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Editorial on the Research Topic

Cyanobacterial and microalgal compounds: Chemical ecology and
biotechnological potentials
Introduction - marine chemical ecology

Since the beginning of life on the earth, chemical relationships have ruled all aspects of

nature (Cole, 2016) and ecological interactions are linked to chemical and biochemical

processes (Overbeck and Chrost, 2012). Infochemical interactions are among the oldest and

most widespread forms of communication both in terrestrial and aquatic ecosystems (Wyatt,

2014; Roggatz et al., 2022). Aquatic organisms respond to small concentrations of chemicals

released in the environment and such molecules, called infochemicals, are involved in

recognition of prey and predators, chemotaxis, allelochemical defenses, mate recognition,

reproductive and settlement cues, larvae metamorphosis, sex pheromones, and more in

general organism’s interactions (Ferrari et al., 2010; Schwartz et al., 2016; Zupo et al., 2016;

Zupo et al., 2019; Mutalipassi et al., 2019). In addition, chemical interactions led to the study

of chemical defenses which should be considered not only as defenses against consumers but

also as weapons against competitors (allelopathy) and as reduction of colonization (anti-

fouling) (Leão et al., 2012; Mutalipassi et al., 2021; Mutalipassi et al., 2022). Chemical

communications shape the structure and the functioning of marine ecosystems (Hay, 2009),

providing crucial services, often essential for humans (Parachnowitsch and Manson, 2015).

Seagrasses, that are considered key species for the development of rich associated

communities, produce a large array of diverse bioactive compounds including phenolic

compounds, steroids, terpenes, glycosides, sulfated polysaccharides, pectins, glycolipids,
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triglycerols, fatty acids, and volatile organic compounds (Harder

et al., 2018). These compounds can deter herbivores’ grazing, inhibit

the proliferation of pathogens and the settlement of fouling

organisms (Harder et al., 2018). In addition, several infochemicals

are produced by seagrass-associated organisms with a role in the

regulation of macroalgal-associated microbial communities within

benthic marine environments (Saha and Weinberger, 2019;

Mutalipassi et al., 2021). Thus, the molecules produced by

seagrasses and their associated organisms play important roles in

mediating ecological interactions among the organisms inhabiting

these highly productive communities (Mutalipassi et al., 2019;

Mutalipassi et al., 2020). In the complex array of interactions

triggered by chemical cues, antagonistic interactions promote

diversified adverse cascading effects on both benthic and

planktonic species (Ribeiro et al.). However, it is accepted that

anthropogenic stress can disturb and interfere with these

mechanisms, reducing or destroying the ability of an organism to

produce the correct information or receive and interpret the

message (Atema et al., 2012). Further, chemical ecology

investigations can be seen as a starting point for developing new

strategies for the discovery of novel compounds for biotechnological

purposes (Leào et al., 2012; Mutalipassi et al., 2021). In fact, the

investigation of the roles of marine-derived chemicals produced for

defensive, offensive, and communication purposes can lead to the

identification of bioactive molecules with a wide array of potential

applications (Gerwick and Moore, 2012; Nishida, 2014). Indeed,

several investigations analyzed chemical ecology interactions of

marine species in order to have inference on potential bioactive

compounds that can be used in biotechnology, as in the case of

terpenes, polyphenols, alkaloids, and flavonoids (Bohlmann, 2011).

The production of novel compounds during peculiar physiological

states, e.g. in symbiotic relationship or in altered and extreme

marine environments, is largely underestimated from a

biotechnological point of view (Mutalipassi et al., 2021). This is

the case of several extreme environments where interaction among

microorganisms, able to produce a large array of secondary

metabolites, demonstrated healing properties for humans (Vadlja

et al.). This concept can be considered as an extension of the One

Strain Many Compounds theory (OSMAC), considering that some

gene clusters can be “silent” and not expressed during some life

stages or environmental conditions, but activated by specific

infochemicals. Chemical ecology may help to unlock the chemical

diversity they control, favoring the discovery of novel molecules of

medical and biotechnological interest (Romano et al., 2018; Pan

et al., 2019).
Chemical ecology and response to
climate change

The increase of atmospheric greenhouse gas concentrations

gives rise to climate changes, with a cascade of consequences for
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marine environments with potential additive effects by other

anthropogenic stressors (Gissi et al., 2021). Recent studies

demonstrated the severe impacts of predicted foreseen CO2

concentrations on the chemical communication in aquatic

organisms (Ferrari et al., 2011; De la Haye et al., 2012; Zupo et

al., 2016). The study of the disruption of infochemical

production in relation to climate change is considered a

frontier field in the chemical-ecology (Draper and Weissburg,

2019; Mutalipassi et al., 2019; Zupo et al., 2019; Roggatz et al.,

2022). Chemical-ecology interesting insights have been provided

by studies focused on the seagrass meadows community

(Maibam et al., 2015; Zupo et al., 2016; Zupo et al., 2019;

Mutalipassi et al., 2020). Marine macrophytes depend on

chemical communication to manage stable relationships with

epifauna, colonizers, and pathogen populations and these

relationships are disturbed by acidification (Campbell et al.,

2011) with consequences on the grazing activities (Pereira

et al., 2003) and on settlement (Da Gama et al., 2003). Volatile

organic compounds have been demonstrated to be fundamental

for invertebrate chemical communications both in planktonic

(Maibam et al., 2015) and benthic (Mutalipassi et al., 2020)

environments, structuring food webs (Fink, 2007) and acting as

settlement signals in species belonging to the same environment,

as in the case of the sea urchin Paracentrotus lividus (Zupo et al.,

2018) or in the case of the shrimp Hippolyte inermis (Zupo et al.,

2019). Investigations also showed that acidification can act as an

interfering agent on the bouquet of odors released by P. oceanica

meadows with consequences on the chemotactic reactions of the

associated vagile community (Zupo et al., 2016; Mutalipassi

et al., 2019; Mutalipassi et al., 2020; Mutalipassi et al.). These

differences in the invertebrate behaviors can be linked to the

differences in the abundance of the same invertebrate in areas at

different pH values (Maibam et al., 2014), confirming the role of

VOC infochemicals in the structuring of the epifaunal

communities (Mutalipassi et al.). These relationships mediated

by VOCs have been confirmed in planktonic environments,

where diatoms release volatile-aldehydes teratogenic for

copepods (Miralto et al., 2003; Barreiro et al., 2011; Lauritano

et al., 2011). At the same time, copepods evolved mechanisms to

discern, using VOCs, between beneficial algae and aldehyde-

releasing diatoms (Maibam et al., 2015) but this co-evolved

mechanism is not adapted to a high-CO2 world. On one side,

ocean acidification can alter the three-dimensional

conformation of several infochemicals and a change in charge

distribution has been demonstrated even by small difference of

pH values (Roggatz et al., 2016; on the other side,

electrophysiological and transcriptomic measurements have

demonstrated that elevated CO2 concentrations act on the

olfactory system of several organisms (Porteus et al., 2018;

Velez et al., 2019) or on the neurotransmitter functioning

itself, with an alteration in brain ion gradients (Nilsson

et al., 2012).
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Dietary interaction

Organisms detect and interact with their favorite food items

using chemical signals (Jüttner et al., 2010). In the marine

environment, invertebrates follow the signals emitted by preys

and exhibit chemotactic behavior indicating preference or

repulsion, according to a chemical language that evolved over

time (Maibam et al., 2014). These compounds are transported by

currents and this further modifies the perception by

invertebrates, as demonstrated by contrasting results achieved

using static chambers and flumes (Mutalipassi et al.). Organisms

evolved to recognize the infochemicals emitted by toxic prey

present in their own environment and this helped to stabilize

several aquatic communities (Maibam et al., 2014). However,

toxic substances produced by organisms outside their own

community are not always recognized and this also helps to

stabilize the composition of typical communities, because alien

species are damaged after the ingestion of toxic algae.

Consequently, we can hypothesize that a common chemical

language reinforces the relationships among definite benthic

communities. However, infochemicals not only modulate the

chemotactic reactions of consumers but often influence their

physiology, indicating a potential role as “functional foods”, as in

the case of the protandrous shrimp Hippolyte inermis and of the

co-evolved diatoms of the genus Cocconeis which influence its

sex regulation, triggering apoptosis of androgenic gland in early

postlarvae (Zupo and Messina, 2007; Levy et al., 2021). Small

lipophilic compounds present in the diatoms are able to

selectively destroy such tissues and this peculiar relationship

will be worth producing interesting biotechnologies in the fields

of aquaculture and medicine. Clark et al., through a

multidisciplinary approach, used the chemical ecological

dietary interactions between marine organisms as a tool to

identify and then isolate novel ecologically relevant

compounds with biotechnological potential (Clark et al.).

Thus, we should state that the thermodynamic importance of

foods, as a source of energy for heterotrophic organisms, is quite

less important than their regulatory roles, because foods may

change both the physiology and the behavior of terrestrial and

marine animals. In the cases herein considered, the

infochemicals produced by selected organisms represent a

“signal” for a given species but, in several cases, the signals

may be shared among various species and produce shifts in the

spatial distributions of animal communities. In other cases,

multiple interactions may rule the behavior of various species,

as in the case of tri-trophic interactions (Helms et al., 2017;

Castano-Duque et al., 2018), when the warning signals emitted

by a given species call for the attention of potential predators of

their own consumers. On the whole, dietary interactions are

influenced by the sharing of a common chemical language and

deeply affect the structure of animal communities and the

physiology of individual species.
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High-value compounds from
cyanobacteria and microalgae

It has been well known that cyanobacteria and microalgae

produce a broad range of high-value compounds. They are often

involved in dietary interaction or chemical ecology processes and

possess important biological activity (Riccio et al., 2020; Khavari et

al., 2021; Xia et al., 2021) as demonstrated by the GreenMicroalga

Dunaliella terctiolecta that possess an antiproliferative activity

against four different human cancer cell lines: melanoma,

hepatocellular liver carcinoma, and two lung adenocarcinoma

cell lines (Martıńez et al.). Microalgal interesting compounds

include polyphenols, alkaloids, oxylipins and others,

nevertheless, marine microalgae represent a poorly explored

resource. From a chemical-ecology point of view, there is a

relationship between the production of bioactive molecules and

the interactions affecting organisms’ behavior and function.

Polyphenolic compounds are a family of secondary metabolites

comprising flavonoids, phenolic acids, tannins, lignans, or

coumarins (Del Mondo et al., 2022). Their biological functions

are well characterized in plants but poorly known in marine

organisms, as for example in algae and microalgae. In benthic

organisms, polyphenolic flavonoids contrast the foulers

proliferation on their surfaces (Papazian et al., 2019) attracting

attention for the production of alternative eco-compatible

antifouling products for maritime industry after optimization of

their activity via glycosylation and other chemical modifications

(Pereira et al., 2020). Thus, these classes of compounds are also

considered promising molecules for the development of new

drugs and nutraceutical products, thanks to a large array of

biological activity in in vitro and in vivo human experimental

models, as for example antioxidant activity (Behery et al., 2013)

and immune system regulation and defense against microbial

pathogens (Qi et al., 2008). It must be considered that the release

of these molecules into the marine environment could be

primarily exerted through cell lysis by enabling certain inter-

and intra- specific chemical communications (Hohlman and

Sherman, 2021). This is the case of alkaloids that have been

demonstrated to have an anti-grazing and deterring activity in

terrestrial environments (Wink, 2019). Interestingly, specialist

herbivores have evolved the capacity to store and modify these

secondary metabolites, taking advantage of an extraordinary

symbiotic community living in the digestive tract (Pennisi,

2017), acquiring an ecological benefit against predators (Mason

and Singer, 2015; Petschenka and Agrawal, 2016). In marine

environments, sea slugs accumulate several toxic compounds

through their diets and modify them for their own defense (Wu

et al., 2020; Wu et al., 2021). Due to the extraordinary bioactivity,

alkaloids have been deeply investigated for medicinal purposes,

with anti-microbial, anti-inflammatory, and anti-cancer activity

demonstrated in in vitro and in vivo tests (Souza et al., 2020;

Elissawy et al., 2021; Moosmann et al., 2021; Munekata et al., 2021;
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Thawabteh et al., 2021). Similarly, oxylipins are considered toxic

compounds involved in cell-cell communication, regulators of

population dynamics, and anti-grazing activity produced, after an

environmental stimulus, by the oxidation process of

polyunsaturated fatty acids (Ruocco et al., 2020). Since they

cover toxic and teratogenic roles in nature, oxylipins were tested

on human cancer cells and in vivo models, demonstrating

antiproliferative effect on human colon adenocarcinoma cells

(Miralto et al., 1999) through the activation of apoptotic

extrinsic cell death pathway triggered by the tumor necrosis

factor receptor 1 (Sansone et al., 2014).
Conclusions and perspective

Despite the chemical ecology is largely investigated in

terrestrial environments, in marine environments this field is

still in its infancy. Although chemists have identified a large

number of compounds modulating organisms’ interactions, very

little is known regarding chemical cues related to migrations,

species recognition or assessment of predator threats.

Transcriptomics, metabolomics, and proteomics are nowadays

common tools that allow chemical-ecologists to look deeply into

gene expression and metabolic responses to infochemicals (Dyer

et al., 2018; Kellogg and Kang, 2020). Future investigations should

focus the attention to understand if the same chemical cue can

bring the same information to different species in a sort of

chemical universal language and if there is some kind of

relationship in the interpretation of chemical cues linked to

phylogenetic evolution (Vet, 1999) or to ecological niche

(Müller et al., 2020). An increasing number of studies suggest

that anthropogenic pollutants and disturbances may severely

affect the transmission and the production of infochemicals as

well as the chemosensory and neurological system of aquatic

organisms (Brönmark and Hansson, 2012). Ecotoxicology should

focus, in the next future, on the analysis of the impacts of old and

emerging contaminants on the chemical ecology of marine

species, in order to predict effects at short, medium, and long

term on ecosystems and ecosystemic services (Savoca et al., 2016).

For example, the settlement of many marine species, both
Frontiers in Marine Science 04
vertebrates (Ben-Tzvi et al., 2010) and invertebrates ones (Zupo

et al., 2019), is triggered and facilitated by the presence of

“olfactory stimuli”. This settlement can be easily impaired by

disturbances, as demonstrated for high pCO2 conditions, with

consequences on the recruitment of broodstock (Gerlach and

Atema, 2012). Concluding, the last future perspective of chemical

ecology investigations is represented by the great potential of

infochemicals in biotechnological fields due to the extraordinary

bioactivities observed during the past fifty years. The observation

of chemical interactions among organisms allows researchers to

access a more sustainable approach involving the identification of

novel molecules through targeted research focusing on the most

promising ecological context.
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