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Abstract

A neural radiance field (NeRF) is a scene model support-

ing high-quality view synthesis, optimized per scene. In this

paper, we explore enabling user editing of a category-level

NeRF – also known as a conditional radiance field – trained

on a shape category. Specifically, we introduce a method for

propagating coarse 2D user scribbles to the 3D space, to

modify the color or shape of a local region. First, we propose

a conditional radiance field that incorporates new modular

network components, including a shape branch that is shared

across object instances. Observing multiple instances of the

same category, our model learns underlying part semantics

without any supervision, thereby allowing the propagation of

coarse 2D user scribbles to the entire 3D region (e.g., chair

seat). Next, we propose a hybrid network update strategy

that targets specific network components, which balances

efficiency and accuracy. During user interaction, we formu-

late an optimization problem that both satisfies the user’s

constraints and preserves the original object structure. We

demonstrate our editing approach on rendered views of three

shape datasets and show that it outperforms prior neural

editing approaches. Finally, we edit the appearance and

shape of a single-view real photograph and show that the

edit propagates to extrapolated novel views.

1. Introduction

3D content creation often involves manipulating high-

quality 3D assets for visual effects or augmented reality

applications, and part of a 3D artist’s workflow consists of

making local adjustments to a 3D scene’s appearance and

shape [26, 28]. Explicit representations give artists control of

the different elements of a 3D scene. For example, the artist

may use mesh processing tools to make local adjustments

to the scene geometry or change the surface appearance by

manipulating a texture atlas [62]. In an artist’s workflow,

such explicit representations are often created by hand or

procedurally generated.

While explicit representations are powerful, there re-

main significant technical challenges in automatically ac-

quiring a high-quality explicit representation of a real-world

Figure 1: Editing a conditional radiance field. Given a condi-

tional radiance field trained over a class of objects, we demonstrate

three editing applications: (A) color editing, (B) shape editing, and

(C) color/shape transfer. A user provides coarse scribbles over a

local region of interest or selects a target object instance. Local

edits propagate to the desired region in 3D and are consistent across

different rendered views.

scene due to view-dependent appearance, complex scene

topology, and varying surface opacity. Recently, implicit

continuous volumetric representations have shown high-

fidelity capture and rendering of a variety of 3D scenes

and overcome many of the aforementioned technical chal-

lenges [50, 66, 45, 59, 63]. Such representations encode the

captured scene in the weights of a neural network. The neural

network learns to render view-dependent colors from point

samples along cast rays, with the final rendering obtained via

alpha compositing [58]. This representation enables many

photorealistic view synthesis applications [41, 47]. However,

we lack critical knowledge in how to enable artists’ control

and editing in this representation.

Editing an implicit continuous volumetric representation

is challenging. First, how can we effectively propagate

sparse 2D user edits to fill the entire corresponding 3D region

in this representation? Second, the neural network for an im-

plicit representation has millions of parameters. It is unclear
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which parameters control the different aspects of the ren-

dered shape and how to change the parameters according to

the sparse local user input. While prior work for 3D editing

primarily focuses on editing an explicit representation [62],

they do not apply to neural representations.

In this paper, we study how to enable users to edit and

control an implicit continuous volumetric representation of

a 3D object. As shown in Figure 1, we consider three types

of user edits: (i) changing the appearance of a local part to a

new target color (e.g., changing the chair seat’s color from

beige to red), (ii) modifying the local shape (e.g., removing

a chair’s wheel or swapping in new arms from a different

chair), and (iii) transferring the color or shape from a target

object instance. The user performs 2D local edits by scrib-

bling over the desired location of where the edit should take

place and selecting a target color or local shape.

We address the challenges in editing an implicit continu-

ous representation by investigating how to effectively update

a conditional radiance field to align with a target local user

edit. We make the following contributions. First, we learn a

conditional radiance field over an entire object class to model

a rich prior of plausible-looking objects. Unexpectedly, this

prior often allows the propagation of sparse user scribble

edits to fill a selected region. We demonstrate complex ed-

its without the need to impose explicit spatial or boundary

constraints. Moreover, the edits appear consistently when

the object is rendered from different viewpoints. Second, to

more accurately reconstruct shape instances, we introduce a

shape branch in the conditional radiance field that is shared

across object instances, which implicitly biases the network

to encode a shared representation whenever possible. Third,

we investigate which parts of the conditional radiance field’s

network affect different editing tasks. We show that shape

and color edits can effectively take place in the later layers of

the network. This finding motivates us to only update these

layers and enables us to produce effective user edits with

significant computational speed-up. Finally, we introduce

color and shape editing losses to satisfy the user-specified

targets, while preserving the original object structure.

We demonstrate results on rendered views of three shape

datasets with varying levels of appearance, shape, and train-

ing view complexity. We show the effectiveness of our ap-

proach for object view synthesis as well as color and shape

editing, compared to prior neural editing methods. More-

over, we show that we can edit the appearance and shape of

a real single-view photograph and that the edit propagates

to extrapolated novel views. We highly encourage viewing

our video to see our editing demo in action. Code and more

results are available at our GitHub repo and website.

2. Related Work

Our work is related to novel view synthesis and interactive

appearance and shape editing, which we review here.

Novel view synthesis. Photorealistic view synthesis has

a storied history in computer graphics and computer vi-

sion, which we briefly summarize here. The goal is to

infer the scene structure and view-dependent appearance

given a set of input views. Prior work reasons over an ex-

plicit [11, 15, 22, 72] or discrete volumetric [20, 33, 36, 40,

44, 55, 64, 65, 67, 68, 80, 82] representation of the underly-

ing geometry. However, both have fundamental limitations –

explicit representations often require fixing the structure’s

topology and have poor local optima, while discrete volu-

metric approaches scale poorly to higher resolutions.

Instead, several recent approaches implicitly encode a

continuous volumetric representation of shape [14, 21, 38,

39, 42, 43, 48, 50, 54, 61] or both shape and view-dependent

appearance [41, 45, 47, 59, 63, 66, 69, 76, 12, 73] in the

weights of a neural network. These latter approaches over-

come the aforementioned limitations and have resulted in

impressive novel-view renderings of complex real-world

scenes. Closest to our approach is Schwarz et al. [63, 12],

where they build a generative radiance field over an object

class and include latent vectors for the shape and appearance

of an instance. Different from their method, we include

a branch in our neural network that inductively biases the

network to capture common features across the shape class.

As we will demonstrate, this inductive bias more accurately

captures the shape and appearance of the class. Moreover,

we do not require an adversarial loss to train our network

and instead optimize a photometric loss, which allows our

approach to directly align to a single view of a novel instance.

Finally, our work is the first to address the question of how to

enable a user to make local edits in this new representation.

Interactive appearance and shape editing. There has

been much work on interactive tools for selecting and

cloning regions [2, 35, 56, 60] and editing single still im-

ages [3, 6, 7, 34]. Recent works have focused on integrating

user interactions into deep networks either through opti-

mization [1, 9, 81, 10] or a feed-forward network with user-

guided inputs [79, 57, 52, 49]. Here, we are concerned with

editing 3D scenes, which has received much attention in

the computer graphics community. Example interfaces in-

clude 3D shape drawing and shape editing using inflation

heuristics [27], stroke alignment to a depicted shape [13],

and learned volumetric prediction from multi-view user

strokes [16]. There has also been work to edit the appearance

of a 3D scene, e.g., via transferring multi-channel edits to

other views [24], scribble-based material transfer [4], editing

3D shapes in a voxel representation [37], and relighting a

scene with a paint brush interface [53]. Finally, there has

been work on editing light fields [25, 29, 30]. We encourage

the interested reader to review this survey on artistic editing

of appearance, lighting, and material [62]. These prior works

operate over light fields or explicit/discrete volumetric ge-

ometry whereas we seek to incorporate user edits in learned
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Figure 2: Conditional radiance field network. Our network maps

a 3D location x, viewing direction d, and instance-specific shape

code z
(s) and color code z

(c) to radiance c and scalar density σ.

The network is composed of modular parts for better shape and

color disentanglement. We train our network over a collection of 3D

objects (Section 3.1). As highlighted, only a subset of the network

components need to be updated during editing (Section 3.2).

implicit continuous volumetric representations.

A closely related concept is edit propagation [3, 19, 23,

74, 77], which propagates sparse user edits on a single image

to an entire photo collection or video. In our work, we aim to

propagate user edits to volumetric data for rendering under

different viewpoints. Also relevant is recent work on apply-

ing local “rule-based” edits to a trained generative model for

images [8]. We are inspired by the above approaches and

adapt it to our new 3D neural editing setting.

3. Editing a Conditional Radiance Field

Our goal is to allow user edits of a continuous volumet-

ric representation of a 3D scene. In this section, we first

describe a new neural network architecture that more accu-

rately captures the shape and appearance of an object class.

We then describe how we update network weights to achieve

color and shape editing effects.

To achieve this goal, we build upon the recent neural ra-

diance field (NeRF) representation [45]. While the NeRF

representation can render novel views of a particular scene,

we seek to enable editing over an entire shape class, e.g.,

“chairs”. For this, we learn a conditional radiance field model

that extends the NeRF representation with latent vectors over

shape and appearance. The representation is trained over a

set of shapes belonging to a class, and each shape instance is

represented by latent shape and appearance vectors. The dis-

entanglement of shape and appearance allows us to modify

certain parts of the network during editing.

Let x = (x, y, z) be a 3D location, d = (φ, θ) be a

viewing direction, and z
(s) and z

(c) be the latent shape and

color vectors, respectively. Let (c, σ) = F
(

x,d, z(s), z(c)
)

be the neural network for a conditional radiance field that

returns a radiance c = (r, g, b) and a scalar density σ. The

network F is parametrized as a multi-layer perceptron (MLP)

such that the density output σ is independent of the viewing

direction, while the radiance c depends on both position and

viewing direction.

To obtain the color at a pixel location for a desired camera

location, first, Nc 3D points {ti}
Nc

i=1 are sampled along a cast

ray r originating from the pixel location (ordered from near

to far). Next, the radiance and density values are computed

at each sampled point with network F . Finally, the color

is computed by the “over” compositing operation [58]. Let

αi = 1 − exp (−σiδi) be the alpha compositing value of

sampled point ti and δi = ti+1 − ti be the distance between

the adjacent sampled points. The compositing operation,

which outputs pixel color Ĉ, is the weighted sum:

Ĉ
(

r, z(s), z(c)
)

=

Nc−1
∑

i=1

ciαi exp



−
i−1
∑

j=1

σjδj



. (1)

Next, we describe details of our network architecture and

our training and editing procedures.

3.1. Network with Shared Branch

NeRF [45] finds the inductive biases provided by po-

sitional encodings and stage-wise network design critical.

Similarly, we find the architectural design choices important

and aim for a modular model, providing an inductive bias

for shape and color disentanglement. These design choices

allow for selected submodules to be finetuned during user

editing (discussed further in the next section), enabling more

efficient downstream editing. We illustrate our network ar-

chitecture F in Figure 2.

First, we learn a category-specific geometric representa-

tion with a shared shape network Fshare that only operates on
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the input positional encoding γ(x) [45, 70] to capture shared

features across instances in the shape category. To modify

the representation for a specific shape, an instance-specific

shape network Finst is conditioned on both the shape code

z
(s) and input positional encoding. The representations are

added and modified by a fusion shape network Ffuse. To

obtain the density prediction σ, the output of Ffuse is passed

to a linear layer, the output density network Fdens. To obtain

the radiance prediction c, the output of Ffuse is concatenated

with the color code z(c) and encoded viewing direction γ(d)
and passed through a two-layer MLP, the output radiance

network Frad. We have tried separating Frad into a shared

radiance branch and an instance-specific branch, but have

found that performance does not improve. We follow Milden-

hall et al. [45] for training and jointly optimize the latent

codes via backpropagation through the network. We provide

additional training details in the supplement.

3.2. Editing via Modular Network Updates

We are interested in editing an instance encoded by our

conditional radiance field. Given a rendering by the network

F with shape z
(s)
k and color z

(c)
k codes, we desire to modify

the instance given a set of user-edited rays by optimizing a

loss over the network parameters and shared codes.

Our first goal is to conduct the edit accurately – the edited

radiance field should render views of the instance that reflect

the user’s desired change. Our second goal is to conduct the

edit efficiently. Editing a radiance field is time-consuming, as

modifying weights requires dozens of forward and backward

calls. Instead, the user should receive interactive feedback

on their edits. To achieve these two goals, we consider the

following strategies for selecting which parameters to update

during editing.

Update the shape and color codes. One approach to this

problem is to only update the latent codes of the instance,

as illustrated in Figure 2(a). While optimizing such few

parameters leads to a relatively efficient edit, as we will

show, this method results in a low-quality edit.

Update the entire network. Another approach is to update

all weights of the network, shown in Figure 2(b). As we will

show, this method is slow and can lead to unwanted changes

in unedited regions of the instance.

Hybrid updates. Our proposed solution, shown in Fig-

ure 2(c), achieves both accuracy and efficiency by updating

specific layers of the network. To reduce computation, we

finetune the later layers of the network only. These choices

speed up the optimization by only computing gradients over

the later layers instead of over the entire network. When

editing colors, we update only Frad and z
(c) in the network,

which reduces optimization time by 3.7× over optimizing

the whole network (from 972 to 260 seconds). When edit-

ing shape, we update only Ffuse and Fdens, which reduces

optimization time by 3.2× (from 1,081 to 342 seconds).

In Section 4.3, we further quantify the tradeoff between

edit accuracy and efficiency. To further reduce computation,

we take two additional steps during editing.

Subsampling user constraints. During training, we sample

a small subset of user-specified rays. We find that this choice

allows optimization to converge faster, as the problem size

becomes smaller. For editing color, we randomly sample

64 rays and for editing shape, we randomly sample a subset

of 8,192 rays. With this method, we obtain 24× speedups

for color edits and 2.9× speedups for shape edits. We em-

pirically find that a lower sampling for color (and higher

for shapes) works well for the evaluated datasets as there

is more variation in the shape than the colors. When sub-

sampling user scribble rays, we find that there is a tradeoff

between optimization speed and edit quality; please refer to

the supplement for additional discussion.

Feature caching. NeRF rendering is slow, especially when

rendering high-resolution views. To optimize view rendering

during color edits, we cache the outputs of the network that

are unchanged during the edit. Because we only optimize

Frad during color edits, the input to Frad is unchanged during

editing. Therefore, we cache the input features for each of

the views displayed to the user to avoid unnecessary com-

putation. This optimization reduces the rendering time for a

256× 256 image by 7.8× (from 6.2 to under 0.8 seconds).

We also apply feature caching during optimization for

shape and color edits. Similarly, we cache the outputs of

the network that are unchanged during the optimization pro-

cess to avoid unnecessary computation. Because the set of

training rays is small during optimization, this caching is

computationally feasible. We accelerate color edits by 3.2×
and shape edits by 1.9×.

3.3. Color Editing Loss

In this section, we describe how to perform color edits

with our conditional radiance field representation. To edit

the color of a shape instance’s part, the user selects a desired

color and scribbles a foreground mask over a rendered view

indicating where the color should be applied. The user may

also scribble a background mask where the color should

remain unchanged. These masks do not need to be detailed;

instead, a few coarse scribbles for each mask suffice. We find

that the final edited model is not sensitive to the user scrib-

bles; different scribbles of the same foreground/background

regions lead to visually identical results. Given the desired

target color and foreground/background masks, we seek to

update the neural network F and the latent color vector z(c)

for the object instance to respect the user constraints.

Let cf be the desired color for a ray r at a pixel location

within the foreground mask provided by the user scribble

and let yf = {(r, cf )} be the set of ray color pairs provided

by the forground user scribble. For a ray r at a pixel location
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in the background mask, let cb be the original rendered color

at the ray location. Let yb = {(r, cb)} be the set of rays and

colors provided by the background user scribble.

Given the user edit inputs (yf , yb), we define our recon-

struction loss as the sum of squared-Euclidean distances

between the output colors from the compositing operation

Ĉ to the target foreground and background colors:

Lrec =
∑

(r,cf )∈yf

∣

∣

∣

∣

∣

∣Ĉ
(

r, z(s), z(c)
)

− cf

∣

∣

∣

∣

∣

∣

2

+
∑

(r,cb)∈yb

∣

∣

∣

∣

∣

∣
Ĉ
(

r, z(s), z(c)
)

− cb

∣

∣

∣

∣

∣

∣

2

. (2)

Furthermore, we define a regularization term Lreg to dis-

courage large deviations from the original model by penal-

izing the squared difference between original and updated

model weights.

We define our color editing loss as the sum of our recon-

struction loss and our regularization loss

Lcolor = Lrec + λreg · Lreg. (3)

We optimize this loss over the latent color vector z(c) and

Frad with λreg = 10.

3.4. Shape Editing Loss

For editing shapes, we describe two operations – shape

part removal and shape part addition, which we outline next.

Shape part removal. To remove a shape part, the user

scribbles over the desired removal region in a rendered view

via the user interface. We take the scribbled regions of

the view to be the foreground mask, and the non-scribbled

regions of the view as the background mask. To construct the

editing example, we whiten out the regions corresponding to

the foreground mask.

Given the editing example, we optimize a density-based

loss that encourages the inferred densities to be sparse. Let

σr be a vector of inferred density values for sampled points

along a ray r at a pixel location and let yf be the foreground

set of rays for the entire user scribble.

We define the density loss Ldens as the sum of entropies of

the predicted density vectors σr at foreground ray locations

r,

Ldens = −
∑

r∈yf

σ⊺

r
log (σr), (4)

where we normalize all density vectors to be unit length. Pe-

nalizing the entropy along each ray encourages the inferred

densities to be sparse, causing the model to predict zero

density on the removed regions.

We define our shape removal loss as the sum of our re-

construction, density, and our regularization losses

Lremove = Lrec + λdens · Ldens + λreg · Lreg. (5)

We optimize this loss over Fdens and Ffuse with λdens = 0.01
and λreg = 10.

The above method of obtaining the editing example as-

sumes that the desired object part to remove does not oc-

clude any other object part. We describe an additional slower

method for obtaining the editing example which deals with

occlusions in the supplement.

Shape part addition. To add a local part to a shape instance,

we fit our network to a composite image comprising a region

from a new object pasted into the original. To achieve this,

the user first selects a original rendered view to edit. Our

interface displays different instances under the same view-

point and the user selects a new instance from which to copy.

Then, the user copies a local region in the new instance by

scribbling on the selected view. Finally, the user scribbles in

the original view to select the desired paste location. For a

ray in the paste location in the modified view, we render its

color by using the shape code from the new instance and the

color code from the original instance. We denote the modi-

fied regions of the composite view as the foreground region,

and the unmodified regions as the background region.

We define our shape addition loss as the sum of our

reconstruction and our regularization losses

Ladd = Lrec + λreg · Lreg (6)

and optimize over Fdens and Ffuse with λreg = 10.

We note that this shape addition method can be slow due

to the large number of training iterations. In the supple-

ment, we describe a faster but less effective method which

encourages inferred densities to match the copied densities.

Please refer to our video to see our editing demo in action.

4. Experiments

In this section, we show the qualitative and quantitative re-

sults of our approach, perform model ablations, and compare

our method to several baselines.

Datasets. We demonstrate our method on three publicly

available datasets of varying complexity: chairs from the

PhotoShape dataset [51] (large appearance variation), chairs

from the Aubry chairs dataset [5, 18] (large shape variation),

and cars from the GRAF CARLA dataset [63, 17] (single

view per instance). For the PhotoShape dataset, we use 100
instances with 40 training views per instance. For the Aubry

chairs dataset, we use 500 instances with 36 training views

per instance. For the CARLA dataset, we use 1,000 instances

and have access to only a single training view per instance.

For this dataset, to encourage color consistency across views,

we regularize the view direction dependence of radiance,

which we further study in the supplement. Furthermore, due

to having access to only one view per instance, we forgo

quantitative evaluation on the CARLA dataset and instead

provide a qualitative evaluation.
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PhotoShapes [51] Aubry et al. [5]

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
1) Single NeRF [45] 17.81 0.435 14.26 0.390
2) + Learned Latent Codes 36.50 0.029 20.93 0.164
3) + Sep. Shape/Color Codes 36.88 0.028 21.54 0.153
4) + Share./Inst. Net (Ours) 37.67 0.022 21.78 0.141

5) NeRF Separate Instances 37.31 0.035 24.15 0.041

Table 1: Ablation study. We evaluate our model and several abla-

tions on view reconstruction. Notice how separating the shape and

color codes and using the shared/instance network improves the

view synthesis quality. Our model even outperforms single-instance

NeRF models (each trained on one object).

Implementation details. Our shared shape, instance-

specific shape, and fusion shape networks Fshare,Finst,Ffuse

are all 4 layers deep, 256 channels wide MLPs with ReLU

activations and outputs 256 dimensional features. The shape

and color codes are both 32-dimensional and jointly opti-

mized with the conditional radiance field model using the

Adam optimizer [32] and a learning rate of 10−4. Additional

implementation details are included in the supplement.

4.1. Conditional Radiance Field Training

Our method accurately models the shape and appear-

ance differences across instances. To quantify this, we train

our conditional radiance field on the PhotoShapes [51] and

Aubry chairs [5] datasets and evaluate the rendering accu-

racy on held-out views over each instance. In Table 1, we

measure the rendering quality with two metrics: PSNR and

LPIPS [78]. In the supplement, we provide additional evalu-

ation using the SSIM metric [71]. We find our model renders

realistic views of each instance and, on the PhotoShapes

dataset, matches the performance of training independent

NeRF models for each instance.

We report an ablation study over the architectural choices

of our method in Table 1. First, we train a standard

NeRF [45] over each dataset (Row 1). Then, we add a

64-dimensional learned code for each instance to the stan-

dard NeRF and jointly train the code and the NeRF (Row 2).

The learned codes are injected wherever positional or direc-

tional embeddings are injected in the original NeRF model.

While this choice is able to model the shape and appearance

differences across the instances, we find that adding separate

shape and color codes for each instance (Row 3) and using a

shared shape branch (Row 4) further improves performance.

Finally, we report performance when training independent

NeRF models on each instance separately (Row 5). In these

experiments, we increase the width of the layers in the abla-

tions to keep the number of parameters approximately equal

across experiments. Notice how our conditional radiance

network outperforms all ablations.

Moreover, we find that our method scales well to more

training instances. When training with all 626 instances of

the PhotoShape dataset, our method achieves reconstruction

PSNR 35.79. We find that the shared shape branch helps our

PSNR ↑ LPIPS ↓
Model Rewriting [8] 18.42 0.325
Finetuning Single-Instance NeRF 29.53 0.068
Only Finetune Color Code 26.29 0.090
Finetuning All Weights 31.00 0.050
Our Method 35.25 0.027

Table 2: Color editing quantitative results. We evaluate color

editing of a source object instance to match a target instance. Notice

that our method outperforms the baselines on all criteria.

model scale to more instances. In contrast, a model trained

without the shared shape branch achieves PSNR 33.91.

4.2. Color Edits

Our method both propagates edits to the desired regions

of the instance and generalizes to unseen views of the in-

stance. We show several example color edits in Figure 3. To

evaluate our choice of optimization parameters, we conduct

an ablation study to quantify our edit quality.

For a source PhotoShapes training instance, we first find

a target instance which the model has not been trained on

in the PhotoShapes chair dataset with an identical shape

but a different color. Our goal is to edit the source training

instance to match the target instance across all viewpoints.

We conduct three edits and in Figure 3 show visual results

on two. For each editing example, we manually scribble

to roughly span the desired foreground/background regions

to conduct the edit. Finally, we render 40 views from the

ground truth instance and the edited model, and quantify

the difference. The averaged results over the three edits are

summarized in Table 2. In the supplement, we evaluate the

radiance field based editing methods on 10 edits. Also in the

supplement, we provide a method for editing a source test

instance, which the model has not trained on.

We find that finetuning only the color code is unable to

fit the desired edit. On the other hand, changing the entire

network leads to large changes in the shape of the instance,

as finetuning the earlier layers of the network can affect the

downstream density output.

Next, we compare our method against two baseline meth-

ods: editing a single-instance NeRF and editing a GAN.

Single-instance NeRF baseline. We train a NeRF to model

the source instance we would like to edit, and then apply

our editing method to the single instance NeRF. The single

instance NeRF shares the same architecture as our model.

GAN editing baselines. We also compare our method to

the 2D GAN-based editing method based on Model Rewrit-

ing [8]. We first train a StyleGAN2 model [31] on the images

of the PhotoShapes dataset [51]. Then, we project unedited

test views of the source instance into latent and noise vec-

tors, using the StyleGAN2 projection method [31]. Next, we

invert the source and target view into its latent and noise vec-

tors. With these image/latent pairs, we follow the method of
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(c) Single Instance (d) Rewriting (e) Ours(a) Source (b) Editing Scribble (f) Ground Truth

Edit 2

Edit 1

Figure 3: Color editing qualitative results. We visualize color editing results where the goal is to match a source instance’s colors to a target.

Our method accurately captures the colors of the target instance given scribbles over one view. Notice how (c) Editing a Single-Instance

NeRF causes visual artifacts, and (d) Rewriting a GAN [8] fails to propagate the edit to unseen views and generates unrealistic outputs.

PSNR ↑ LPIPS ↓ Time (s) ↓
Only Finetune Shape Code 22.07 0.119 36.9
Only Finetune Fdens 21.84 0.118 27.2

Finetuning All Weights 20.31 0.117 66.4
Our Method 24.57 0.081 37.4

Table 3: Shape editing quantitative results. Notice how our hy-

brid network update approach achieves high visual edit quality

while balancing computational cost.

Bau et al. [8] and optimize the network to paste the regions

of the target view onto the source view. After the optimiza-

tion is complete, we feed the test set latent and noise vectors

into the edited model to obtain edited views of our instance.

In the supplement, we provide an additional comparison

against naive finetuning of the whole generator.

These results are visualized in Figure 3 and in Table 2.

A single-instance NeRF is unable to find an change in the

model that generalizes to other views, due to the lack of

category-specific appearance prior. Finetuning the model

can lead to artifacts in other views of the model and can

lead to color inconsistencies across views. Furthermore, 2D

GAN-based editing methods fail to correctly modify the

color of the object or maintain shape consistency across

views, due to the lack of 3D representation.

4.3. Shape Edits

Our method is also able to learn to edit the shape of an

instance and propagate the edit to unseen views. We show

several shape editing examples in Figure 4. Similar to our

analysis of color edits, we evaluate our choice of weights to

optimize. For a source Aubry chair dataset training instance,

we find a target instance with a similar shape, which the

model has not been trained on. We then conduct an edit to

change the shape of the source instance to the target instance,

and quantify the difference between the rendered and ground

truth views. The averaged results across three edits are

summarized in Table 3 and results of one edit are visualized

in the top of Figure 4. In the supplement, we evaluate these

editing methods on 10 edits and report error bars. We find

that the approaches of only optimizing the shape code and

only optimizing Fdens leave the chair mostly unchanged,

while optimizing the whole network leads to removal of the

object part, but causes unwanted artifacts in the rest of the

object. Instead, our method correctly removes the arms and

fills the hole of the chairs, and generalizes this edit to unseen

views of each instance.

4.4. Shape/Color Code Swapping

Similar to GRAF [63], our model succeeds in disentan-

gling shape and color. When we change the color code input

to the conditional radiance field while keeping the shape code

unchanged, the resulting rendered views remain consistent

in shape. Our model architecture enforces this consistency,

as the density output is independent of the color code.

When changing the shape code input of the conditional

radiance field while fixing the color code, the rendered views

remain consistent in color. This is surprising because in

our architecture, the radiance of a point is a function of

both the shape code and the color code. Instead, the model

has learned to disentangle color from shape when predict-

ing radiance. These properties let us freely swap around

shape and color codes, allowing for the transfer of shape and

appearance across instances; we visualize this in Figure 5.

4.5. Real Image Editing

We demonstrate how to infer and edit extrapolated novel

views for a single real image given a trained conditional

radiance field. We assume that the single image has attributes

similar to the conditional radiance field’s training data (e.g.,

object class, background). First, we estimate the image’s

viewpoint by manually selecting a training set image with

similar object pose. Jointly optimizing the estimated pose

during training can improve the synthesized views slightly,
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Figure 4: Shape editing qualitative results. Our method successfully removes the arms and fills in the hole of a chair. Notice how only

optimizing the shape code or branch are unable to fit both edits. Optimizing the whole network is slow and causes unwanted changes in the

instance.
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Figure 5: Shape and color transfer results. Our model transfers the shape and color from target instances to a given source instance. When

a source’s color code is swapped with a target’s, the shape remains unchanged, and vice versa.

(b) Edited Model(a) Color Scribble (c) Shape Scribble (d) Edited Model

Figure 6: Real image editing results. Our method first finetunes a

conditional radiance field to match a real still image input. Editing

the resulting radiance field successfully changes the chair seat color

to red and removes two of the chair’s legs.

but can also cause visual artifacts. In practice, we find that

a perfect pose estimation is not required. With the posed

input image, we finetune the conditional radiance field by

optimizing the standard NeRF photometric loss with respect

to the image. When conducting this optimization, we first

optimize the shape and color codes of the model, while

keeping the MLP weights fixed, and then optimize all the

parameters jointly. This optimization is more stable than

the alternative of optimizing all parameters jointly from the

start. Given the finetuned radiance field, we proceed with our

editing methods to edit the shape and color of the instance.

We show our results of editing a real photograph in Figure 6.

5. Discussion

We have introduced an approach for learning conditional

radiance fields from a collection of 3D objects. Furthermore,

we have shown how to perform intuitive editing operations

using our learned disentangled representation. One limi-

tation of our method is the interactivity of shape editing.

Currently, it takes over a minute for a user to get feedback

on their shape edit. The bulk of the editing operation compu-

tation is spent on rendering views, rather than editing itself.

We are optimistic that NeRF rendering time improvements

will help [46, 75]. Another limitation is our method fails

to reconstruct novel object instances that are very differ-

ent from other class instances. Despite these limitations,

our approach opens up new avenues for exploring other ad-

vanced editing operations, such as relighting and changing

an object’s physical properties for animation.
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