithm [Kutulakos and Seitz 2000].

Then, we associate the desired 3D bounding box of a human object

with this coarse geometry tightly.

Label Map Refinement. The tracker also predicts the mask of the

human object in all the views during tracking. However, this kind

of predicted masks is rather rough due to foreground occlusion.

Specifically, the occluded pixels will be associated with various

performers in the mask, disturbing our layered neural rendering.

To this end, we refine human masks using a statistical method.

Assuming that we have the refined mask of the target object in the

previous frame, the averaged depth value of the target person can be

calculated according to the reconstructed depthmap {D𝑐
𝑡 }. Then, for

the mask from the current frame, we discard the pixels whose depth

value is deviated from the averaged depth in the previous frame

inside the current mask to obtain a refined mask. All these refined

masks are further composited into label maps {M𝑐,𝑖
𝑡 }. Especially,

we also regard the background scene as a special object whose 3D

bounding box can be calculated from the entire scene 3D point

cloud.

4.2 Spatio-Temporal neural radiance field

The core of our approach is a new layered neural representation

where each tracked entity is formulated as a separated continuous

function of both space and time, forming a spatially and temporally

consistent neural radiance field (ST-NeRF) to support photo-realistic

editing functions. The module is illustrated in Fig. 4. Recall that the

original neural radiance field (NeRF) [Mildenhall et al. 2020a] is a

continuous representation for mapping each 3D point p = (𝑥,𝑦, 𝑧)

and a viewing direction d = (𝑑1, 𝑑2) to the density 𝜎 and the color

c = (𝑟, 𝑔, 𝑏). Differently, our ST-NeRF models the space-time coher-

ence between the dynamic entity and the scene, which implicitly

records the motion, geometry, and appearance information of the

performer based on the corresponding tracking results from the

previous stage.

To this end, our ST-NeRF is parameterized as MLP networks 𝜙 ,

which consists of two modules: a space-time deform module 𝜙𝑑

and a neural radiance module 𝜙𝑟 . 𝜙𝑑 deforms sample points from

various time and space into a canonical space, while 𝜙𝑟 records the

geometry and color of the dynamic entity. Similar to [Pumarola et al.

2020], we adopt a MLP-based deformation network for 𝜙𝑑 to handle

dynamic scenes. Instead of using latent codes to encode frames,

we adopt a more efficient way, where the frame number is directly

encoded into a high dimension feature without any computing

and storage overhead by using positional encoding [Mildenhall

et al. 2020a]. Specifically, 𝜙𝑑 and 𝜙𝑟 in ST-NeRF cooperate in the

following way:

𝜙𝑟 (p + Δp, d, 𝑡, 𝜃𝑟 ) = (c, 𝜎)

Δp = 𝜙𝑑 (p, 𝑡, 𝜃𝑑 ),
(2)

where 𝜃𝑟 and 𝜃𝑑 are network weights. Notably, all inputs except

network weights are mapped by a positional encoding function.
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Fig. 5. ST-NeRF. The figure illustrates the procedure of obtaining attributes

using our model, including a deformed position in canonical space, density

and color. 𝜙𝑑 first deforms the position from original space to canonical

space. Feeding the deformed position p′ = p + ∆p, original ray direction d

and timestamp 𝑡 , 𝜙𝑟 yields the density 𝜎 and the color c at position p′ in

radiance field.

The Neural representation of a dynamic entity is given by Θ =

{𝜃𝑟 , 𝜃𝑑 }. Note that the neural radiance module 𝜙𝑟 also inputs a

timestamp to handle time-dependent appearance change. The net-

work pipeline of our ST-NeRF is illustrated in Fig. 5, which is for-

mulated as follows:

𝜙 (p, d, 𝑡,Θ) = (c, 𝜎) . (3)

Note that the visibility problem is a fundamental challenge for dy-

namic scene modeling with multiple dynamic entities, where some

local appearance information of various entities will be missing

due to occlusion or view foreshortening in the observed views. In

ST-NeRF, both geometry and appearance information across views

and timestamps are fused in the canonical space in an effective

self-supervised manner. Thus, ST-NeRF potentially can handle the

inherent visibility challenge and provide a complete and photo-

realistic novel-view synthesis.

4.3 Layered Spatio-Temporal Neural Renderer

Recall that in our ST-NeRF for a dynamic entity, the deform module

encodes motion information across all the views and timestamps,

while the tracked bounding-box of the entity serves as the inherent

spatial anchor. To this end, we extend the ray sampling strategy

in the original NeRF [Mildenhall et al. 2020a] to a multi-segment

version and propose an object-aware volume rendering scheme

to re-assemble all neural layers. Such a layered spatio-temporal

neural renderer enables photo-realistic novel view synthesis where

each neural layer/entity is fully editable. Specifically, our rendering

pipeline contains three steps as described in the following.

Scene Composition. Since our layered ST-NeRF representation

has disentangled the explicit pose of the entity from implicit object

geometry and appearance, we can further manipulate the corre-

sponding 3D bounding boxes of various entities at any position in

the scene. Actually, such feature deeply enables the numerous edit-

ing effects, which we will introduce later in Sec. 5. At the beginning

of our rendering pipeline at a timestamp 𝑡 , we composite the target

scene by determining placements of 3D bounding boxes B𝑖𝑡 for the

𝑖-th dynamic entity. Next, we set up a virtual camera in the scene

and generate camera rays passing through the edited scene.

ℒ = 22𝑔𝑔. 𝑡𝑡.
(a) (b)

𝑺𝑺𝑛𝑛1 𝑺𝑺𝑛𝑛2 𝑺𝑺𝑓𝑓1 𝑺𝑺𝑓𝑓2𝒓𝒓(𝑠𝑠) 𝒓𝒓(𝑠𝑠)

Fig. 6. Layered ray sampling scheme. For a ray passing throughmultiple

bounding boxes, we sample points for each bounding box, feeding points to

corresponding ST-NeRF to get densities and colors. We obtain the predicted

pixel color with volume rendering. Finally, we calculate the L2-norm of

predicted color with ground truth color as RGB loss.

Ray Segmentation and Sampling. Instead of treating an entire

camera ray equally during point sampling, we divide the camera ray

into object-level segments and deploy the same sampling strategy

to each segment, respectively. To this end, for a camera ray r(𝑠),

we compute its intersections with each 3D bounding box B𝑖𝑡 of

the 𝑖-th entity at current timestamp 𝑡 and obtain an segment S𝑖
=

{𝑠𝑖𝑛, 𝑠
𝑖
𝑓
|𝑠𝑖𝑛 < 𝑠𝑖

𝑓
}, where 𝑠𝑖𝑛 and 𝑠𝑖

𝑓
are depth values of intersection

points. Note that a segment S𝑖 is valid if and only if there are two

different intersections on camera ray, and the indexes of all valid

segments’ objects are denoted by I.

Similar to the original NeRF [Mildenhall et al. 2020a], we deploy

a hierarchical sampling strategy on every valid segment. In the

coarse sampling stage, we partition each segment into 𝑁 evenly-

spaced bins and draw one sample point from each bin uniformly at

random:

𝑠𝑖𝑗 ∼ U

[

𝑠𝑖𝑛 +
𝑗 − 1

𝑁
(𝑠𝑖
𝑓
− 𝑠𝑖𝑛), 𝑠

𝑖
𝑛 +

𝑗

𝑁
(𝑠𝑖
𝑓
− 𝑠𝑖𝑛)

]

, 𝑗 ∈ [1, 2, ..., 𝑁 ] ,

(4)

where 𝑠𝑖𝑗 is the depth value of 𝑗-th sampled point on the ray.

Let P𝑖
𝑐 = {r(𝑠𝑖𝑗 ) | 𝑗 ∈ [1, 2, ..., 𝑁 ]} denote the sampled points for

the 𝑖-th entity in the coarse sampling stage. Instead of feeding

all sampled points into the same network, we adopt various ST-

NeRF to infer the attributes of these points associated with various

corresponding entities. Next, we perform a second sampling based

on the probability density distribution function calculated from the

sampled points’ densities in the coarse sampling stage using inverse

transform sampling, where P𝑖
𝑓
denotes these sampled points in the

fine stage. Fig. 6 illustrates our ray segmentation and sampling

strategy using a single ray as example.

Object-aware Volume Rendering. Given sampled points P𝑖 along

the ray r and their predicted densities and colors, the final color Ĉ(r)

of the pixel is integrated in an object-aware manner to assemble

all the neural layers into photo-realistic results. Specifically, before

integration, the sampled points from valid segments are merged to

form a point set P which is formulated as:

P =

⋃

𝑖∈I

P𝑖 . (5)

ACM Trans. Graph., Vol. 40, No. 4, Article 149. Publication date: August 2021.



149:8 • Jiakai Zhang, Xinhang Liu, Xinyi Ye, Fuqiang Zhao, Yanshun Zhang, Minye Wu, Yingliang Zhang, Lan Xu, and Jingyi Yu
O

ri
g

in
a

l 
S

ce
n

e
R

en
d

er
ed

 S
ce

n
e

Fig. 7. Occluded layer rendering. The images on top are the input from five different cameras, and the bottom row shows our rendering result removing

the performer in the front. Our approach can handle neural layer-wise occlusion and infer occluded layer appearance.

Then, we sort these points in P = {p𝑗 }
|P |
𝑗=1 using their depth values

from near to far. Thus, the final color Ĉ(r) is formulated as:

Ĉ(r) =

|P |
∑

𝑗=1

𝑇 (p𝑗 )
[

(1 − exp(−𝜎 (p𝑗 )𝛿 (p𝑗 ))c(p𝑗 )
]

𝑇 (p𝑗 ) = exp

(

−

𝑗−1
∑

𝑘=1

𝜎 (p𝑘 )𝛿 (p𝑘 )

)

,

(6)

where 𝛿 (p𝑗 ) = p𝑗+1 − p𝑗 is the distance between adjacent samples.

Particularly for the rendering following the coarse sampling stage,

P𝑖
= P𝑖

𝑐 . For hierarchical sampling and rendering, both P𝑐 and

P𝑓 in the second stage are merged for the integration, where P𝑖
=

P𝑖
𝑐 ∪ P𝑖

𝑓
. As shown in Fig. 7, our object-aware volume rendering

can handle neural layer-wise occlusion.

4.4 Network Training

Here we introduce an effective training scheme of our layered

neural representation, especially for a large dynamic scene with

multiple dynamic performers. Note that we train all the ST-NeRF

networks for all the dynamic entities together so as to assemble all

the neural layers and enable self-supervised training. To this end,

since we utilize a hierarchical sampling and rendering strategy to

render the scene frame by frame, the RGB loss function L𝑟𝑔𝑏 is

formulated as:

L𝑟𝑔𝑏 =

∑

r∈R

(∥𝐶 (r) −𝐶𝑐 (r)∥
2
2 + ∥𝐶 (r) −𝐶𝑓 (r)∥

2
2), (7)

where R is the set of sampled rays in the mini-batch; C(r) is the

ground truth color of the camera ray; Ĉ𝑐 (r) and Ĉ𝑓 (r) are rendered

colors from the coarse stage and fine stage, respectively.

As illustrated in Fig. 6, the object-level segments may have over-

lapping areas due to the intersection of 3D bounding boxes. Thus,

sampled points from the overlapping area are utilized jointly to

supervise the training of their corresponding ST-NeRF networks in

our formulation, where the optimization will force the networks to

determine which object these overlapping points belong to implic-

itly. In other words, our approach can handle object intersection

scenarios and learn more accurate layer segmentation, enabling

more photo-realistic novel view synthesis.

We also leverage the occupancy priors from the object masksM

to accelerate network training. Assume that all the dynamic entities

in the scene are opaque without transparency; we thus expect the

layered integrated alpha values on each object’s pixels to be as close

to 1.0 as possible. According to this insight, we design a layered

loss to supervise the training of each ST-NeRF:

L𝑙𝑎𝑦𝑒𝑟 =

1

2

𝑛𝑖
∑

𝑖=1

∥Ω(r,L, 𝑖) − 𝛼 (r, 𝑖)∥22

𝛼 (r, 𝑖) =

|P𝑖 |
∑

𝑗=1

exp

(

−

𝑗−1
∑

𝑘=1

𝜎 (p𝑘 )𝛿 (p𝑘 )

)

(1 − exp(−𝜎 (p𝑗 )𝛿 (p𝑗 )),

(8)

where Ω(r, L, 𝑖) is a customized indicator function which outputs

1.0 if the current pixel in the label map L belongs to the 𝑖-th entity

and 0.0 otherwise. Here we only use the sample points from the

single ray segment of 𝑖-th entity to integrate alpha value 𝛼 (r, 𝑖).

The total loss function is the linear combination of L𝑟𝑔𝑏 and

L𝑙𝑎𝑦𝑒𝑟 , formulated as:

L = (1 − 𝜆)L𝑟𝑔𝑏 + 𝜆L𝑙𝑎𝑦𝑒𝑟 , (9)

where 𝜆 is the weight ratio to balance two losses, and it is dynami-

cally adjusted during warm-up training. Specifically, our network

training has three warm-up epochs, where 𝜆 is set to 0.1, 0.05, and

0.01 in these three epochs, respectively. After warm-up stage, we

set 𝜆 = 0. Such warm-up strategy provides a good initial solution

for network optimization.

Note that for free-viewpoint videos with a wide viewing range,

there exists a huge imbalance between the static background con-

tent and the moving dynamic content. Training our neural represen-

tation without treating the static background and moving entities

will cause training inefficiency. That is because, compared to objects
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Fig. 8. Scene editing results. ST-NeRF enables a variety of editing operations. (a) Spatial Affine Transformation, (b) Temporal Retiming Transformation,

(c) Transparency Adjustment and (d) Object Insertion and Removal.

in the scene, a large number of background camera rays lead to an

imbalance in observed views and plenty of training time. Thus, a

motion-aware strategy is further adopted to improve our training

efficiency. Specifically, we calculate proportions of each object’s pix-

els in the dataset according to the label maps L obtained from scene

parsing. Then, we resample camera rays according to their propor-

tions with a regulation that ensures that the number of background

camera rays is relatively equal to those of non-background contents.

This simple yet efficient scheme makes the training process much

easier to converge with performance improvement.

Note that our approach requires per-scene training to obtain the

layered neural representation from 16 synchronized RGB videos

and corresponding camera calibration data.We optimize our models

using Adam optimizer with a learning rate that decays from 1𝑒 − 4

to 1𝑒 − 5 gradually during training. Besides, we sample 3000 camera

rays for each mini-batch which are picked up from different views

and time instances randomly.

5 NEURAL SCENE EDITING

Once our layered neural representation is trained for a dynamic

scene, during the inference, our layer-wise design and the disentan-

glement of location, timing, deformation as well as the appearance

of all the dynamic entities enables fully controllable space-time

visual effect editing. Our neural representation further ensures the

high realism and wide viewing range of such neural editing, en-

abling impressive editable free-viewpoint video generation (see

Fig. 8, Fig. 9).

To this end, our neural scene editing includes the basic operation

of manipulating the input position and timing of the ST-NeRF repre-

sentation of each dynamic entity. Such explicit space-time disentan-

glement enables a variety of editing functions upon each dynamic

entity, such as spatial editing like affine transform or duplication

as well as temporal editing like retiming performers’ movements

in a depth-aware and photo-realistic manner. More importantly, all

these editing effects can be produced by the combination of basic

𝑍𝑍

𝑌𝑌
𝑋𝑋

𝑥𝑥𝑦𝑦
𝑧𝑧

𝒕𝒕𝟑𝟑𝑡𝑡1 𝑡𝑡2 𝑡𝑡4

𝑥𝑥 𝑦𝑦𝑧𝑧
𝒕𝒕𝟒𝟒

𝒜𝒜

Fig. 9. Neural scene editing. To enable spatio-temporal editing for various

entities, we apply transformations on both timestamp and 3D bounding

box of the target object.

operations on various neural layers without additional training or

processing.

Spatial Affine Transformation. Recall that the tracked bounding-

box serves as a spatial anchor to fuse the motion and appearance

information of the dynamic entity across views and timestamps.

Thus, applying various affine transformations to the 3D bounding

boxes is equal to re-arrange the neural canonical spaces of vari-

ous entities into the current view space. Further combined with

our layered spatio-temporal neural renderer in Sec. 4.3, various

photo-realistic spatial editing functions can be achieved, such as

re-arranging the locations or scales of the individual entity in the

scene. Note that such spatial affine transformation involves the

scene composition and object-aware volume rendering processes.

Specifically, given an affine transformation A, we first apply it
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on the 3D bounding box of the 𝑖-th target performer and obtain

a new bounding box B̂𝑖 = A ◦ B𝑖 . Then, such B̂𝑖 is put into the

scene to replace the original one via the same object-aware volume

rendering. After ray sampling, we apply an inverse transformation

on both the sample points from the 𝑖-th target performer and the

view direction vector d before feeding them into ST-NeRF, which

is formulated as:

𝜙 (A−1 ◦ p, A−1 ◦ d, 𝑡,Θ𝑖 ) = (c, 𝜎), (10)

where p comes from the internal region of the new 3D bounding

box B̂𝑖 .

Temporal Retiming Transformation. Similar to spatial editing,

temporal editing functions can change the timeline of various dy-

namic entities so as to change the visual perception of the whole

free-viewpoint video. More specifically, the retiming transforma-

tion T transforms a timestamp to another discrete timestamp. Then,

the same processes for scene composition and object-aware vol-

ume rendering are also involved in this transformation. During the

scene composition process, we utilize the 3D bounding box at the

retiming timestamp T ◦ 𝑡 for the 𝑖-th dynamic target, namely B𝑖
T◦𝑡

.

We also transform the timestamp when we inference densities and

colors of sample points from object 𝑖 as following:

𝜙 (p, d, T ◦ 𝑡,Θ𝑖 ) = (c, 𝜎) . (11)

Object Insertion and Removal. Note that the object insertion or

removal operations in our neural editing framework only involve

the scene composition process. To this end, we insert the new 3D

bounding boxes of target performers into the scene coordinates

or remove the existing ones during the scene composition process.

Our volume rendering process makes sure that such editing results

maintain high realism.

Transparency Adjustment. Note that the utilized neural radiance

field inherently models the transparency of individual dynamic

entities. Such transparency can also be editing naturally in our

neural editing frameworkwithout any extra training, enablingmore

fancy visual effects. After we obtain densities of sample points from

the target object using Eqn. 3, we can achieve the translucent effect

by scaling the density value with a scalar 𝑠 , where new density is

given by 𝜎 ′
= 𝑠 · 𝜎 . We defined some simple yet effective editing

functions using combinations of these basic operations.

6 RESULTS

In this section, we evaluate our approach in a variety of challenging

scenarios. We first report the implementation details of our ap-

proach and the utilized dataset captured by our multi-view system,

followed by analyzing our results with various editing effects. We

further provide the comparison with previous state-of-the-art meth-

ods and the evaluation of our main technical components, both

qualitatively and quantitatively. The limitation and discussions

regarding our approach are provided in the last subsection.

Implementation Details. Our network model is implemented in

PyTorch.We run all of our experimentswith a single NVidia GeForce

RTX3090 GPU. Depending on the number of video frames and neu-

ral layers in the captured scene, the training time ranges from 12

Fig. 10. Illustration of our capture system. It consists of 16 RGB cameras

to cover a view range up to 180 degrees for various dynamic scenes. All the

cameras are synchronized and fixed during capturing.

to 36 hours, with 960 × 540 cropped input image resolution. Then,

we can refine the network by training it on 1920 × 1080 videos

for one or two epochs. It usually takes an extra two or three days.

Such a training scheme can help us save training time. Additionally,

rendering a 1920 × 1080 image with three layers takes around 2

minutes.

Dataset. To evaluate our method, we capture a new multi-view

dataset with eight large-scale indoor dynamic scenes with two or

three performers. As shown in Fig. 10, our capture system consists

of 16 industrial Z-CAM cameras, which are uniformly arranged

around a semicircle roughly towards the performers to cover a

view range up to 180 degrees. All the cameras are calibrated and

synchronized in advance, producing 16 RGB streams at 1920 × 1080

resolution and 25 frames per-second. The numbers of frames range

from 75 to 350 to include several challenging human motions. For

further quantitative evaluation against our variations, we generate

a synthetic system with the ground truth of label maps, bound-

ing boxes, and camera parameters. Specifically, we set 36 virtual

cameras and to support a view range up to 360 degrees. Our synthe-

sized sequence includes two dancing virtual characters with large

motions lasting for 4 seconds at 25 fps.

6.1 Novel Space-time Editing Results

Our simple yet expressive editing functions achieve depth-aware

and photo-realistic free-viewpoint video editing results. As demon-

strated in Fig. 11, our approach generates editable free-viewpoint

videos for complicated dynamic scenes in our dataset, e.g., dancing,

playing basketball, or playing music. Fig. 1 provides the representa-

tive results of our free-viewpoint videos with fancy editing effects.

Note that we edit the position and rotation of the violinist on the

top row and duplicate the two performers with various scales on

the bottom row, respectively. In Fig. 7, two performers pass by each

other, and they are occluded by each other at a specific view for

a short time. We demonstrate that our approach can successfully

recover the occluded regions for the performers. Moreover, the

corresponding comparison about such recovery against the Layer

Neural Representation (LNR) [Lu et al. 2020] is provided in Fig. 14.
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Fig. 11. Editing results. For Taekwondo (top), we show representative frames of fixed-viewpoint video in the original timeline and ones with retiming effects.

For Musicians (the second), we show representative frames of free-viewpoint video in the original scene, and we move the violinist to make her closer to the

pianist, enabling a harmonious layout. For Breaking (the third), we duplicate and shift dancers. Finally, for Superheroes (bottom), we freeze time and then

zoom in to the front of the spiderman with a smooth fading effect of the batman at the same time.
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Table 1. Quantitative comparison against several baseline methods

in terms of rendering accuracy. Compared with NeRF, NeRF-T, Neural

Volumes, AGI, and HVR, our approach achieves the best performance in all

four metrics.

Comparison between different methods

Method PSNR(↑) SSIM (↑ ) MAE (↓) LPIPS (↓)

NeRF 21.7952 0.8755 0.0574 0.2961

NeRF-T 28.2553 0.9243 0.0219 0.2560

Neural Volumes 28.0850 0.9110 0.0243 0.2608

AGI 14.8220 0.8764 0.0839 0.4543

HVR 24.0342 0.9113 0.0247 0.2589

Ours 33.2161 0.9203 0.1178 0.2186

In our supplementary video, we show the complete editing re-

sults for different scenes. Our ST-NeRF can achieve realistic editing

for various layers represented as continuous functions with the

consistency of space, which is hard to achieve by an image-based

editing method. For Breaking, we set keyframes for each dancer,

adapting their actions to the beats of background music. Our ap-

proach shows the ability to retime different entities individually. For

Taekwondo, two actors perform the same action asynchronously,

and we manually set keyframes for each layer aligning with the

same global keyframes. Our edited free-viewpoint video achieves

synchronous action at a novel time for them. For Musicians, to

obtain the desired layout of the free-viewpoint video, we shift the

violinist closer to the pianist so that the layout is harmonious for

the audience. For Superheroes, the cameras were set far from two

superheroes, so we firstly zoom in to focus on their one-on-one.

Then freeze the time of spider-man when he is doing a jump shot,

finally rendering a wide range free-viewpoint video to appreciate

his act of shooting. Since our model can successfully decompose

this scene into four layers: glass, batman, spider-man, and back-

ground, after hiding the glass, we can correctly render the front

view of spider-man, which is occluded by the glass in the original

viewpoint. For K-pop, we designed a series of camera trajectories

combining with retiming for some specific frames to achieve an

artistic free-viewpoint video rendering result similar to a music

video.

6.2 Comparisons

To the best of our knowledge, our approach is the first approach

to generate editable free-viewpoint videos using a layered neural

representation. To demonstrate the overall performance of our ap-

proach, we compare to the existing free-viewpoint video methods

based on neural rendering, including the voxel-based method Neu-

ral Volumes [Lombardi et al. 2019], the implicit methodNeRF [Milden-

hall et al. 2020a] based on neural radiance field, and a variation

of NeRF by natively adding time as input, denoted as NeRF-T.

Additionally, we compare our approach with a traditional method

[Zitnick et al. 2004], which enables high-quality video-based render-

ing(HVR) of dynamic scenes based on segmentation-based stereo.

For a thorough comparison, we further compare against the tradi-

tional mesh-basedmodeling pipeline using the commercial software

Fig. 12. Quantitative comparison against various baseline methods

in terms of PSNR. Our approach consistently achieves the highest PSNR

for all the frames of theWalking sequence.

Agisoft PhotoScan [Verhoeven 2011], denoted as AGI. For a fair

comparison, Neural Volumes, NeRF, and NeRF-T share the same

training dataset as our approach, and we reconstruct the scene to

obtain a textured mesh for every single frame in AGI from all the

input viewpoints.

For quantitative comparison, we adopt the peak signal-to-noise

ratio (PSNR), structural similarity index (SSIM), mean absolute er-

ror (MAE), and Learned Perceptual Image Patch Similarity (LPIPS)

[Zhang et al. 2018] as metrics to evaluate our rendering accuracy.

Note that we calculate all the quantitative results in all the captured

reference views. As shown in the Tab. 1, our approach outperforms

all the other methods in terms of PSNR, SSIM, and MAE, showing

the effectiveness of our model to provide a realistic rendering of

the complicated dynamic scenes. In Fig. 12, we further provide the

numerical curve of PSNR for the whole Walking sequence. Note

that we calculate the average PSNR in the 16 capture views for each

timestamp. Our approach consistently achieves the highest PSNR

for all the frames compared to other baselines. For qualitative com-

parison, we show the novel view rendering results and the nearest

input view in Fig. 13. NeRF can only handle the static scene, and its

variation NeRF-T suffers from severe blur artifacts in the render-

ing results due to the challenging motions of various performers.

Neural Volumes can provide more reasonable rendering results, but

it still suffers from uncanny blur results due to the limited resolu-

tion of the voxel grid. Moreover, AGI and HVR generate sharper

rendering appearance results but are limited by the reconstruction

accuracy, leading to severe artifacts in those missing regions, es-

pecially near the boundary. In contrast, our approach achieves the

most vivid rendering result in terms of photo-realism and sharp-

ness. Additionally, we generate more consistent rendering results

from different views and timestamps without flickering with the

space-time training in our approach. These qualitative and quanti-

tative comparisons above reveal the effectiveness of our method for

better novel view synthesis for large-scale dynamic scenes. Also,

note that our approach enables various editing functions for fancy

visual effects unseen in previous baselines.
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Fig. 13. Qualitative comparison with Neural Volumes, NeRF, NeRF-T, AGI and HVR. Note that our approach generalizes the most photo-realistic and

finer details.

We further compare our approach against the Layered Neural

Rendering [Lu et al. 2020] qualitatively to evaluate our perfor-

mance for layered scene reconstruction and rendering. As the base-

line [Lu et al. 2020] only requires a monocular video as a single

input, for a fair comparison, we only generate the rendering results

in the input view of Layered Neural Rendering. As shown in Fig. 14,

Layered Neural Rendering [Lu et al. 2020] fails to segment the dif-

ferent dynamic entities due to the severe inherent self-occlusion

due to the single-view setting, though [Lu et al. 2020] gives com-

parable reconstruction results in the input view. In contrast, our

approach yields depth-aware and physically correct rendering of

the two overlapped performers in the capture view. Such a qual-

itative comparison illustrates the effectiveness of our approach

to encode the spatial and temporal information from our multi-

view setting, which enables accurate decomposition and impressive

rendering results for immersive free-view experiences.

6.3 Ablation Study

Here, we evaluate the performance of different components and

loss terms in our approach. Letw.o 𝜙𝑑 ,w.o 𝑡 in 𝜙𝑟 andw.o. L𝑙𝑎𝑦𝑒𝑟

denote the variations of our approach without the deformation net

𝜙𝑑 , without inputting time 𝑡 into radiance net 𝜙𝑟 and without the

layer-wise loss L𝑙𝑎𝑦𝑒𝑟 , respectively. As shown in Fig. 15, without

the deform module, our approach cannot handle dynamic entities

in the scene, while the lack of inputting time 𝑡 into the radiance

module leads to blurring rendering artifacts. Moreover, without

layer loss, the training leads to a wrong decomposition result of the

scene. In contrast, our complete approach achieves photo-realistic

results with better decomposition for various entities.

To further analyze variations of our approach, we utilize the

same four metrics to evaluate the performances quantitatively. We

obtain the quantitative results in terms of PSNR, SSIM, MAE, and

LPIPS for each variation by averaging the results of all the frames

and views in our synthetic dataset. Besides, we compare against

our variations in a held-out view and calculate the average PSNR

in all the frames, denoted as PSNR𝑡𝑒𝑠𝑡 . Our approach outperforms

other variations in terms of all the metrics as shown in Tab. 2.

Furthermore, as shown in Fig. 16, we compare the PSNR curves for

these specific variations. Note that we calculate the value of PSNR

for a single frame by averaging the views’ results. Our complete

approach consistently achieves the best result comparing with other

variations.

We further evaluate our model with different numbers of views.

Specifically, there are a total of 17 cameras in our synthetic dataset,
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Dancing

Walking

Superheroes

Layered Neural RenderingOurs

Fig. 14. Comparison in terms of layered reconstruction. We show our layered reconstruction results and compare them with the baseline method,

Layered Neural Renderings. For each sequence, the first and second rows illustrate the reconstruction result of the occluded and the front performer,

respectively. We highlight the representative reconstruction results with blue 2D bounding boxes. Furthermore, we use orange ellipses as auxiliary descriptions.

uniformly ranging from 0 to 160 degrees in a circle in an outside-in

manner. Then, we evaluate the variations of our approach using 16,

12, 8, and 4 cameras for both input and training, respectively. To

evaluate our model performance fairly, we utilize the central camera

as the held-out view and calculate its corresponding PSNR, SSIM,

MAE, LPIPS as quantitative metrics. We also evaluate the average

PSNR in all the training views, denoted as PSNR𝑡𝑟𝑎𝑖𝑛 . As shown

in Tab. 3, in the held-out view, the performance of our approach

steadily goes down in terms of all the metrics when decreasing view

number, while themodel with less training views has slightly higher

PSNR𝑡𝑟𝑎𝑖𝑛 due to over-fitting. The corresponding qualitative results

are provided in Fig. 17. When the number of cameras decreases to

less than 8, the rendering result of the held-out view is gettingworse,

leading to severe artifacts, e.g., ghosting and wrong reconstruction

of the 3D scene.

6.4 Limitations and Discussions

We have demonstrated the compelling capability of editable free-

viewpoint video generation with a variety of space-time editing

functions in a photo-realistic manner unseen before. Nevertheless,

as the first trial to combine such editable free-viewpoint video with

a layered neural representation, our approach is subject to some

limitations.

First, our scene parsing stage relies on the color difference for

label map tracking and may fail when handling dynamic entities

with a similar appearance. Also, because our scene sensing scheme

relies on a human segmentation algorithm [Wang et al. 2019], we
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Ground Truth Ours w/o 𝝓𝝓𝒅𝒅 w/o𝒕𝒕 in 𝝓𝝓𝒓𝒓 w/o𝓛𝓛𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒓𝒓
Fig. 15. Qualitative ablation study for our technical components.

This evaluation demonstrates the contribution and effectiveness of the

three algorithmic components.

Table 2. Quantitative model ablation study. ↑ means larger is better,

while ↓means smaller is better. Our complete pipeline outperforms other

variations in terms of four metrics.

Ablation study of our model components

Method PSNR𝑡𝑒𝑠𝑡 (↑) PSNR(↑) SSIM (↑) MAE (↓) LPIPS (↓)

w.o 𝜙𝑑 25.5461 25.6031 0.7878 0.0301 0.3962

w.o 𝑡 in 𝜙𝑟 26.0818 26.5394 0.8015 0.0272 0.3800

w.o. L𝑙𝑎𝑦𝑒𝑟 25.1343 25.7336 0.8016 0.0296 0.3960

Ours 29.9091 30.0502 0.8566 0.0187 0.2329

ours

w/o 𝒕𝒕 in 𝝓𝝓𝒓𝒓w/o 𝓛𝓛𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒓𝒓w/o 𝝓𝝓𝒅𝒅

Fig. 16. PSNR curves of different variations. This quantitative evalu-

ation illustrates that our complete model consistently achieves the best

performance across different frames.

only show our results focusing on dynamic humans. It would be in-

teresting to consider each object as a layer enabling a more editable

dynamic scene. Furthermore, our approach cannot handle those

extremely challenging scenarios with severely occluded entities

where the bounding box tracking fails. Besides, the tracked bound-

ing box serves as the spatial anchor when training our ST-NeRF

for an individual. Thus, the rich information outside the bound-

ing box cannot be obtained by the network, leading to a worse

Table 3. Quantitative view number ablation study. ↑ means larger is

better, while ↓means smaller is better. Merely inputting four views during

training makes the network overfit and gives a higher training view PSNR.

On the other hand, inputting sixteen views during training outperforms in

held-out view metrics, showing better novel view rendering results.

Ablation study of number of views

# of views PSNR𝑡𝑟𝑎𝑖𝑛 (↑) PSNR(↑) SSIM(↑) MAE(↓) LPIPS(↓)

4 30.9227 15.9286 0.7273 0.1175 0.5321

8 28.4074 22.1213 0.8512 0.0424 0.2347

12 28.1643 23.2100 0.8580 0.0382 0.2230

16 27.9974 26.3877 0.8866 0.0261 0.1940

view-dependent effect, especially for those light-changing scenar-

ios. Such un-modeled regions will be learned into the background

layer, leading to 3D ghosting artifacts when editing the related

neural layers. However, such a case can be easily fixed by man-

ually correcting the corresponding bounding box. Currently, our

approach still relies on 16 cameras to provide a wide range of free-

viewing. It is a promising direction to reduce the camera number by

adopting more data-driven scene modeling strategies or utilizing

a pre-scanned static background as an initial proxy. Furthermore,

we only adopt some basic spatial and temporal editing functions in

our pipeline, which already provides promising fancy visual effects

with high realism, while the functions do not support non-rigid ma-

nipulation or slow-motion effects. Finally, we use a simple nearest

interpolation scheme when generating new timestamps for each

layer. In the future, we plan to explore more non-rigid editing func-

tions in the same framework with layered neural representation. It

is promising to encode more humanmotion prior for such non-rigid

effects, e.g., using the human template model SMPL [Loper et al.

2015] as a spatial and temporal anchor. It’s also interesting to model

the illumination and lighting effect in a large-scale dynamic scene

to enable more controllable disentanglement or re-lightable editing.

7 CONCLUSION

We have presented the first approach to generate high-quality ed-

itable free-viewpoint videos of large-scale dynamic scenes from

relatively sparse 16 RGB cameras. Our novel pipeline enables a

variety of photo-realistic space-time visual editing effects while

still supporting wide-range free viewing. The core of our approach

is a new layered neural representation where each layer learned

the spatially and temporally consistent correlation between an indi-

vidual and the dynamic scene to support various editing functions.

Our neural representation enables the disentanglement of location,

deformation, and the appearance of various dynamic entities. Our

deform module encodes the temporal motion robustly, while our

object-aware volume rendering scheme enables the re-assembling

of all the neural layers. Our neural editing enables explicit spa-

tial and temporal manipulations of various dynamic entities in the

scene while maintaining high realism and supporting wide-range

free viewing. Extensive experimental results demonstrate the ef-

fectiveness of our approach for editable free-viewpoint generation,

which compares favorably to the state-of-the-art. We believe that

our approach renews the presence of free-viewpoint videos with
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Ground Truth 8 Cameras 12 Cameras 16 Cameras4 Cameras

Fig. 17. Qualitative view ablation study. This evaluation demonstrates the illustration of held-out view rendering results in different view numbers. Using

a more significant view number gives a better result in the held-out view.

more natural and controllable viewing ability, serving as a crit-

ical step for editable novel view synthesis, with many potential

applications for fancy visual effects in VR/AR, gaming, filming, or

entertainment.
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