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Dissection of the molecular basis of fatty acid composition in oil crops
and molecular breeding of oil crops with improved fatty
acid composition
Humans are using vegetable oil produced by various oilseed crops such as oil palm,

rapeseed, and soybean for food and industry (Tokel and Erkencioglu, 2021). Vegetable oil

produced from seeds and fruits of oilseed crops is in the form of triacylglycerol (TAG),

and their fatty acid (FA) composition varies depending on the plant species. In the

Arabidopsis model plant, the metabolism of FA and TAG biosynthesis has been well

elucidated through genetics, molecular biochemistry, and genomics (Li-Beisson et al.,

2013). However, studies on the metabolic mechanism of FA and TAG synthesis in

various oilseed crops are scarce.

Given the need for research in oilseed crops, this special issue covers recent research

on genetic and molecular mechanisms underlying oil-crop traits, specifically about FA.

The first is the discovery of a novel transcription factor network that regulates FA

synthesis and changes in FA composition by abscisic acid (ABA) treatment of oil palm. In

addition, research in Physaria fendleri has been applied to enhance the production of

industrially useful hydroxy FAs (HFAs), and transcriptomic analysis of gymnosperm

Torreya grandis Fortune ex Lindl. kernels provided further clarity on FA metabolism.

Next, important progress has been made in understanding available genetic resources
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through studies that assembled the chloroplast genome of the

tea-oil tree Camellia, comprehensively mapped quantitative trait

loci (QTLs) related to oil production and disease resistance in

rapeseed (Brassica napus), and explored disease-resistance

mechanisms in the lipid metabolism of rice. Finally, a rapeseed

cultivar without erucic acid production in seeds was developed

through gene editing. These biotechnological advances benefit

the production of vegetable oils optimized for food and

industrial raw materials.
Frontiers in Plant Science 02
New molecular mechanisms of FA
biosynthesis in oil palm, rice, and
Arabidopsis thaliana

The world’s largest oil-producing crop is the oil palm (Elaeis

guineensis), which accumulates up to 90% of its oil in the

mesocarp (Bhagya et al., 2020; Zhou et al., 2020). However,

few reports are available on transcription factor (TF) networks
B C
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FIGURE 1

A novel mechanism for regulating lipid metabolism in oil crops and a metabolic pathway for FA and TAG synthesis in oilseeds. (A) In oil-palm
mesocarp, mir5179 inhibits MADS16 expression and regulates the expression of oil synthesis genes SAD, FAD2, and DGAT2. (B) ABA induces
linoleic acid synthesis through ABA signaling pathway in oil palm mesocarp. (C) Induction of disease resistance in rice through regulating PR
gene expression and wax synthesis by glycerol kinase OsNHO1. (D) Suppression of FAE1 expression for EA-free oil crop development.
Suppressing FATB inhibits saturated-FA synthesis. Suppressing FAD2 expression blocks polyunsaturated-FA synthesis, resulting in elevated
production of oleic acid. Black arrows indicate the direction of FA biosynthesis and metabolism. Blue dotted arrows indicate acyl-CoA
migration. Blue letters indicate enzymes involved in the metabolic pathways. Red Xs indicate enzyme inhibition. FAS, fatty acid synthase; ACP,
acyl carrier protein; KAS, KASII, 3-ketoacyl-ACP synthase II; FAB2, fatty acid biosynthesis2; G3P, glycerol-3phosphate; LPA, lysophosphatidic
acid; PA, phosphatidic acid; DAG, diacylglycerol; TAG, triacylglycerol; CoA, coenzyme A; GPAT, glycerol-3-phosphate acyltransferase; LPAT,
lysophosphatidic acid acyltransferase; PAP, phosphatidate phosphatase; DGAT, diacylglycerol acyltransferases; PDAT, phospholipid
diacylglycerol acyltransferase; PC, phosphatidylcholine; FAD2, fatty acid desaturase 2; FAD3, fatty acid desaturase 3; ER, endoplasmic reticulum;
FAE1, fatty acid elongase 1; FATA, fatty acid thioesterase A; FATB, fatty acid thioesterase B; PDCT, phosphatidylcholine diacylglycerol choline
phosphotransferase; PDAT, phosphatidylcholine diacylglycerol acyltransferase.
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regulating lipid metabolism in oil palm (Yeap et al., 2017; Li

et al., 2020). Wang et al. suggested that EgMADS16 negatively

regulates FAD2, SAD, and DGAT2 transcription during oil-palm

mesocarp development, interacting with EgGLO1 to affect FA

and triacylglycerol (TAG) biosynthesis. The authors also

proposed a mechanism to explain the suppression of

EgMADS16 expression by its target Egmir5179, a small RNA

involved in oil accumulation (Figure 1A). Next, a study by Shi

et al. examined how ABA treatment increases the unsaturated

FA linoleic acid in oil-palm mesocarp. Through transcriptome

analysis, they hypothesized that exogenous ABA increases

linoleic acid (18:2) accumulation via activating ABA signaling

genes PYR, PP2C, and SnRK, as well as TFs such as ABI5,

resulting in upregulation of FAD2 expression (Figure 1B).

Glycerol kinase (GK) catalyzes the conversion of glycerol to

glycerol-3-phosphate (G3P), but its physiological significance in

rice defense against pathogens remains unclear. Xiao et al.

confirmed that the GK gene OsNHO1 was upregulated in

Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99.

Additionally, in the transgenic rice line overexpressing

OsHNO1-OE, GK content and OsNHO1 transcription both

increased, improving resistance to bacterial blight and blast

diseases. In contrast, resistance was impaired in the OsNHO1-

RNAi line. Similarly, wax content and wax-synthesis gene

expression increased significantly in the overexpression line,

while decreasing in the OsNHO1-RNAi line. Inhibiting

OsNHO1 also led to decreased transcription of its interaction

partners, OsSRC2 and OsPR. Xiao et al. concluded that

OsNHO1 confers disease resistance through affecting wax

content and regulating pathogenesis-related (PR) gene

transcription (Figure 1C).

As a major seed energy source, TAG is stored in the form of

fixed carbon (Baud and Lepiniec, 2009). Photosynthetic

processes in chlorophyll-containing green seeds mainly

involves FA synthesis by ATP and reducing agents (NADPH

and NADH) produced in leaves and other green plant parts

(Goffman et al., 2005; Hua et al., 2014; Zhang et al., 2016).

However, the contribution of FA accumulation in non-green

seeds remains uncertain. Nwafor et al. demonstrated that

photosynthesis in Arabidopsis non-green seeds is responsible

for 20% of FA synthesis, whereas photosynthesis in siliques and

leaves/stems is responsible for 40%. The authors further

suggested that the oxidized pentose phosphate pathway may

be a source of the carbon, energy, and reducing agents required

for FA synthesis during seed development.
Genome evaluation of various
oil-crop resources

Considerable effort has been devoted to developing elite

rapeseed cultivars with high oil content, high yield, and disease
Frontiers in Plant Science 03
resistance (Bao et al., 2018; Chen et al., 2018). QTLs are

particularly important for deciphering agronomic traits. A

recent study aligned 4,555 QTLs (identified over 25 years

across 12 countries) to construct a quantitative genomic map

containing 128 traits from 79 populations (Raboanatahiry et al.).

These results revealed 517 regions of overlapping QTLs that

harbor 2,744 candidate genes simultaneously affecting multiple

traits. This data can be used to develop new rapeseed varieties.

Torreya grandis Fortune ex Lindl. is a commercial species of

gymnosperm that produces oil-rich nuts with high unsaturated

FA content in mature kernels (Shi et al., 2018). Zhang et al.

compared de novo transcriptome and FA accumulation during

kernel development of two varieties: high-oil (52.9%) T. grandis

‘Xifei’ and medium-oil (41.6%) T. grandis ‘Dielsii’. The authors

inferred that differences in FA and TAG accumulation, along

with related transcript expression, were the primary factors

responsible for oil-content variation (oleic acid ratio, sciadonic

acid ratio) between the two varieties.

Camellia is one of the four most commercially valued woody

plants worldwide. Camellia oil is rich in polyphenols, saponins,

and other nutritional components. Owing to its health benefits,

camellia oil has strong economic competitiveness and broad

market prospects (Zhu et al., 2010). Chen et al. identified an oil-

tea Camellia species previously unknown in Hainan by

comparing chloroplast genomic (cpDNA) sequences of 13

Chinese oil-tea Camellia samples. They concluded that cpDNA

of oil-tea Camellia species exhibits a conserved tetrad structure

with specific length polymorphisms. Additionally, simple

sequence repeats (SSR) and other mutations led to an

abundance of divergent hotspots in coding sequences (CDS)

and intergenic space (IGS). The presence of these hotspots

suggests that the entire cpDNA sequence can be used for

species identification and phylogenetic analysis of Camellia.
Gene editing and biotechnology to
improve FA composition for human
consumption and industrial uses

Brassicaceae oilseeds produce a very long-chain

monounsaturated FA called erucic acid (EA, C22:1), a

compound extensively used in various chemical industries

(Sakhno, 2010). However, EA is not easily digested and

absorbed. Moreover, high-EA rapeseed (HEAR) oil often

contains glucosinolates, which have been implicated in disease.

Biotechnology research is thus necessary to produce low-EA

rapeseed oil (LEAR) in addition to HEAR. In their review, Wang

et al. examined the EA biosynthetic pathway and EA resources in

various Brassicaceae crops. The available data led them to promote

commercialization of genetically modified products that improved

EA content in Brassica oilseeds. In the same vein, Liu et al.

developed rapeseed lines with significantly lower EA content by
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using CRISPR/Cas9 to knock out one or both FAE1 copies in the

amphidiploid plant. Knocking out BnaC03.FAE1 decreased EA

content by more than 10%, whereas knocking out both

BnaA08.FAE1 and BnaC03.FAE1 almost completely abolished

EA content. Instead, oleic acid content increased considerably.

These experiments ultimately lowered seed oil content, without

affecting other agricultural characteristics.

Physaria fendleri (Brassicaceae) accumulates the long-chain

HFA lesquerolic acid (20:1OH) (Dierig et al., 2011), suggesting

that this oilseed species can be an alternative crop to castors for

producing industrially valuable HFAs. In support of this

application, seed-specific RNAi knockdown of TAG lipase

SUGAR DEPENDENT 1 (SDP1) increased seed weight and

total seed-oil content, without significantly affecting seedling

establishment (Azeez et al.).

In their review of the biochemistry and molecular genetics

underlying oil synthesis, Wallis et al. highlighted valuable tools

for blocking relevant genes during seed development to lower

polyunsaturated fatty acid (PUFA) content in oil. The authors

introduced successful breeding programs that produced high-

oleic, low-PUFA varieties of soybean, canola, and other oilseed

crops. Finally, Park and Kim reviewed current case studies and

future strategies for regulating FA and TAG metabolism using

CRISPR/Cas9 (Figure 1D).
Outlook

Vegetable oils contribute significantly to calorie intake in the

human diet, but their FA composition is not ideal for nutrition

nor the needs of the food industry. Therefore, the mechanisms of

FA and TAG synthesis in oil crops should be identified. Clearly,

to meet the growing demand for vegetable oil, further

biotechnology research and better breeding programs are

necessary to improve crop oil content and FA composition.
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