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Editorial on the Research Topic

Stress and reproduction in animal models
It is well known that reproductive functions are suppressed or altered under stress.

Environmental factors, infection, malnutrition, and chronic strenuous experience can all

lead to alterations in reproductive functionality in animals. Stressors interfere with the

timing and regulation of reproductive hormones, such as gonadotropin-releasing hormone

(GnRH), gonadotropin-inhibitory hormone (GnIH), gonadotropins and sex steroids and

processes within the hypothalamic-pituitary-gonadal (HPG) axis (1–5). While similar in

function, these processes and their related hormones can present themselves differently in

animal models compared to humans. Understanding these differences is crucial to

furthering our understanding of how research with animal models should be applied to

humans and how it can advance commercial applications for those animal models. This

Research Topic compiles four original research that enhance and expand our

understanding of how stress affects reproductive functionality in animal models.

Photoperiod is a key factor for organisms to reproduce seasonally to maximize the

survival of their offspring. The thyroid gland plays an important role in organismal

development and homeostasis including regulation of seasonal reproduction in seasonally

breeding animals (6). In sheep, although thyroidectomy has no clear effect on the transition

to reproduction in late summer, it blocks the transition to non-breeding in late winter (7).

The first original research in this Research Topic performed a comprehensive analysis of

circular RNA (circRNA) profiles in the thyroid gland of ovariectomized (OVX) plus E2
treated ewes at short and long photoperiods by whole transcriptome sequencing. CircRNAs

are stable biomolecules that have a covalently closed structure and are not degraded by

RNase (8). CircRNAs interact with microRNAs, and they can regulate immune responses

and behavior (9). However, circRNA profiles in the thyroid gland under different

photoperiods were completely unknown. This study detected 37,470 novel circRNAs in

different photoperiods. Functional enrichment annotation analysis featured inositol

phosphate metabolism, cGMP-PKG, calcium, MAPK signaling pathways, and oocyte

meiosis that influence photoperiod responses in sheep. This study also revealed target

binding sites for microRNAs in circRNAs by competitive endogenous RNA network

analysis. The results of this study provide new information on circRNA function and

changes in the thyroid gland under different photoperiods in sheep.

The second paper performed a meta-analysis on 517 papers published in the past 30

years about the effect of androgens on the ovulation rate in sows. Previous studies reported
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that exogenous testosterone (T) injection improves the ovulation

rate in sows (10, 11). However, there is a disagreement about the

effect of T injection on the survival rate of embryos in sows (11, 12).

There are reports showing that dihydrotestosterone (DHT)

injection decreases the survival rate of embryos in sows (11, 13).

The meta-analysis showed that both T and DHT injections are

positively related to the ovulation rate. However, T did not have a

relevant effect on blastocyst survival rate. On the other hand, DHT

had a negative phase regarding its effect on blastocyst survival

rate. This paper concludes that future research should focus on

the mixed use of T and DHT to improve the litter size of

sows. The authors also discuss that the timing of their usage

should be consistent with the changes in the androgen levels in

future research.

The third original research paper aims to explore the mechanism

of dysfunction in testosterone production in obese male mice exposed

to chronic high-altitude hypoxia. Obesity is frequently characterized

by low testosterone level that impairs male fertility, bone

mineralization, fat metabolism, and muscle mass (14). Oxidative

stress (OS) in the testis is thought to play a critical role in male

hypogonadism (15). OS is also thought to be a crucial pathogenic

factor in male hypogonadism induced by obesity (16). Hypoxia

increases the production and accumulation of reactive oxygen

species (ROS) that causes OS (17). Chronic high-altitude hypoxia

aggravated low testosterone production in obese male mice. The testis

of the mice indicated OS and histological damages. Proteomic analysis

in the testis demonstrated that pathways related to testosterone

production and function were altered including cholesterol

metabolism, steroid hormone production, peroxisome proliferator-

activated receptor signaling pathway, as well as OS responses and

nitinol metabolism. StAR, DHCR7, NSDHL, CYP51A1, FDPS, FDX1,

CYP11A1, ALDH1A1 and GPX3 were downregulated in Obese/

Control and Obese-Hypoxia/Obese groups. The authors conclude

that chronic hypoxia may exacerbate low testosterone production in

obese male mice through key proteins related to cholesterol and

steroid hormone biosynthesis, OS responses, and retinol metabolism.

The last original research investigated the effects of a symbiotic

combination (Syn) of Lactobacillus gasseri 505 (505) and Cudrania

tricuspidata leaf extract (CT) on the HPG axis of mice under

chronic stress. The authors’ previous study in mice showed that a

probiotic strain 505 isolated from infant feces and its Syn with CT a

newly described plant-based prebiotics improved antioxidative and

anti-inflammatory activities and prevented hepatotoxic effects

associated with colorectal cancer (18, 19). CT contains a variety

of phenolic acids and flavonoids such as predominant neo-

chlorogenic acid, chlorogenic acid, caffeic acid, and quercetin-3-

glucoside (20). Unpredictable chronic mild stress (UCMS) group

mice were exposed to repeated mild physical and psychological

stressors including sleep cycle changes, wet bedding, tilted cages,

changes in illumination, water deprivation, restraint, and cold-

water bath in randomized orders each day, while the control

group mice remained undisturbed except housekeeping during

the experiment. Syn suppressed UCMS-induced increase in the

serum level of corticosterone. Syn also repaired histopathological

damage under UCMS. Down regulation in the transcription levels
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of GnRH, GnRH receptor, gonadotropins, genes related to testicular

development and steroidogenesis by UCMS was also inhibited by

Syn. The authors conclude that Syn could attenuate testicular

dysfunctions induced by UCMS.

The research articles investigated the reproductive activities of

sheep, sows and mice focusing on the thyroid gland and the HPG

axis. The analyses included the mechanism of how stress suppresses

reproductive activities and prevents the negative effect of stress on

reproduction. The four articles thus contribute to our deeper

understanding of how stress affects reproduction and its

prevention in animal models.
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