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Editorial on the Research Topic

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological

Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated

Cyber-Physical Platforms

A fundamental problem in biology, physiology, and medicine is understanding how complexity in
the structure and dynamics of biological and physiological systems emerges from multicomponent
regulatory mechanisms, where non-linear feedback loops across scales lead to efficient homeostatic
control in the presence of continuous temporal variability in systems outputs. Addressing this
problem requires (i) comprehensive analyses of systems dynamics based on multifractal formalism
and methodology (Ivanov et al., 1999, 2001, 2002; Mukli et al., 2015) to probe feedback interactions
underlying biological and physiological systems by quantifying the temporal organization of
physiological fluctuations and their cascades across scales, and (ii) a general network physiology
framework (Bashan et al., 2012; Ivanov and Bartsch, 2014; Bartsch et al., 2015; Ivanov et al.,
2016) to investigate networks of interactions among diverse physiological systems and subsystems
across space and time scales that lead to emergent complex behaviors at the organism level. An
entire new class of diagnostic and prognostic biomarkers has resulted from pioneering studies in
these new directions, especially needed now when witnessing a pandemic of chronic diseases (e.g.,
heart diseases, diabetes, and its complications, stroke, cancer, brain diseases) which constitute a
significant cause of rising healthcare costs and a reduced quality-of-life (QoL).

Despite the increased need for smart healthcare sensing systems that monitor patients’ body
balance, there is no coherent theory that facilitates the modeling of human physiological processes
and the design and optimization of future healthcare cyber-physical systems (HCPSs) (Bogdan and
Marculescu, 2011; Xue and Bogdan, 2017; Bogdan, 2019). The HCPSs are expected to measure and
mine the patient’s physiological state based on available continuous sensing, quantify risk indices
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corresponding to the onset of abnormality, signal the need for
critical medical intervention in real-time by communicating
patient’s medical information via a network from individual to
hospital, and most importantly control (actuate) vital health
signals (e.g., cardiac pacing, insulin level, blood pressure) within
personalized homeostasis.

To maintain good health, prevent health complications,
and/or avoid fatal conditions calls for a cross-disciplinary
approach to HCPS design that rely on recent advances in
statistical physics, non-linear dynamics, machine learning, and
artificial intelligence. There is a palpable need for a multi-
disciplinary approach to consolidate the current state of art in
order to respond to the following fundamental challenges. First
and foremost, the fundamental properties (e.g., non-stationarity,
fractality) of human physiology in terms of mathematical
formalism needs to be characterized in order to facilitate the
understanding of its complexity (West, 1991; Bassingthwaighte
et al., 1994; Stanley et al., 1999; Amaral et al., 2001; Eke et al.,
2002; Ivanov et al., 2009; Xue and Bogdan, 2019) in healthy
homeostasis, as well as in conditions associated with aging and
diseases (Mietus et al., 2000; Ashkenazy et al., 2001; Bernaola-
Galvan et al., 2001; Schulte-Frohlinde et al., 2001; Goldberger
et al., 2002; Schmitt and Ivanov, 2007).

Indeed, defining the trajectory of the healthy aging process
in terms of its complexity metrics (Goldberger et al., 2002)
seems essential to keep the health care system on target. At
this end, Mukli et al. demonstrated the utility of multifractal
metrics of cerebral hemodynamics as biomarkers of the healthy
aging process. In particular, these authors—by applying a novel
adaptive bimodal multifractal analysis (Mukli et al., 2015; Nagy
et al., 2017) to enhanced human cerebrocortical functional
Near Infrared Spectroscopy (fNIRS) data—disentangled the
neurogenic from vasogenic components in brain dynamics that
were then shown being attenuated in the course of healthy
aging. Racz et al. applied multifractal time series analysis (Mukli
et al., 2015) to investigate dynamic functional connectivity (DFC)
reconstructed from resting-state electroencephalography (EEG)
measurements. This work demonstrated that metrics of DFC
as captured in the temporal evolution of graph theoretical
measures—even under resting-state conditions—dynamically
fluctuated according to region-specific true multifractal temporal
patterns. Mono- and multifractal measures of the generalized
Hurst exponent for individual functional connections exhibited
a spatial pattern well in sink with the overall functional
organization of the brain. The authors propose that multifractal
analysis can provide further details in the description of DFC
to most methods currently applied in the field, and could
serve as a valuable tool for a better characterization of healthy
and pathological brain functions. Akhrif et al. performed an
adaptive monofractal analysis of functional magnetic resonance
(fMRI) data and estimated the Hurst exponent of the impulsivity
network. This study not only demonstrates that the Hurst
exponent can be used as a biomarker to quantify deviations in
network functions at early stages, but also serve as a control
knob in therapeutic strategies aimed at delaying the onset and
improving treatment of disorders. França et al. demonstrated that
multifractal analysis can provide important relevant information

for mining the intracranially recorded EEG data and extracting
features that can be used for machine learning-based diagnosis
outperforming other techniques like signal variance or power
spectrum. In particular, they demonstrated that there may
exist an optimal time scale between the sampling frequency
and epoch length that can best influence the detection
accuracy of temporal changes in multifractality associated
with epileptic seizures. While this study has identified that
multifractal algorithms perform well on EEG and simulated
data alike, it also brought attention to the issue of optimal
time scales at which machine learning-based diagnosis should
be done.

With the goal of mathematical characterization of blood
glucose variability, initially scrutinized in Ghorbani and Bogdan
(2013). Kohnert et al. provided a cross-sectional investigation
and compared the relationships between indices of non-linear
dynamics and traditional glycemic variability, as well as their
potential application in diabetes control. Although this analysis
showed that the Poincaré plot measures the multiscale entropy
(MSE) index, and the detrended fluctuation analysis exponents
can help to discriminate between the type 1 and type 2 diabetes
(e.g., theMSE index decreased consistently from the non-diabetic
to the type 1 diabetic group), it also highlighted the need to
develop more advanced complexity measures in order to better
characterize the glycemia. These fractal-based observations can
have a significant impact on the development of efficacious
artificial pancreas with increased patient’s QoL.

In order to extract the multifractal characteristics and
determine disease signatures, Reyes-Manzano et al. investigated
the multifractal behavior of the beat-to-beat heart dynamics
captured in RR-interval fluctuations in fibromyalgia patients
(FM) via the multifractal detrended fluctuation analysis
(Kantelhardt et al., 2002). The multifractal and non-linear
behavior exhibited a decrease in patients with fibromyalgia.
Consequently, this investigation not only highlights the role
of the dysfunctional autonomic control in the pathogenesis
of fibromyalgia, but it can also provide a theoretical and
algorithmic foundation for HCPS. With the goal of analyzing
the cardiac abnormalities observed in heart failure disease,
Platiša et al. exploited the short-term and long-term scaling
exponents obtained via the detrended fluctuation analysis
(DFA) (Peng et al., 1995; Hu et al., 2001; Chen et al., 2002,
2005; Xu et al., 2005; Ma et al., 2010) for discriminating the
deterioration in cardiac autonomic nervous system control.
Their study demonstrated that the heart failure patients
exhibited a more pronounced heart rate asymmetry and a
higher long-term scaling exponent. Moreover, a ratio between
the DFA short-term and long-term scaling exponents can
help at discriminating between various types of heart failure
disease states.

To provide a deeper understanding of atrial fibrillation
disease, Attuel et al. described a model of cardiac excitable
cell network which is capable to reproduce the experimentally
observed multifractal intermittent nature of the cardiac impulse
energy. In order to investigate the cardiac electrophysiological
and arrhythmogenic properties, Tse et al. studied the beat-to-
beat variability in action potential duration data and concluded
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that the atrial monophasic action potential recordings (MAPs)
exhibits greater degree of variability than the ventricular MAPs.
Along the same lines of exploiting non-linear metrics in various
disease states, Ghita et al. investigated the tissue heterogeneity
and dynamic non-linearity in respiratory impedance data and
quantified the sensitivity of the forced oscillation technique to
various degrees of obstruction in patients suffering from chronic
obstructive pulmonary disease (COPD). They showed that the
degree of non-linearity correlates well with various degrees
of COPD.

We need rigorous mathematical techniques and a general
theoretical framework to characterize the interactions between
integrated physiologic systems with different output dynamics
(Bartsch et al., 2012; Liu et al., 2015; Lin et al., 2016;
Ivanov et al., 2017), as well as other related processes (e.g.,
metabolic, proteomic, genomic), and understand their role
within the overall network physiology of healthy dynamics
(Ivanov et al., 2016). Along the lines of characterizing
the interactions across scales, Ghorbani et al. investigated
the individual gene expression dynamics and the cross-
dependency among genes and transcription factors in the
context of gene regulatory networks corresponding to Escherichia
coli and Saccharomyces cerevisiae bacteria. This initial study
demonstrated that the interaction between genes and linked
transcription factors exhibit multifractal and long-range cross-
correlated characteristics with implications for understanding
genome-level dynamics.

Finally, there is a fundamental need for deeper understanding
of the mechanisms of stochastic feedback and variability in
biological systems and physiological processes (Ivanov et al.,
1998; Ashkenazy et al., 2002; Lo et al., 2002). This is
essential for developing adequate approaches to mathematically
characterize homeostasis as well as for defining new control
strategies accounting for intra- and inter-patient specificity—
a truly mathematical approach to personalized medicine (Xue
and Bogdan, 2017; Bogdan, 2019; Yang and Bogdan, 2020).
For example, the multi-scale interactions and feedback among
cognitive events may play an essential role in information
processing in the prefrontal cortex (Racz et al., 2017). Hu et
al. demonstrated that the optimal performance of the working
memory is concurrent with the critical dynamics at the network
level and the excitatory and inhibitory balance at the neuron level.
Moreover, this study suggests the existence of a unified multi-
scale optimal state for the prefrontal cortex, which further can
be modulated by dopamine opening new therapeutic strategies
in HCPS.

The works presented in this Research Topic collection as
well as current advances in the field of fractal and multi-fractal
investigations of physiological systems structure and dynamics,
and their applications to homeostatic control, clinical diagnosis,
and the development of cyber-physical systems in healthcare
outline a new horizon of multidisciplinary cooperation with
new challenges. There is an urgent need for adopting a cross-
scale perspective and a corresponding theoretical framework to
investigate the multi-scale regulatory mechanisms underlying
the overall network physiology and its relation to physiological
states and functions emerging at the organism level in health and

disease. When dealing with the heterogeneity, multi-modality
and complexity of physiological processes, we need rigorous
mathematical and algorithmic techniques that can extract causal
interdependencies between systems across different scales while
overcoming various noise sources. For example, obtaining high-
frequency genomic and proteomic sensing data over large spatial
and temporal dimensions can open new frontiers and lead to
the discovery of basic laws of regulation with broad clinical
applications. Consequently, progress in this direction will require
new algorithmic strategies to quantify time-varying information
flow among diverse physiological processes across scales, and
determine how it influences the global dynamics of complex
physiological networks. Intrinsically related with future efforts
on quantifying causal dependencies and control principles in
biological and physiological networks, it will be essential to
develop robust optimization algorithms capable to reconstruct
or infer the structure and dynamics of complex interdependent
networks while overcoming partial observability, noise induced
defects and adversarial interventions caused by bacterial or viral
infections. Lastly, the biomedical and engineering communities
need to develop new control methodologies that do not seek to
only enforce a specific reference value (that proved beneficial
for some patients), but rather ensure that the physiological
complexity and multifractality are restored to the healthy profiles
when abnormalities are detected—e.g., a mathematical strategy to
abstract the complexity of brain network through an approximate
transfer function and a new minimal control strategy allows
one to efficiently enforce a healthy fractal profile when frailty is
early detected.

Toward this end, with these challenges also unique
opportunities arise for interdisciplinary research. From
the interactions of statistical physics, non-linear dynamics,
information theory, probability and stochastic processes,
artificial intelligence, machine learning, control theory and
optimization, basic physiology and medicine new theoretical
and algorithmic foundations will emerge for mining, analyzing,
and controlling the network physiology. Ultimately, such
efforts would lead to a new class of network-physiology-derived
diagnostic and prognostic markers with innovative applications
in cyber-physical systems and clinical practice.
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