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Editorial: Kernel Methods: Current Research
and Future Directions

The introduction of Support Vector Machines (SVMs) in COLT 1992 (Boser, Guyon, &
Vapnik, 1992) has been an important innovation in the field of Machine Learning. In addi-
tion to their accuracy, a key characteristic of SVMs is their mathematical tractability and
geometric interpretation. This has facilitated a rapid growth of interest in SVMs, resulting
in the underlying concepts and techniques being generalized and formalized, and shedding
light on new connections with other approaches.

SVMs have been successfully extended from basic classification tasks to handle regres-
sion, operator inversion, density estimation, novelty detection, and to include other desirable
traits, such as invariance under symmetries and robustness in the presence of noise. In fact,
the entire research direction in learning theory concerned with large margin classification
can be traced back to SVMs (Shawe-Taylor et al., 1998; Vapnik, 1998). Support Vector
Machines (along with Adaboost) have, in fact, been one of the few algorithmic approaches
originally motivated by learning theory and subsequently introduced into the standard tool-
box of practitioners.

Since the inception of this subject, a number of systems have been recognized (or adapted)
to implement a similar learning bias (Schapire et al., 1998; Bennett et al., 2000). Further-
more, linear algorithms can be converted into nonlinear algorithms through the use of kernel
substitution (implicitly mapping data into a high-dimensional feature space) and this idea
has been successfully applied to other algorithms, such as PCA, clustering, and Bayesian
classifiers. At the same time it has been recognized that regression and classification systems
based on Gaussian Processes (Williams, 1998) are in fact kernel-based learning systems
and are therefore closely connected to SVMs.

The result is that hundreds of articles have been written, extending in one way or another
the ideas of that first paper, and creating a research field that has come to be known as
Kernel-Based Learning Methods, or Kernel Methods (KMs) for short. A website jointly
managed by an editorial board acts as a coordinating node for this new research com-
munity (www.kernel-machines.org), hosting papers, software, a list of researchers, and
links.

Books have begun to appear in the last few years (Cristianini & Shawe-Taylor, 2000;
Schölkopf & Smola, to be published) providing a unified foundation for this heterogeneous
field. Since 1997 an annual workshop has been held regularly at the Neural Information
Processing Systems (NIPS) conference, and the papers of the 1997 and 1998 workshops have
been collected in edited books (Schölkopf, Burges, & Smola, 1999; Smola et al., 2000).
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Continuing this tradition, this special issue is mostly (but not exclusively) based on the
papers presented in the 1999 NIPS workshop on kernel methods.

After attracting considerable interest from the more theoretically-inclined research com-
munity, kernel methods are now also part of the toolbox of many practitioners. There are
several reasons for the success of this new class of learning methods. The main one is cer-
tainly a series of remarkably successful applications in fields as diverse as text categorization,
bioinformatics and machine vision. SVMs do work very well in practice, as witnessed, for
example, by one of the articles in this issue, in which the best current performance on the
MNIST digit recognition benchmark is demonstrated.

Another reason for their success stems from their appealing properties. One is their
modularity: any kernel-based learning algorithm can work with any kernel function and vice
versa. In this way one can separate the two tasks of feature selection (part of the kernel design
effort) and learning (part of the learning machine design). The kernel functions themselves
can be derived in a modular way, combining simple kernels to obtain complex ones.

The hypothesis constructed by most KMs depends only on a subset of the training data
points, called “support vectors”, which can also be viewed as the most informative training
patterns. Removal of the non-support vectors and re-training results in the same solution.
In many cases the support vectors form a small subset of the training data, resulting in a
sparse solution, although methods to significantly reduce the number of effective support
vectors (“reduced set methods”), and thus greatly increase speed in test phase, have also
been invented (Burges, 1996). It turns out that the property of sparseness has consequences
both for learning theory (compression bounds) and for implementation.

Additional advantages of this approach can be appreciated in comparion to neural net-
works. For SVMs there are only a small number of tunable parameters, and training amounts
to solving a convex quadratic programming problem hence giving solutions that are global,
and usually unique (Burges & Crisp, 2000). The absence of local minima is a significant
benefit during the learning process, with the learning parameters converging monotoni-
cally towards the solution. In addition the architecture of the learning machine is given by
the algorithm. For all these reasons, kernel methods have become an increasingly popular
alternative to neural network approaches.

Most of the papers in this Special Issue were initially presented as talks at the Neural
Information Processing (NIPS) Workshop on Support Vector Machines and other Kernel
Based learning methods held in Breckenridge, Colorado in December, 1999. Broadly, the
papers can be divided into theoretical analysis, the development of new algorithms, and
new applications. Theoretical innovations are presented using ideas from statistical learn-
ing theory, Bayesian analysis and statistical mechanics. New algorithms are presented for
improving generalization performance in addition to efficient implementations that can scale
up to hundreds of thousands of datapoints. Finally, new application studies are presented
for text categorization, digit recognition and bioinformatics.

In the first paper of the volume Chris Williams (On a connection between kernel PCA
and metric multidimensional scaling) shows that, for some kernel functions, Kernel PCA
algorithm can be interpreted as a form of multi-dimensional scaling. This leads to a new al-
gorithm for multidimensional scaling based on eigencomputations. Peter Sollich (Bayesian
Methods for Support Vector Machines: Evidence and Predictive class probabilities) provides
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a framework for interpreting SVMs as maximum a posteriori (MAP) solutions to inference
problems with Gaussian process priors. This not only gives an alternative interpretation
of the SVM algorithm but also provides new approaches to model selection and tuning.
Sebastian Risau-Gusman and Mirta Gordon (Hierarchical Learning in polynomial Sup-
port Vector Machines) use methods from Statistical Mechanics to investigate the general-
ization properties of a class of polynomial SVMs. Whereas arguments from statistical learn-
ing theory give loose upper bounds on generalization, this approach can give new insights
for the averaged generalization error of SVMs.

The paper A Probabilistic Framework for SVM Regression and Error Bar Estimation by
Junbin Gao, Steve Gunn and Chris Harris derives an expression for the evidence and an error
bar approximation formula for regression problems. Tong Zhang in On the Dual Formulation
of Regularised Linear Systems with Convex Risks” presents a general approach to linear
prediction algorithms with a number of known schemes given as special cases. The paper
Choosing Multiple Parameters for Support Vector Machines, by Olivier Chapelle, Vladimir
Vapnik, Olivier Bousquet and Shayan Mukherjee addresses the problem of automatically
tuning parameters for pattern recognition SVMs. This is done by minimizing some leave-
one-out estimates of the generalization error by gradient descent.

Dennis DeCoste and Bernhard Schoelkopf (Training Invariant Support Vector Machines)
review several known methods for incorporating prior knowledge about invariances into
SVMs. They report important new results with a new performance record on the stan-
dard MNIST benchmarking dataset for handwritten digits recognition (the lowest reported
test error) with SVM training times significantly faster than previous SVM methods. Yi
Lin, Yoonkyung Lee and Grace Wahba (Support Vector Machines for Classification in
Nonstandard Situations) consider the problem of learning when the cost of misclassifi-
cation is different in the two classes. Theodore Trafalis and Alexander Malyscheff (An
Analytic Center Machine) propose a new algorithm with reported superior generalization
performance over SVMs. Ayhan Demiriz, Kristin Bennett and John Shawe-Taylor (Linear
Programming Boosting via Column Generation) present a boosting technique (LPBoost)
which can be applied to any boosting task formulated as a linear programming problem. In
particular they examine its use with a 1-norm soft margin cost function which can be used to
train a SVM. This approach is attractive theoretically and can be readily implemented using
fast column generation techniques, for example. Olvi Mangasarian and David Musicant
(Large Scale Kernel Regression via Linear Programming) describe a new linear program-
ming formulation of SVMs, which presents several advantages both from the point of view
of scaling and of robustness to noise.

Scalability is a central problem if kernel methods are to be used on real world problems
which may contain millions of datapoints. Many different approaches have been proposed
to handle large datasets and improve the speed of convergence to a solution. Gary Flake
and Stephen Lawrence (Efficient SVM Regression Training with SMO) give a generaliza-
tion of the SMO algorithm of John Platt to the problem of regression. In doing so they
also modify the algorithm to increase its efficiency, improving its convergence rate by an
order of magnitude. Chih-Wei Hsu and Chih-Jen Lin (A Simple Decomposition Method
for Support Vector Machines) address the problem of working-set selection for the decom-
position method, a common procedure for training SVMs on large datasets. The simple
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solution they provide turns out to be a powerful one, as demonstrated by the experimental
results. Pavel Laskov (Feasible Direction Decomposition Algorithm for Training Support
Vector Machines) presents a decomposition algorithm for training SVMs based on the
method of feasible directions, and discusses its relations with other related algorithms.
Sathiya Keerthi and Elmer Gilbert (Convergence of a Generalized SMO Algorithm for SVM
Classifier Design) study a class of Support Vector Algorithms that generalize the simple
and efficient SMO algorithm and give proof of convergence. This class of algorithms is
significantly faster than the standard SMO. Yi Li and Phil Long (The Relaxed Online Maxi-
mum Margin Algorithm) describe a new incremental algorithm for training linear threshold
functions: ROMMA. It can be viewed as an approximation to an algorithm that repeatedly
chooses the hyperplane which classifies previously seen examples correctly with the maxi-
mum margin. A mistake bound, that is the same as for the perceptron, is proven. This is the
first worst-case performance guarantee of maximal margin classifiers.

The raison d’etre of machine learning algorithms is performance on real world prob-
lems. SVMs have been successfully applied in many fields, but they seem to have been
particularly successful in application to text categorization, bioinformatics and machine
vision problems where the high dimensionality of the problem often prohibits the use of
alternative learning techniques. Apart from the digit recognition results of Dennis DeCoste
and Bernhard Schoelkopf, two further application studies are given. Isabelle Guyon, Jason
Weston, Stephen Barnhill and Vladimir Vapnik (Gene Selection for Cancer Classification
using Support Vector Machines) describe the application of SVMs to gene expression data
derived from DNA microarrays, one of the fields where the application of SVMs is most
promising. In particular, they present an iterative procedure for feature selection which can
be used to identify highly informative genes for cancer prediction. Edda Leopold and Jorg
Kindermann (Text Categorization with Support Vector Machines: how to Represent Text in
Input Space?) apply SVMs to the important domain of text categorization, trying different
representation schemes for the text documents. In particular, they report no advantage in
performing the expensive step of stemming, and a strong dependence of the performance
on the choice of term-weighting schemes.

Overall, the papers in this volume represent an excellent summary of the important
developments currently underway in this subject. Record performance on important datasets,
and the application to very diverse domains, illustrate the power of these techniques and
we expect many new successful applications in coming years.

We would like to thank Rich Caruana and Sue Becker for their help with the arrangements
for the NIPS Workshop. We would also like to thank the 58 referees who played an important
role in the preparation of this volume.

Nello Cristianini
Colin Campbell
Chris Burges
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Notation used

K : Mercer kernel e.g. K (xi , x j )

F : feature space (φ(x) is mapping function to feature space).
n: dimensionality of input space
xi : input patterns
yi : labels or target values.
�: number of training examples
w: weight vector
b: bias in decision function
d: VC dimension
αi : Lagrange multiplier
ξi : slack variables
H : Hessian for quadratic programming
L: primal lagrangian

W : dual lagrangian


