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Editorial on the Research Topic

Mechanisms Guarding the Genome

The genomic integrity of our cells is critical to their normal function, and is protected

though the activity of many diverse and essential signalling pathways, with dysregulation

of these pathways leading to increasing levels of genomic instability (Hanahan and

Weinberg, 2011; Kass et al., 2016; Hanahan, 2022). Genomic instability is a recognized

hallmark of cancer (Negrini et al., 2010; Hanahan, 2022), and is known to drive

tumourigenesis though its impact on mutations, chromatin organisation, and the

dysregulation of gene regulation, facilitating tumour development (Aguilera and

Gómez-González, 2008; Burrell et al., 2013). Key molecular mechanisms and

processes regulating genome stability include the DNA damage response (DDR),

epigenetic reprogramming, and organelle abnormalities (e.g. centrosome

amplification) (Ciccia and Elledge, 2010; Bettencourt-Dias et al., 2011; Suvà et

al., 2013). Improved understanding of these intrinsic cancer-specific mechanisms

informs the development, and application of, the next generation targeted

therapeutics (J.A.L Brown J. A. L. et al., 2016; Kraus, 2018; Matchett et al., 2017;

Prakash et al., 2018).

The review Tumor Hypoxia Drives Genomic Instability by Tang et al. explores the

mechanisms associated altered and dysregulated in the hypoxic tumour environment. The

paper focuses on how tumour hypoxia induces genome instability, though activation and

modulation of DNA damage responses (including double strand break repair, mismatch

Repair and Base excision repair). The paper also explores the effects of hypoxia on

therapeutic treatment responses, and thier manipulation to maximize therapeutic effects

of current and future treatments.

Chromatin bridges can form from alterations in DNA metabolism (including

chromosome mis-segregation) are resolved before cells division. The Last Chance

Saloon by Hong et al. reviews the consequences of chromatin bridges on chromosome
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segregation, cellular replication and genomic instability. They

detail the processes leading to chromatin bridge formation, the

cellular responses when chromatin bridges are detected

(abscission checkpoint activation), and the how chromatin

bridges are processed (by the TREX1 exonuclease and LEM-3/

ANKLE1 endonucleases). They highlight the role and elements of

the NoCut checkpoint involved in protecting genome stability

though the management of chromatin bridges, and how father

investigation of these nucleases may be relevant of many solid

tumour types.

The review by Chen et al. Recent Advances in the Role of

Discoidin Domain Receptor Tyrosine Kinase 1 and Discoidin

Domain Receptor Tyrosine Kinase 2 in Breast and Ovarian

Cancer concentrates on discussing the role of the

transmembrane Discoidin domain receptor tyrosine kinases

(DDRs). The review discusses the activation of the kinase

activity DDR1 and DDR2 to regulate MAPK signaling, Notch

signaling pathways and alter the tumour microenvironment

influencing cell invasion and metastasis. The authors highlight

the role of DDR1 and DDR2 in breast and ovarian tumour

development and progression, and how their dysregulation can

alter treatment responses.

Homologues recombination (HR) is a high-fidelity

mechanism for protecting genome integrity from double

strand breaks (Chapman et al., 2012; Ranjha et al., 2018). HR

is frequently altered in many cancers, making it high priority

target for the development of new therapeutics (Gent et al., 2001;

Chernikova et al., 2012; Sun et al., 2020). The research article

RAD51AP1 and RAD54L can underpin two distinct RAD51-

dependent routes of DNA damage repair via homologous

recombination by Selemenakis et al. identifies and explores

differential roles for RAD51AP1 and RAD54L in homologues

recombination, though RAD51-dependent signalling

mechanisms. They reveal the existence of the RAD51AP1-

and RAD54L-dependent HR sub-pathways, and show that

RAD51AP1 can compensate for RAD54L loss. Importantly,

the demonstrate that cell deficient in RAD51AP1 and

RAD54L are sensitized to the PARP inhibitor Olaparib.

Ataxia Telangiectasia Mutated (ATM) is a key regulator of

the DNA double strand break response (DDR), protecting

genome integrity against DNA double strand breaks (Clouaire

et al., 2017; Price and D’Andrea, 2013). Importantly, the

activation of ATM’s DDR-dependent activity is primarily

regulated by acetylation from the lysine acetyltransferase

Tip60 (Sun et al., 2005; Bakkenist and Kastan, 2015; James

A.L.; Brown JA. L. et al., 2016). Likhatcheva et al. used a

combination of a Tip60-targeted inhibitor (TH 1834) (Gao

et al., 2014) and siRNA explore the ATM-Tip60 triggered

signaling dependencies under hypoxic conditions (0.1%

oxygen), in A Novel Mechanism of Ataxia Telangiectasia

Mutated Mediated Regulation of Chromatin Remodeling in

Hypoxic Conditions. They found ATM activation (pS 1981)

under hypoxic stress does require Tip60 activity, in a

H3K9me3 positive heterochromatic state. Under these

hypoxic conditions, activated ATM regulated H3K9me3

levels through the downregulation of MDM2, which

protects Suv39H1 levels (facilitating Suv39H1-dependent

H3K9me3). This work reveals the importance of

understanding changes to genomic integrity signaling

cascades in a hypoxic environment (which better reflects

the intra-tumour environment), which will inform new

anti-cancer treatment strategies and options.

The research article The E3 Ubiquitin Ligase NEDD4L

Targets OGG1 for Ubiquitylation and Modulates the Cellular

DNA Damage Response by Hughes and Parsons investigated

the role of OGG1 (8-Oxoguanine DNA glycosylase) in

protecting genome stability through the base excision

repair (BER) pathway. The BER pathway protects the

genome from reactive oxygen is 8-oxoguanine (8-oxoG)

induced lesions, which can impair DNA replication and

genomic integrity (Tubbs and Nussenzweig, 2017). Here

the mechanisms regulating OGG1 in response to oxidative

stress were examined. They found that NEDD4-like

(NEDD4L) was a E3 ubiquitin-protein ligase, and bound

to OGG1. In vitro NEDD4L ubiquitylates lysine 341 of

OGG1, inhibiting its DNA glycosylase/lyase activity.

Ionizing radiation (IR) induced oxidative stress, which

enriched OGG1 levels, decreasing irradiated cells survival

while conversely increasing their DNA repair capacity. This

suggests that OGG1 mediates the formation intermediate DNA

lesions which are reduce cellular survival. This work reveals

how OGG1 protein mediates BER, maintaining genome

stability and influencing cell survival.

This collection of research papers and reviews highlight the

importance of how understanding the intrinsic cellular

environment impacts on genome integrity, by mediating the

choice and function of DNA repair pathways. This is illustrated

by the research papers exploring the effects of hypoxia on

genome integrity signalling. We anticipate this collection will

be of interest to both researchers and clinician scientists, and

highlights new avenues and targets for therapeutic development

as anti-cancer treatments.
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