
Mach Learn (2011) 82: 1–42
DOI 10.1007/s10994-010-5216-5

Editorial survey: swarm intelligence for data mining

David Martens · Bart Baesens · Tom Fawcett

Received: 22 April 2010 / Revised: 24 August 2010 / Accepted: 25 August 2010 /
Published online: 17 September 2010
© The Author(s) 2010

Abstract This paper surveys the intersection of two fascinating and increasingly popular
domains: swarm intelligence and data mining. Whereas data mining has been a popular
academic topic for decades, swarm intelligence is a relatively new subfield of artificial in-
telligence which studies the emergent collective intelligence of groups of simple agents. It
is based on social behavior that can be observed in nature, such as ant colonies, flocks of
birds, fish schools and bee hives, where a number of individuals with limited capabilities
are able to come to intelligent solutions for complex problems. In recent years the swarm
intelligence paradigm has received widespread attention in research, mainly as Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO). These are also the most pop-
ular swarm intelligence metaheuristics for data mining. In addition to an overview of these
nature inspired computing methodologies, we discuss popular data mining techniques based
on these principles and schematically list the main differences in our literature tables. Fur-
ther, we provide a unifying framework that categorizes the swarm intelligence based data
mining algorithms into two approaches: effective search and data organizing. Finally, we
list interesting issues for future research, hereby identifying methodological gaps in cur-
rent research as well as mapping opportunities provided by swarm intelligence to current
challenges within data mining research.
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1 Introduction

1.1 Swarm intelligence

Swarm intelligence studies the collective behavior of systems composed of many individ-
uals interacting locally with each other and with their environment. Swarms inherently use
forms of decentralized control and self-organization to achieve their goals (Dorigo 2007).
Researchers in computer science have developed swarm-based systems in response to the
observed success and efficiency of swarms in nature to solve difficult problems. In such bi-
ological swarms, the individuals (ant, bee, termite, bird or fish) are by no means complete
engineers, but instead are simple creatures with limited cognitive abilities and limited means
to communicate. Yet the complete swarm exhibits intelligent behavior, providing efficient
solutions for complex problems such as predator evasion and shortest path finding.

For example, ants communicate only indirectly through their environment by leaving
behind a substance called pheromone which attracts other ants. Based on this indirect com-
munication, shortest paths between the food source and the nest are found, even in the event
of changing environments and failure of individual ants. Bees seeking a new location for
their beehive is another example. Initially, several scouts are sent out to scope potential lo-
cations. Upon returning, they perform a specific dance that encodes the direction of the new
found site. The strength of the bee’s dance indicates the enthusiasm for the specific location.
As soon as enough scouts vote for the same location, the whole swarm moves.

By mimicking nature inspired swarming behavior in computing methodologies, tech-
niques emerge for hard optimization problems that are robust, scalable and easily distributed.
A distinction can be made between Ant Colony Optimization (ACO), Particle Swarm Op-
timization (PSO) and prey models. The last decade has seen an increasing use of nature in-
spired computing techniques in engineering applications. Successful applications of swarm
intelligence include the modeling of agent behavior (such as the large numbers of fighting
individuals in the battle scenes of the movie Lord of the Rings1), and various optimization
problems, such as the routing of packages through networks (Caro and Dorigo 1998), the
traveling salesman problem (Dorigo et al. 1996), scheduling (Blum 2005a), robotics (Dorigo
2009) and data mining, the topic of this survey. Figure 1 demonstrates that the number of
papers published on these topics (as indexed by the Web of Science2) shows a sharp increase
since early 2000. Although the paper counts indicate that PSO seems most popular, ACO is
also increasing in popularity. Prey models show an increase in popularity as well.

1.2 Swarm Intelligence for Data Mining

The popularity of swarm intelligence has also instigated the development of numerous data
mining algorithms, which will be discussed in this overview. Although many differences ex-
ist among the proposed techniques, Fig. 2 provides a first attempt for a unifying framework
of data mining techniques based on swarm intelligence.

Broadly speaking, we observe two categories: the first category consists of techniques
where individuals of a swarm move through a solution space and look for solutions (or so-

1www.massivesoftware.com.
2www.isiknowledge.com.

http://www.massivesoftware.com
http://www.isiknowledge.com
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Fig. 1 Number of papers written on the subject, from Web of Science

lution components) for the data mining task at hand, an approach we name effective search.
The ACO and PSO approaches consist of individuals wandering through the search space
in some effective manner that combines exploration and exploitation. For ACO, this search
space is discrete and a solution is defined implicitly by the path taken by an ant. For PSO
the search space is continuous and the locations within the search space are updated explic-
itly. In the second category, named data organizing, swarms move data instances that are
placed on a low-dimensional (typically two-dimensional) feature space in order to come to
a suitable clustering or low-dimensional mapping solution of the data. In this category of
clustering techniques fall ant-based sorting and prey models.

A high-level algorithmic description of these approaches is described in Algorithms 1
and 2. Both approaches start by defining the environment in which the swarm individuals
will operate, followed by an initialization of problem parameters. Such parameters could
include a solution instantiation that is gradually constructed in the first approach, or the
number of clusters in the second approach. All swarm intelligence based techniques first
initialize the search space parameters (such as pheromone levels or ant, particle or prey loca-
tion on the low dimensional map), after which (some) individuals of the swarm commence
their task of creating data mining solutions, optimizing some defined objective function.
The objective functions that are optimized vary greatly, even across algorithms of the same
approach. The choice made for each algorithm is listed in Tables 1 and 2 of Sect. 5. In Algo-
rithms 1 and 2, the main differences between the two approaches are denoted in italic font.
Firstly, the effective search approach allows for swarms to construct solution components,
which is not observed in the second approach. The main difference however is the manner
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Fig. 2 General framework for swarm intelligence for data mining. The effective search approach includes
techniques using the ACO and PSO metaheuristic, which comprise of individuals wandering through the
search space in some effective manner that combines exploration/exploitation. For ACO, this search space is
discrete and a solution is defined implicitly by the path taken by an ant. For PSO the search space is continuous
and the locations within the search space are updated explicitly. The second data organizing approach moves
data items in a two-dimensional feature space, such that similar data items are grouped together. In this
category fall ant-based sorting and prey models

in which solution (components) are constructed: either by effectively searching through the
solution space, or by organizing data in a low dimensional map.3

Many models in computer science have been inspired by nature, but not all of them
may be considered swarm intelligence. Swarms generally involve movement of individuals
through a representation space, and not all nature inspired algorithms do this. For example,
artificial neural networks and evolutionary algorithms are biologically inspired algorithms
(based on principles of neuroscience and evolution, respectively), and have been used for
data mining, but they are not swarm intelligence. Neural networks are distributed but static;
evolutionary algorithms are based on reproduction rather than movement. Similarly, artifi-

3Typically this map is two-dimensional to allow for easy visualization.



Mach Learn (2011) 82: 1–42 5

Algorithm 1 Effective Search Approach

1: Define search space such that location defines a solution (component)

2: Set problem parameters
3: while no complete solution do

4: Initialize search space parameters
5: while no convergence of swarm do

6: Select some swarm individuals
7: for all selected individuals in swarm do

8: Walk through search space effectively exploring new regions while exploiting

good solutions found so far, optimizing objective function f

9: end for

10: Update search space parameters
11: end while

12: Add solution (component) and update problem parameters

13: end while

Algorithm 2 Data Organizing Approach

1: Define two-dimensional feature space F

2: Set problem parameters
3: Initialize search space parameters
4: while no convergence of swarm do

5: Select some swarm individuals
6: for all selected individuals in swarm do

7: Update neighboring data item(s)’ location(s), optimizing objective function f

8: end for

9: Update search space parameters
10: end while

cial immune systems are based on lymphocyte cloning and mutation, rather than swarming
behavior. All of these nature inspired techniques have been applied to data mining problems
but are not included in this survey.4

The sections of this overview are organized according to the underlying biological phe-
nomenon: ant colonies in Sect. 2, bird flocking in Sect. 3, and foraging theory in Sect. 4.
For each paradigm, we discuss the biological background, followed by the mapping to a
computing method, the most popular data mining implementations, and finally challenges
for the future. Section 5 summarizes all the techniques with regard to implementation and
experimental details in Tables 1 and 2. Based on these, we propose a number of interesting
directions for future research in Sect. 5. Finally, Sect. 6 concludes the paper.

Notation-wise, we assume to have a dataset of n data instances and m dimensions. The ith
data instance is denoted as xi , with value for dimension j being xij . In case of classification,
we have c classes. For clustering, k denotes the number of clusters and the centroid of cluster
l is zl .

4For these other areas we recommend the following resources. Bishop (1996) has published an excellent
overview of neural network techniques for pattern recognition. A survey of evolutionary algorithms for data
mining may be found in Freitas (2003). Freitas and Timmis (2007) have surveyed artificial immune systems
from a data mining perspective.
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Fig. 3 Path selection with ants using pheromone

2 Ant-based computing

2.1 Foraging ant behavior

2.1.1 Biological background

Foraging ant behavior is an intriguing phenomenon by which ant colonies find the short-
est path between food source and nest. Ants communicate not directly with each other, but
rather indirectly through their environment. This indirect communication, known as stig-

mergy, allows a colony of ants with limited memory and capabilities to come to intelligent
solutions for complex problems. More specifically, ants communicate by dropping a sub-
stance called pheromone on their path, thereby providing a feedback mechanism to attract
other ants. Paths with higher pheromone levels are more likely to be chosen and thus re-
inforced. On the other hand, the pheromone trail intensity of paths that are not chosen, is
decreased by evaporation.

These principles are illustrated in Fig. 3 for finding the shortest path between a food
source (right) and the nest (left). Two ants start from their nest (left) and look for the shortest
path to a food source (right). Initially, no pheromone is present on either trails, so there is
a 50–50 chance of choosing either of the two possible paths. Suppose one ant chooses the
lower trail, and the other one the upper trail. The ant that has chosen the lower (shorter) trail
will have returned faster to the nest, resulting in twice as much pheromone on the lower
trail as on the upper one. As a result, the probability that the next ant will choose the lower,
shorter trail will be twice as high, resulting in more pheromone; thus more ants will choose
this trail, until eventually (almost) all ants will follow the shorter path.

2.1.2 Artificial ant colonies and ant colony optimization

The same ideas are applied in artificial ant systems (Dorigo et al. 1991): a number of compu-
tational concurrent and asynchronous agents move through their environment and by doing
so incrementally construct a solution for the problem at hand. Ants move by applying a sto-
chastic local decision policy based on two parameters: the pheromone value and the heuristic
value. The pheromone value of a trail is history dependent, and gives an indication of the
number of ants that passed through the trail recently. The heuristic value is a problem de-
pendent quality value. When an ant comes to a decision point, it is more likely to choose the
trail with the higher pheromone and heuristic values. Once the ant arrives at its destination,
the solution corresponding to the ant’s followed path is evaluated and the pheromone value
of the path is updated accordingly. Additionally, evaporation causes the pheromone level
of all trails to diminish gradually. Hence, trails that are not reinforced will gradually lose
pheromone and will in turn have a lower probability of being chosen by subsequent ants.
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Note that real ant colonies only use the pheromone values and no heuristic values exist.
However, background problem-dependent information allows us to guide the search with
the heuristic values.

The general steps are summarized in the generic Ant Colony Optimization (ACO) meta-
heuristic shown in Algorithm 3. The implementation of a specific ACO system requires
specifying the following aspects:

– An environment that represents the problem domain in such a way that it lends itself to
incrementally building a solution for the problem;

– A problem dependent heuristic evaluation function (η), which provides a quality mea-
surement for the different solution components;

– A pheromone updating rule, which takes into account the evaporation and reinforcement
of the trails;

– A probabilistic transition rule based on the value of the heuristic function (η) and on the
strength of the pheromone trail (τ ) that determines the path taken by the ants;

– A convergence criterion that determines when the algorithm terminates.

Algorithm 3 ACO Metaheuristic

1: Set parameters, initialize pheromone trails
2: while termination condition not met do

3: Construct ant solutions
4: Apply local search % Optional

5: Update pheromones
6: end while

The first algorithm that followed these ACO principles was the Ant System, which was
introduced in the context of the traveling salesman problem (TSP) (Dorigo et al. 1996). This
NP-complete problem entails finding the shortest path that visits each given city exactly
once (Lawler et al. 1985). The construction graph is fully connected and corresponds to
the map of cities, with each city corresponding to a node and possible edges being the
connection between the cities. Initially an ant starts in a random city. The next city j for
an ant to choose (city j ), given it is currently in city i and has already visited the cities in
partial solution sp , is given by (1), with α and β being weight parameters that determine
the importance of the pheromone and heuristic function respectively. Only cities that have
not yet been visited are considered, and constitute the neighborhood N(sp). The heuristic
function η(ij) is defined by the inverse distance between cities i and j : 1/dij , hence, the
closer the city the more probable it is to be chosen by the ant. A good initial pheromone
value for all the edges should be slightly higher than the amount added at each iteration,
estimated roughly by τij = τ0 = no_ants/CNN with CNN the length of a tour generated
by a nearest neighbor heuristic. The quality of the solution s is defined by the evaluation
function f (s) = 1/g(s) and measures the inverse of the total length of the tour g(s). After
each ant has constructed its solution, pheromone values are updated according to (2), where
C is a constant. This equation states that the shorter the path chosen by the ant, the more
pheromone is added to each of the edges corresponding to the path.

P (j |sp, i) =
τ α
ij · η(ij)β

∑

l∈N(sp) τ
α
il · η(il)β

, ∀j ∈ N(sp) (1)

τij = (1 − ρ) · τij + f (s) · C (2)
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Although the performance of Ant System did not compete with traditional algorithms,
it is considered to be the basis of many other ACO algorithms that do achieve competitive
or superior performance for many applications. The main improvement in subsequent ACO
algorithms is the balance between a better exploitation of the best solution and an exploration
of the solution space, effectively avoiding early stagnation. For example, the commonly
used MAX -MI N ant system differs from the traditionally proposed Ant System in three
aspects (Stützle and Hoos 1996, 2000). First, after each iteration only the best ant is allowed
to add pheromone to its trail. This allows for a better exploitation of the best solution found.
Also, to avoid early stagnation of the search, the range of possible pheromone trails is limited
to an interval [τmin, τmax]. Finally, the initial pheromone value of each trail is set at τmax. This
determines a higher exploration at the beginning of the algorithm.

Other ACO algorithms include Elitist Ant System (Dorigo et al. 1996), Ant-Q (Gam-
bardella and Dorigo 1995), Ant Colony System (Dorigo and Gambardella 1997), ANTS
(Maniezzo 1999), Best-Worst Ant System (Cordon et al. 2002), Population-based ACO
(Guntsch and Middendorf 2002), Touring ACO (Hiroyasu et al. 2000) and Beam-ACO
(Blum 2005b). A detailed overview of these variants can be found in Dorigo and Stützle
(2004) and Dorigo and Stützle (2009).

ACO has been applied to a variety of different problems (Dorigo and Stützle 2004), such
as vehicle routing (Wade and Salhi 2004; Bullnheimer et al. 1999; Montemanni et al. 2005),
scheduling (Colorni et al. 1994; Blum 2005a), timetabling (Socha et al. 2002), traffic light
control (de Oliveira and Bazzan 2006), and routing in packet-switched networks (Caro and
Dorigo 1998).

2.1.3 Data mining applications of ACO

ACO within the data mining community has been used primarily for supervised classifica-
tion. Classification is an important data mining task, where the value of a discrete (depen-
dent) variable is predicted based on the values of several independent variables. Although
ACO has been used for clustering (discussed at the end of this subsection), the bulk of the
research addresses classification. The most notable are the AntMiner rule induction tech-
niques, as AntMiner was the first application of ACO to classification and AntMiner+ re-
ports the overall best results. ACO has also been used in applications such as rule extraction,
Bayesian network structure learning, and weight optimization in neural network training. All
these techniques are discussed next.

AntMiner: ACO-based rule induction The first application of ACO for the classification
task was reported in Parpinelli et al. (2001, 2002), where the authors introduce the AntMiner
algorithm for the discovery of classification rules.5 The aim is to induce simple rules of the
form if rule antecedent then rule consequent, where the rule antecedent is a conjunction
of terms. All attributes are assumed to be categorical; that is, the terms are of the form
Variable = Value, e.g. Gender = male. AntMiner can be considered a sequential covering

or separate-and-conquer algorithm where the induced classification model is an ordered rule
list, meaning that the discovered rules are intended to be evaluated sequentially (Fürnkranz
1999). These algorithms start with learning one rule for the dataset (conquer step), next all
data items covered by the rule are removed from the dataset (separate step) and a new rule
is induced. This continues until a stopping criterion is met.

5A publicly available implementation of this technique is available at http://sourceforge.net/projects/
guiantminer.

http://sourceforge.net/projects/guiantminer
http://sourceforge.net/projects/guiantminer
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To apply the ACO metaheuristic, an environment should be defined such that when the
ants move they incrementally construct a solution to the domain; in this case, rules for a
classification problem. The AntMiner environment is defined as a directed graph, where for
each variable there are as many nodes as there are values for that variable. Bidirectional
edges exist between all nodes from different variables, resulting in a construction graph as
shown in Fig. 4(a).

The AntMiner procedure is described in Algorithm 4. Each ant starts in the Start node
with an empty rule and chooses an edge to follow, implicitly adding the term corresponding
to that node to its rule. By moving through the environment, the ant adds one term at a time
to its (partial) rule. This partial rule corresponds to the partial path it has followed so far.
The edge to choose, and thus the term to add next, is dependent on the pheromone (τij )
and the heuristic value (ηij ) associated with each term Vi = Valueij and normalized over
all possible terms. This probability Pij of going to vertex vi,j is defined by (3), with xi a
binary variable set to 1 if variable Vi was not yet used by the current ant and 0 otherwise.
The heuristic function provides a notion of the quality of that term and is chosen as an
information theoretic measure in terms of the entropy, as defined by (4) and (5) with c the
number of classes, Tij the set of remaining (not yet covered by the rule list) data instances
for which the ith variable equals its j th value Vi = Valueij , and |Tij | the size of the dataset
defined by Tij . The edge to choose is additionally constrained since each variable can occur
at most once in a rule to avoid inconsistencies such as Gender = male and Gender = female.

Pij (t) =
τij (t) · ηij

∑m

k=1 xk

∑pk

l=1(τkl(t) · ηkl)
(3)

ηij =
log2(c) − Info(Tij )

∑m

i=1 xi

∑pi

j=1(log2(c) − Info(Tij ))
(4)

Info(Tij ) = −
c

∑

w=1

(P (w|Tij ) · log2 P (w|Tij )) (5)

τij (t + 1) =
τij (t) + τij (t) · Q
∑

∀ij∈rule τij (t)
(6)

The ant keeps adding terms to its partial rule either until all variables have been used
in the rule or until adding any term would make the rule cover fewer cases than a user-
defined minimum. The consequent of the rule is determined by the majority class of the
training data covered by the rule. Finally, the rule is pruned in order to remove irrelevant
terms and the pheromone levels are adjusted, increasing the pheromone of the trail followed
by the ant and evaporating all others. Within AntMiner, the update rule for the pheromone
function adds pheromone according to the rule quality Q, which is taken as the product of
sensitivity and specificity, and normalizes over all terms as implicit evaporation mechanism
(as shown by (6)). Then, another ant starts with the newly updated pheromone trails to guide
its search. This process is repeated until all ants have constructed a rule or when a series
of no_same_rules_allowed consecutive ants construct the same rule. The best rule among
these constructed rules is added to the list of discovered rules and the training cases covered
by this rule are removed from the training set. This process is repeated until the number of
uncovered training cases is lower than a user-defined threshold.

AntMiner2 (Liu et al. 2002) builds further on AntMiner but uses a simpler, though less
accurate, density estimation equation as the heuristic value. This makes AntMiner2 compu-
tationally less expensive without a significant degradation of the stated performance.
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Algorithm 4 AntMiner algorithm for classification

1: TrainingSet = {all training data}
2: RuleList = {}
3: while |TrainingSet| > Max uncovered data instances do

4: ant_index = 1
5: cvg_index = 1
6: Initialize probability, pheromone and heuristic values according to (3), (4) and (5)
7: while (ant_index < no_ants) AND (cvg_index < no_same_rules_allowed) do

8: Let ant run from source to sink, defining rule Rant_index

9: Prune rule Rant_index

10: Update pheromone on edges of path according to (6)
11: if Rant_index is the same as Rant_index−1 then

12: cvg_index = cvg_index + 1
13: else

14: cvg_index = 1
15: end if

16: Kill ant
17: ant_index = ant_index + 1
18: end while

19: Choose best rule Rbest among all induced rules Rant_index

20: Add rule Rbest to RuleList
21: TrainingSet = TrainingSet \ {data instances covered by Rbest}
22: end while

23: Evaluate performance on test set

AntMiner3 also extends AntMiner by introducing two major changes (Liu et al. 2003),
resulting in a reported increased accuracy. Firstly, a different update rule is used, defined
by (7) with the quality Q of a rule set to the sum of its sensitivity and specificity, and ρ

set to 0.1. Secondly, more exploration is encouraged by means of a different transition rule
that increases the probability of choosing terms not yet used in previously constructed rules,
as implemented by the Ant Colony System. Finally, it is worth noting that an extension of
AntMiner that generates fuzzy rules has been proposed in Galea and Shen (2006).

τij (t + 1) = (1 − ρ) · τij (t) +
(

1 −
1

1 + Q

)

· τij (t) (7)

AntMiner+: a novel environment, ACO algorithm and functions The AntMiner+ algo-
rithm differs from the AntMiner versions in several ways (Martens et al. 2007).6 The envi-
ronment is defined as a directed acyclic graph (DAG), so that the ants can choose their paths
more effectively (see Fig. 4(b)), while the AntMiner environment is fully connected (with
the exception of links between nodes corresponding to the same variable). This means that
the ants in AntMiner need to choose among all nodes at each decision point, whereas for
AntMiner+ they only need to choose among the nodes corresponding to one variable. By
reducing the choices without constraining the rule format, AntMiner+ ants can make their
decisions more effectively. Furthermore, to allow for interval rules, the construction graph
additionally exploits the difference between nominal and ordinal variables: each nominal

6A recent publicly available Matlab implementation of this technique is available at www.antminerplus.com.

http://www.antminerplus.com
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variable has one node group (with the inclusion of a dummy vertex indicating the variable
does not occur in the rule), but for the ordinal variables however, two node groups are built
to allow for intervals to be chosen by the ants. The first node group corresponds to the lower
bound of the interval and should thus be interpreted as Vi ≥ Valueij , the second node group
determines the upper bound, giving Vi ≤ Valueij (of course, the choice of the upper bound
is constrained by the lower bound). This allows fewer rules, which are shorter and actually
better. The environment also includes weight parameters for the pheromone and heuristic
value, α and β , in the construction graph, which are therefore set by the ants themselves. Fi-
nally, the class variable is included as well (with all possible class values except the majority
class, which serves as the final default rule) as to allow for multiclass datasets.

The differences in environment between AntMiner and AntMiner+ are clarified with a
simplified credit scoring example in Fig. 4. The task at hand is distinguishing good from
bad credit customers. Since this is a binary classification problem, the class variable in the
AntMiner+ environment has only one value (the majority class is omitted). For the nominal
variables ‘Sex’ and ‘Real Estate’ property, a dummy node ‘any’ is added, while for the
ordinal variable ‘Term’, indicating the duration of the loan, two node groups are defined
determining the lower and upper bound of the variable. Such a distinction is not made in
the construction graph of AntMiner. An ant that has taken the path shown in boldface would
have described the rule if Sex = male and Term ≥ 1 year and Term ≤ 15 years then class =
bad. For the AntMiner environment such a rule would actually require four different rules,
defined by the four paths shown in boldface.

Besides these changes in the environment, AntMiner+ also employs the better per-
forming MAX –MI N Ant System (Stützle and Hoos 2000), defines new heuristic and
pheromone functions, and applies an early stopping criterion. Using early stopping, the rule
induction is stopped as soon as the performance on an independent validation set (not used
during rule induction) starts to decrease.

The reported benchmarking experiments show an AntMiner+ accuracy that is superior
to that obtained by the other AntMiner versions, and competitive or better than the results
achieved by the compared classification techniques, including C4.5, RIPPER and logistic
regression (Martens et al. 2007). The main workings of this recent ACO-based classification
technique are described in Algorithm 5.

The probability for an ant in vertex vi−1,k to choose the edge to vertex vi,j is defined by
AntMiner+ as the pheromone value (τ(vi−1,k ,vi,j )) of the edge, the heuristic value (ηvi,j

) of
vertex vi,j , and normalized over all possible edge choices:

Pij (t) =
[τ(vi−1,k ,vi,j )(t)]α .[ηvi,j

(t)]β
∑pi

l=1[τ(vi−1,k ,vi,l )(t)]α.[ηvi,l
(t)]β

(8)

Also a different heuristic function is chosen, defined as the fraction of training cases that are
correctly covered (described) by this term, as defined by (9):

ηvi,j
(t) =

|Tij & CLASS = classant|
|Tij |

(9)

Updating the pheromone trail of the environment of MAX –MI N Ant Systems is accom-
plished in two phases: evaporation of all edges and reinforcement of the path of the best
performing ant. The reinforcement of the best ant’s path should be proportional to the qual-
ity of the path Q+, which we define as the sum of the coverage and the confidence of the
corresponding rule. Coverage measures the fraction of remaining (not yet covered by any
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Fig. 4 Example construction graphs for AntMiner (a) and AntMiner+ (b) for a simplified credit scoring
application

of the extracted rules) data points covered by the rule, that are correctly classified. The con-
fidence gives an indication of the overall importance of the specific rule by measuring the
number of correctly classified remaining data points over the total number of remaining
data points. Note that there is a scaling of this quality measure in (10) to ensure that τ lies
between 0 and 1. The evaporation rate is set at 0.15.

τ(vi,j ,vi+1,k )(t + 1) = (1 − ρ) · τ(vi,j ,vi+1,k )(t) +
Q+

best

10
(10)

Rule extraction with ACO Instead of a typical rule induction approach, a rule extraction
approach is taken by Özbakir et al. (2009) in their TACO-miner algorithm. Rule extraction
techniques from neural networks or support vector machines extract rules that mimic these
black box models as closely as possible. The aim is either to explain the non-linear model
and as such open up the black box, or to improve the performance as noise can be removed
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Algorithm 5 AntMiner+ algorithm for classification

1: TrainingSet = {all training data}
2: RuleList = {}
3: while not early stopping do

4: Initialize probability to τmax, pheromone and heuristic values according to (8) and (9)
5: while not converged do

6: Let ants run from source to sink
7: Evaporate pheromone of all edges
8: Prune rule of best ant R_best

9: Add pheromone of R_best

10: Adjust pheromone levels if outside boundaries [τmin, τmax]
11: Kill ants
12: Update probabilities of edges
13: end while

14: Add rule Rbest to RuleList
15: TrainingSet = TrainingSet \ {data instances covered by Rbest}
16: end while

17: Evaluate performance on test set

in this manner (Martens et al. 2009). Özbakir et al. (2009) use touring ACO (Hiroyasu et
al. 2000): after discretization each variable is encoded into a set of binary variables and
rules are extracted for each class that maximize the value of the corresponding output node.
Experimental work on six UCI datasets (Hettich and Bay 1996) demonstrates superior per-
formance to C4.5 and PART. However, aside the limited experimental setup, it is not clear
whether the improved performance comes from the specific ACO-based approach or from
the rule extraction approach, as no experiments are conducted with other rule extraction
techniques.

ACO for Bayesian network learning A Bayesian network is a graphical representation of
the probabilistic relationships among a set of random variables. Building such a network re-
quires two steps (Tan et al. 2006): (1) building a directed acyclic graph to encode the depen-
dence relationships among the variables, and (2) estimating a probability table associating
each node to its immediate parent nodes, on which it depends. When no prior knowledge is
available to construct the network model, the network needs to be learnt from the data.

de Campos et al. (2002) use the Ant Colony System, proposed by Dorigo and Gam-
bardella (1997), to learn the network structure. This is typically solved in a heuristic manner,
which makes the ACO perspective a natural choice and is based on the B Algorithm (Bun-
tine 1991). The B algorithm starts with an arc-less structure and adds that arc that provides
the largest gain in terms of a scoring function f . Similarly, using the ACO metaheuristic,
each ant starts with an empty graph and adds an arc between two variables at each step until
the ants decide to add no more arcs. This ACO-based approach is supplemented with a local
optimizer that adds, deletes or swaps arcs for each solution. Experiments on three datasets
suggest that the quality of this ACO-B algorithm is better than the included heuristic al-
gorithms: Hill Climbing, Iterated Local Search and Estimation of Distribution Algorithm.
Although it performs not as fast, the authors claim the algorithm is still useful for large
problems by using distributed computing. Further experiments investigating algorithm de-
tails, such as suitable evaluation functions and parameter settings, are considered issues for
future research.
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Many of the networks that are considered by the ants are equivalent to each other, in
the sense that they produce the same score. This results in much redundancy, which can
tackled by conducting the search within the space of equivalence classes of the network
structures. The ACO-E algorithm proposed by Daly and Shen (2009) takes this approach and
allows graphs that may contain both undirected and directed edges, but contains no directed
cycles. Seven types of moves are allowed, as defined by (Chickering 2002) for the space of
equivalence classes, while optimizing the BDeu scoring function. ACO-E is benchmarked
on six datasets against three other techniques: GREEDY-E, which greedily searches in the
space of equivalence classes of Bayesian network structures (Chickering 2002), EPQ, an
evolutionary approach within the same space (Cotta and Muruzábal 2004), and ACO-B.
The results show superior results as in all cases the BDeu score of ACO-E was better than
the score of the other algorithms, and this with comparable computational complexity.

Continuous ACO for training artificial neural networks Recently, a continuous version
of the ACO metaheuristic has been proposed, aimed at solving continuous optimiza-
tion problems (Socha 2004; Pourtakdoust and Nobahari 2004; Socha and Blum 2007;
Socha and Dorigo 2008). Instead of using a probability function that has one value per
node (denoting a single value for the discrete variable), the ACOR (Socha 2004) version
employs a probability distribution consisting of several Gaussian probability density func-
tions that can easily be sampled. This has been applied in a data mining setting for the
training of weights in a neural network (Socha and Blum 2007). Based on experiments on
three medical diagnosis datasets, the authors find that the hybrid version that combines the
commonly used Levenberg-Marquardt algorithm (Bishop 1996) with ACOR outperforms the
backpropagation and Levenberg-Marquardt algorithms, as well as an included genetic algo-
rithm classifier. Although the experimental setting is rather limited, the potential of ACOR

for data mining is promising and will be addressed in Sect. 5 on issues for future direction.

Clustering with ACO All previously discussed data mining techniques use swarm intelli-
gence for classification. The ACO metaheuristic can also be applied to the clustering task.
The clustering task is introduced in detail in Sect. 2.2.3 which discusses the use of ant-based
sorting for clustering. The approach is quite similar to the use of ACO for the TSP problem,
where paths are constructed by ants trying to minimize the total distance. Whereas for the
TSP problem nodes corresponded to cities, in this clustering application each node repre-
sents a data instance and the distance between them is defined by their dissimilarity. An ant
is not obliged to visit all cities: the number of data instances to visit can either be chosen
constant (Dorigo et al. 2004), or decreasing over time in a simulated annealing fashion as
done in the ACODF technique (Tsai et al. 2004). In this manner each ant will describe a
path or series of similar data items, corresponding to the data items it has visited. A final
post-processing step breaks up the ant’s path into several subpaths, corresponding to the fi-
nal data clusters. The suggested approach is to break ties between data instances that have
a dissimilarity above a certain threshold. Although in Tsai et al. (2004) the results on three
synthetic datasets indicate it performs better than SOMs combined with k-means and GKA
(genetic k-means algorithm), no comparison with other ant-based approaches is given.

Note that most ant-based clustering techniques use a different approach however, based
on sorting behavior rather than foraging behavior of ants, as will be discussed next in
Sect. 2.2.

2.1.4 Challenges for ACO-based data mining

Challenges that remain for these ACO-based classification techniques are the need for dis-
cretization of all variables and the learning time.
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Since ACO is designed to solve discrete optimization problems, each variable can only
have a limited number of values. Although AntMiner+ already makes the explicit differ-
ence between nominal and ordinal variables, a continuous variable can not be included. This
makes the choice of discretization technique quite important. In Otero et al. (2008, 2009)
also interval rules are allowed, following the idea of AntMiner+, and a first attempt is made
to determine the cutoff value in a dynamic manner for the continuous variables. By choos-
ing a value minimizing the entropy of the corresponding partition, no discretization step is
needed. This idea is incorporated in the AntMiner algorithm and is named cAntMiner. The
benchmarking results on eight public datasets indicate an improved performance compared
to the original AntMiner algorithm. However, no results of this approach for the subsequent
AntMiner versions are reported. Note that recently continuous ACO versions have been pro-
posed (see e.g. the work of Socha 2004) and these could provide a more suitable solution
for this issue. Section 5, on future research directions, revisits this point.

The learning time of these ACO-based classification techniques is quite long compared to
other rule-based techniques as C4.5 and RIPPER (Martens et al. 2007). Although it is stated
that for most applications the training duration is not an issue and may last up to hours, for
some real-time applications it is of key importance. In these cases explicit parallelization of
the inherent distributed system might resolve this challenge. This will also be addressed in
Sect. 5.

2.2 Ant-based sorting

2.2.1 Biological background

Whereas the ACO metaheuristic is based on the foraging principles of ants, clustering algo-
rithms have been introduced that mimic the sorting behavior of ants. It has been shown that
several ant species cluster dead ants in so-called cemeteries to clean up the nest (Bonabeau
et al. 1999). Although the precise dynamics of this behavior is not yet fully understood,
a simple model where ants randomly walk around, pick up dead ants and drop them based
on local information only (density of other corpses) seems to explain the behavior to a large
extent. Figure 5 shows the dynamics of such cemetery forming for the Messor sancta type
of ant Bonabeau et al. (1999): in a matter of hours, randomly scattered dead ants are clus-
tered in several cemeteries. This sorting behavior has also been observed in the clustering of
larvae, with smaller larvae being placed near the center, and larger ones towards the edge of
the cluster.

Fig. 5 Randomly scattered ant corpses are clustered in cemeteries in a matter of hours (taken with permission
from the authors from Bonabeau et al. 1999). The different stages are reflected 0, 3, 6 and 36 hours after the
beginning of the experiment
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2.2.2 Clustering artificial ants

The first application that mimics the clustering and sorting behavior of biological ants is
reported by Deneubourg et al. (1990) in a robotics context. Ants pick up and drop items
based on the similarity with the surrounding items. If an ant carries an item, the more similar
the items in the immediate surroundings, the higher the probability that the ant will drop the
item. If the ant is not carrying any item, the more dissimilar an item is to its surrounding
items, the more likely the ant will pick up that specific item. Ant-based clustering is one of
the most popular data mining techniques inspired by swarm intelligence and is discussed in
detail next.

2.2.3 Data mining implementation of ant-based sorting

Clustering, multi dimensional scaling and low dimensional mapping Clustering is an un-
supervised data mining task whose goal is to group data into homogeneous groups, such
that data within a cluster are as similar as possible and data in different clusters are as
dissimilar as possible (Witten and Frank 2000). Clustering techniques can be categorized
as being exclusive, overlapping, hierarchical or probabilistic. A commonly used clustering
technique is k-means clustering, which provides exclusive clusters. Some techniques pro-
vide a probability for each instance to belong to one of the clusters. An example family of
techniques for probabilistic clustering are mixture models. The expectation maximization
(EM) method uses log-likelihood as the objective function to model the distributions. Hi-
erarchical clustering provides clustering at several levels of granularity, and the outcome
is typically represented in a tree-like structure. Agglomerative hierarchical clustering tech-
niques work bottom up, in the sense that clusters are formed by recursively merging data
points together, while divisive methods recursively divide data into finer groups. In order
to merge or split subsets of data points, the distance between individual data points has to
be extended to the distance between subsets. Such derived proximity measure is called a
linkage metric, whereby popular ones are single link, average link and complete link, calcu-
lating the minimum, average and maximum distance metric between each pair of data points
across two subsets. An extensive survey on clustering techniques can be found in Berkhin
(2002).

Closely related to clustering is multi dimensional scaling, where the data are mapped
onto a two- or three-dimensional map that can easily be visualized. The mapping should
preserve the topological properties of the input space, such that data items that are near
each other in the input space are also close in the low dimensional feature space. A well-
known technique is a Self-Organizing Map (SOM), which is a special kind of artificial neural
network (Kohonen 2001). A visualization of such a feature map can reveal straightforward
clusters. However, if a final clustering solution is sought, an extra postprocessing step is
needed, either human-based or automatic, that defines clusters based on the mapping.

LF algorithm The data clustering algorithm proposed by Lumer and Faieta (1994) is based
on the same ant behavior as modeled by Deneubourg et al. (1990) and is explained in Al-
gorithm 6. First, all data items are placed randomly throughout a two-dimensional grid. The
ants are also placed randomly across the grid cells and can walk through the grid by moving
to neighboring grid cells. If the ant carries a data item and the grid cell on which it is lo-
cated is empty, the ant will drop the data item with a probability Pdrop which increases if the
surrounding data items are similar to the data item currently carried by the ants. Similarly,
if the ant carries no data item and a data item is located on the ant’s grid cell, it will be
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Algorithm 6 LF algorithm for ant-based clustering

1: Randomly scatter data items on grid
2: Randomly place ants on grid
3: for t = 1 to max_iterations do

4: a = random ant
5: move ant a randomly over stepsize grid cells
6: if ant a carries data item and ant a’s grid cell is not occupied by a data item then

7: i = data item carried by ant a

8: if rand() ≤ Pdrop(i) {(12)} then

9: ant a drops data item i at current grid cell
10: end if

11: end if

12: if a does not carry a data item and ant a’s grid cell is occupied by a data item then

13: i = data item at ant a’s grid cell
14: if rand() ≤ Ppickup(i) {(11)} then

15: ant a picks up data item i

16: end if

17: end if

18: end for

picked up with a probability Ppickup which favors picking up data items that are dissimilar
to its surrounding data items. As with all clustering algorithms, a neighborhood function
f (i) is needed based on the similarity between data item i and its surrounding data items
j ∈ neighborhood N(i).7 This function is defined by (13) and uses a dissimilarity/distance
metric d(i, j) (Lumer and Faieta 1994), which is typically the Euclidean distance for a
m-dimensional dataset. This metric provides an outcome between 0 and 1, with the nor-
malizing term s2 measuring the total number of sites in the local neighborhood (s cells in
vertical and horizontal direction) and α ∈ [0,1] a parameter to be tuned to the dataset. The
extreme case in which all neighboring items are the same, provides a d(i, j) = 0 for all j

and hence a maximum value for the similarity between data item ii and its neighborhood:
f (i) = 1. The probability to pick up the item is therefore very low. The other extreme where
all neighboring items are maximally dissimilar provides a very small f (i) and thus a high
probability to pick up the data item.

Ppickup(i) =
(

k1

k1 + f (i)

)2

(11)

Pdrop(i) =
{

2 · f (i) if f (i) < k2

1 otherwise
(12)

f (i) = max

(

0,
1

s2

∑

j∈N(i)

(

1 −
d(i, j)

α

))

(13)

In their experiments, the following values were used: k1 = 0.1, k2 = 0.15, α = 0.5,
s2 = 9, max_iterations = 106. The reported experiments cluster a number of synthetic, low-
dimensional datasets to demonstrate the functioning of their algorithm. As they observe that

7For brevity reasons, within this clustering context we denote instance xi by its index i.
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Fig. 6 Different stages of ant-based clustering of data items (taken with permission from the authors from
Handl and Meyer (2002)).

typically more clusters are formed than are initially present in the dataset, three modifica-
tions are made. Firstly, a speed characteristic for each ant: some ants are able to move over
several grid units at a time, forming coarse clusters, while some ants moving more slowly
will place the data items with more accuracy. Secondly, each ant has a short term memory,
remembering the location and characteristics of the most recently picked up data items (set
to 8 in their experiments). Each newly picked up data item is compared to those in memory
and instead of moving in a random direction, the ant moves towards the location of the most
similar data item in its memory. As such, it is less likely that similar clusters are formed inde-
pendently. Finally, a self-annealing like mechanism allows ants to destroy existing clusters
if no action is performed on them for a given number of steps.

Additions to this basic LF algorithm that have been proposed are an adaptive setting of
the parameter (Handl et al. 2006), allowing multiple data items to be transported at once (Li
et al. 2005), including pheromones to speed up the process (Ngenkaew et al. 2008) and using
fuzzy rules instead of pick up and drop probabilities (Schockaert et al. 2004). Additionally,
some parameter suggestions are made as a function of the dataset (Handl et al. 2006): a grid
of size M × M with M set at ceil(

√
10n), a step size of

√
20n and a suggested 2000 · n

iterations.
A first real-life application entails document clustering, where documents are classified

in the form of a topic map, where semantically similar documents appear close to each other
on the map (Handl and Meyer 2002). The emerging clusters on the two-dimensional grid at
the different stages in that application can clearly be seen in Fig. 6. Further, these ideas have
also been proposed for graph partitioning (Kuntz et al. 1997), with applications in VLSI
(Very Large Scale Integration) and CAD (Computer Aided Design) technology. However,
no quantitative comparison has been provided and the method seems to work only if clusters
are present in the graph.

The visualization of the data is quite similar to multi dimensional scaling (MDS) algo-
rithms which map a high dimensional dataset to a low dimensional space so as to facilitate
visualization. However, the location of the different clusters constructed by the LF algorithm
is arbitrary.

ATTA: an improved data clustering algorithm An improved version of the LF algorithm
has been proposed, named ATTA (Adaptive Time-dependent Transporter Ants), which given
its reported results and rather extensive changes is worth discussing in more detail (Handl
et al. 2006). ATTA has two variants: one which is limited to a topographic mapping, named
ATTA-M, and one which actually results in clusters of data (ATTA-C). The main benefits of
the proposed ATTA-C technique is an explicit partitioning without need of human interven-
tion and an a priori setting of parameters depending on dataset characteristics. Additionally,
the neighborhood function f is adapted to penalize high dissimilarities more heavily: simi-
larity function f is defined by (14), similarly to (13). However, when the distance between
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data item i and one of its neighbors j is larger than α, the second condition holds and the
similarity is set to 0.

f (i) =
{

max(0, 1
s2

∑

j∈N(i)(1 − d(i,j)

α
)) if ∀j (1 − d(i,j)

α
) > 0

0 otherwise
(14)

Also, the radius of perception of each ant increases over time (linearly from 1 to 5) to save
time at the early stages and to allow for the quick formation of clusters in this initial phase
of the clustering algorithm, while allowing larger neighborhoods to be investigated later on
and as such improve overall clustering quality. Finally, the threshold functions Ppickup(i) and
Pdrop(i), as shown by (15) and (16) are also modified to speed up the clustering process.
These formulas are derived empirically, where ants will always pick up a data item if the
similarity function is less than one, and drop a data item if the similarity function exceeds
one.

Ppickup(i) =
{

1 if f (i) ≤ 1.0
1

f (i)2 otherwise (15)

Pdrop(i) =
{

1 if f (i) ≥ 1.0
f (i)4 otherwise

(16)

Experiments are conducted on seven UCI datasets and several synthetic datasets where
ATTA is compared with k-means clustering, one-dimensional SOMs, average link agglom-
erative clustering and a Gap statistic based technique. The results demonstrate good cluster-
ing quality, independent of the degree of overlap or size of the data, and the ability to au-
tomatically detect the number of clusters inherently present in the dataset. The topographic
mapping results are however not so good. The authors state that other techniques, such as
multi dimensional scaling and two-dimensional SOMs, are more suitable for this task, with
the seemingly only benefit of the ant-based approach being the linear scaling.

A4C: Ant clustering based on cellular automata A different approach is taken in the A4C
algorithm (Xu and He 2007), in the sense that each ant represents a data instance and uses a
cellular automata approach. Cellular automata were originally introduced by von Neumann
(1966) and consist of identical and independent cells, arranged regularly in a grid. Each
cell has a number of states it can be in, and evolves in discrete time steps according to a
predefined set of rules.

The grid of cells in which ants walk around is the same as in the LF algorithm. In their
Ants Sleeping Model (ASM) each ant is in either an active or sleeping state. They base
themselves on the observation that in nature ants will gather in groups that all have similar
characteristics and repel ants that are different. Based on a fitness function that measures
the similarity with neighboring ants, ants can transition from one state into the other with a
certain probability. If an ant is sleeping and the ant’s fitness is low, it feels less secure and
has a high probability of becoming active, looking for another location. Once it has found
such a location, with high fitness and hence surrounded by similar ants, the probability to
go to a sleeping state increases again. An explicit clustering is achieved by the introduction
of a clustering rule.

The workings of this Adaptive Artificial Ant Clustering Algorithm (A4C) are described
in Algorithm 7. Similarly to the LF algorithm, ants are scattered throughout the two-
dimensional grid, but now each ant represents a data instance. Each ant computes its fitness
and based on that determines its probability to change state Pa .
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Algorithm 7 A4C algorithm for ant-based clustering

1: Initialize parameters
2: Randomly place ants on grid
3: while not termination do

4: for each ant do

5: compute the ant’s fitness and active probability Pa

6: if rand() ≤ Pa then {(18)}
7: activate ant and move to random, unoccupied neighbor cell
8: else

9: stay at current cell and remain resting
10: end if

11: update cluster label: if ant is sleeping, class of majority neighbors
12: update cluster label: if ant is active, cluster label remains
13: end for

14: adaptively update parameters α,β,λ

15: end while

The visible neighborhood of an ant is of size sX (on the horizontal axis) times sY (on the
vertical axis). Hence, on the horizontal X dimension, an ant has sX neighboring cells to its
right and sX neighboring cells to its left (its current cell constitutes the final member of the
neighborhood). Similarly for the vertical dimension, an ant has (2sY + 1) neighboring cells.
Since they opt for a 8-neighbor model (where also diagonal neighbors are considered, next
to top, down, left, right), each ant has a total of (2sX + 1) · (2sY + 1) neighboring cells.

The fitness of an ant measures the extent to which the ant fits into its current living
environment, and is defined by (17). Note the similarity with the neighborhood function,
defined by (13), though now a larger neighborhood size is possible and α as well as λ are
adaptively changed.

f (i) = max

(

0,
1

(2sX + 1) · (2sY + 1)

∑

j∈N(i)

(

1 −
d(i, j)

αi

))

(17)

Pa(i) =
βλ

βλ + f (i)λ
(18)

Xu and He (2007) report their clustering results on the two-dimensional synthetic dataset
consisting of four Gaussian distributions with little overlap, also used by Lumer and Faieta
(1994), and the Iris, Wine, Glass, Thyroid and Soybean UCI datasets, which have respec-
tively 150, 178, 214, 215 and 47 data instances. The grid size is chosen as in the LF algorithm
experiments, being a grid of size 100 × 100.

Their experiments indicate that the A4C algorithm provides clusters of higher quality
than those provided by the LF algorithm and also at a far less computational cost. Even with
the parameters not changing dynamically but set fixed, A4C performs better than LF. The
computational expense of LF is due to three things: (1) ants take a long time to find proper
locations to deposit data instances, definitely in the later stages, (2) assigning isolated data
instances to a suitable cluster can take a long time and such data instances may even never
be dropped, and finally (3) the parameters of LF are hard to set and are not set to change
adaptively. The change in paradigm by representing data instances with ants circumvents
these issues, as no data instances have to be looked for and most of the computational time
is simply spent on the poorly adapted ants.
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Benchmarking ant-based clustering techniques A major methodological gap in clustering
research is the absence of proper and rigorous analysis of the clustering quality. One of the
major reasons is that most ant-based clustering techniques provide a spatial distribution of
the data, and not an explicit clustering of the data, as pointed out by Handl et al. (2003).
Although the clustering solution is rather obvious from a human perspective, the automatic
clustering is not that straightforward. This analysis issue is addressed by Handl et al. (2003)
where ant-based clustering is augmented with an additional explicit clustering step, and
benchmarked with commonly used clustering techniques such as k-means clustering and
agglomerative average link clustering. For these techniques, a priori the correct number of
clusters is assumed (which is not the case for the ant-based clustering technique). The clus-
tering results on three artificial and three UCI datasets are evaluated using the F-measure,
Rand Index, Inner Cluster Variance and Dunn Index. Note that the ATTA technique is de-
veloped by the same authors and is based on this benchmarking study.

The benchmarking experiments show that ant-based clustering performs very well com-
pared to the other techniques: for the synthetic datasets it always ranks second, and achieves
results that are only slightly less than the results of k-means clustering. On all but one real
datasets, ant-based clustering even achieves the best results for all performance metrics,
while not having information on the optimal number of clusters (unlike for the other two
techniques). For the Yeast dataset, the results are less conclusive, with all three techniques
achieving the best result for some evaluation metric, though the results are all quite poor.
With respect to necessary runtime, although ant-based clustering is slower on the small
datasets, since it scales linearly with the number of data instances, it outperforms the other
techniques on the larger datasets (from around 2000 data instances).

The extensive benchmarking studies by Handl et al. (2003, 2006) demonstrate the fol-
lowing advantages of ant-based clustering:

– It scales linearly, like k-means clustering, but unlike agglomerative hierarchical cluster-
ing, which scales quadratically.

– It is fairly robust to outliers in the data.
– It is applicable to any kind of data that can be described in symmetric dissimilarity.
– It makes no assumption about cluster shape, unlike k-means which works well only for

spherical clusters.
– It can automatically determine the number of clusters, unlike k-means and agglomerative

hierarchical clustering.

To conclude, ant-based clustering is very promising and able to deal with important cluster-
ing aspects, such as finding the optimal number of clusters and dealing with different types
of data. However, several challenges still remain.

2.2.4 Challenges for ant-based clustering techniques

Although these results seem promising, a large scale benchmarking study with high dimen-
sional data, real-life problems and other traditionally used clustering techniques as well as
ant-based clustering techniques is missing. For example the A4C clustering technique has
only been applied to one synthetic data and four (small) UCI datasets, with performance
measured using the class labels provided in the dataset. Benchmarking the main ant-based
techniques (i.e. LF, ATTA, A4C and ACODF) with each other and popular clustering tech-
niques would reveal which technique and paradigm works best for clustering. Also, we
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would like to point out that making the implementations available would facilitate such
experiments to a great extent. As the results seem very promising and worthwhile, an im-
plementation in the Weka workbench (Witten and Frank 2000) would definitely add to the
visibility and use of this research.

3 Particle swarm optimization

3.1 Biological background

Flocks of birds and schools of fish demonstrate fascinating coordinated collective behav-
ior. Birds randomly look for food, while also keeping an eye on one another and follow-
ing the one closest to food. Flocking has several advantages for the individuals: increased
effectiveness in searching for food, better predator avoidance and evasion, and improved
mating opportunities. With each individual using only local information, the overall swarm
exhibits a fluid coherent motion which seems perfectly synchronized (Kennedy and Eber-
hart 1995). Reynolds (1987) shows that such flock-like motion can be modeled with three
basic behavioral principles that use only information from neighbors: (1) avoid collisions
with nearby flockmates, (2) match velocity with nearby flockmates, and (3) attempt to stay
close to nearby flockmates.

3.2 Particle swarm optimization

In Particle Swarm Optimization (PSO) the birds are represented by a population of parti-
cles, called a swarm (Kennedy and Eberhart 1995). Although PSO was initially designed to
graphically simulate the choreography of bird flocking, its conceptual development finally
led to a continuous optimization meta-heuristic. Whereas ACO is designed to solve discrete
optimization problems, PSO is designed to solve continuous ones. Each particle has a cer-
tain location and velocity within the search space and as such represents a solution. Like
birds wandering through their environment looking for food or evading predators, particles
fly through the search space in search of high quality solutions. This search is guided by the
best location it has found so far and the best location found by all neighboring particles.

The basic PSO algorithm is described in Algorithm 8. Initially the particles are scattered
randomly throughout the input space. Each particle stores the personal best location it has
ever visited: pi , with fitness value pbesti . Additionally, the best of all these personal best
solutions of all particles in its neighborhood pg is also retained, with fitness value pbestglobal:
such that pbestglobal = f (pg) ≥ f (pj ),∀j ∈ N(xi). Usually the neighborhood is chosen as
the complete space, in which case the local best corresponds to the global best solution.
PSO algorithms update the particles’ location and velocity according to (19) and (23), where
U(0, φ1) and U(0, φ2) represent vectors of random numbers which are uniformly distributed
in [0, φ1] and [0, φ2] respectively. At each iteration, these numbers are generated randomly
for each particle. As such, particles move stochastically in the direction of their own best
solution and the neighborhood’s best solution. Supposing that the random numbers are 1,
the update of a particle’s location and velocity is illustrated in Fig. 7.

Note that in this original PSO algorithm, the velocity of each particle is kept within the
range [−Vmax,+Vmax] to avoid these numbers growing to extremely large values. Further
updates of the particles are typically halted when sufficiently good performance is obtained
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Fig. 7 Illustration of PSO
update of a particle’s location and
velocity

or when a maximum number of iterations has occurred.
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Algorithm 8 Particle Swarm Optimization

1: Initialize a population of particles with random positions and velocities, throughout the
input space

2: while not sufficiently good performance or maximum number of iterations do

3: for each particle i do

4: fp = f (xi)

5: if fp > pbesti then

6: pbesti = fp

7: pi = xi

8: end if

9: g = {j |f (pj ) = max(f (pk), k ∈ N(xi))}
10: Update velocity vi according to (19)
11: Update velocity xi according to (23)
12: end for

13: end while

Since the introduction of PSO, several variants have been introduced (see e.g. Montes de
Oca et al. 2009), each defining different velocity update rules (19) to (20). A discrete PSO
variant (DPSO) is proposed by Kennedy and Eberhart (1997) where a particle’s position is
discrete but its velocity is continuous. The linearly decreasing PSO (LDPSO) is introduced
by Shi and Eberhart (1998), where a time-decreasing function is added as a multiplicator in
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the first term of the velocity update rule. The constricted PSO (CPSO) adds a constriction
factor in the velocity update rule to avoid unlimited growth of the particles’ velocity (Clerc
and Kennedy 2002). Zheng et al. (2003) show that in some cases better results are obtained
with a time-increasing function. The fully informed particle swarm (FIPS) is introduced
by Mendes et al. (2004) in which information from all the neighbors is used, not only the
best one. Ratnaweera et al. (2004) added local search behavior by removing the first (inertia)
term from the velocity update rule, reinitializing the velocity of a particle to a large value
when its velocity approaches zero, and adapting the acceleration coefficients linearly. In the
adaptive hierarchical PSO, the topology of the neighborhood is changed at runtime (Jan-
son and Middendorf 2005). Comprehensive learning PSO (CLPSO) combines all particles’
historical best information to update a particle’s velocity (Liang et al. 2006). This strategy
is aimed at avoiding premature convergence by enabling the diversity of the swarm to be
preserved. The combined best position of the particles, denoted as Cpt

i , is chosen proba-
bilistically for each dimension based on the fitness function. The chaotic PSO uses a chaotic
number generator each time a random number is needed by the classical PSO algorithm, in
order to improve global searching capability by escaping the local solutions (Alatas et al.
2009). Based on an empirical analysis of several PSO variants, a new algorithm is proposed
in Montes de Oca et al. (2009) that combines the algorithmic components that show distinct
advantages in performance. The resulting PSO algorithm is named Frankenstein’s PSO and
includes both the FIPS mechanism for updating a particle’s velocity, as well as a decreasing
inertia weight. For more details on PSO, its variants and applications, we refer to a recent
overview in Poli et al. (2007).

3.3 Popular data mining applications of PSO

PSO for rule-based classification models A first application of PSO to classification is
reported by Sousa et al. (2004). A sequential covering algorithm is employed, with each
rule being a conjunction of terms. Rule quality is measured as the product of sensitivity and
specificity, just as with AntMiner. When the quality of a rule remains constant for a number
of iterations, set to 30, the swarm is considered to have converged and the best solution (rule)
found by the swarm is added to the rule list. Once a rule is discovered, pruning removes any
attribute that does not contribute to the performance. Training is stopped when a user-defined
percentage of the data has been covered by the rules, typically set to 90% in their work. The
final default rule predicts the remaining majority class.

Three PSO variants have been tested: discrete PSO, linear decreasing weight PSO and
constricted PSO. All variables are discretized into binary variables: for each variable as
many binary variables are created as needed to encode the possible values ceil(log2(1 +
number of values)), and an extra bit is added to denote the indifference state (similar to the
dummy value in AntMiner+). The value of the binary variable is 1 if the corresponding
variable has the specific value encoded by that binary variable. In a second phase, interval
rules are allowed by creating multiple binary variables at once.

In their experiments, the constriction coefficient χ is set to 0.73, and φ1, φ2 are set to 2.05.
The developed technique is benchmarked with C4.5 on three UCI datasets. On two datasets,
a superior performance is reported in terms of test accuracy, though no significance testing is
performed. For all three datasets, fewer or as many rules as C4.5 are obtained and hence an
improved comprehensibility is provided. A drawback however is the increase in execution
time.
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In Holden and Freitas (2008), a combination of both ACO and PSO is used to build rule-
based classification models that can handle both nominal and continuous variables.8 While
for PSO implementations nominal variables need to be encoded in binary variables, and
ACO implementations require discretization, the proposed PSO/ACO2 technique directly
deals with both types of variables. This technique extends and refines a first version by the
same authors that was proposed in Holden and Freitas, Holden and Freitas (2005, 2007).

A sequential covering approach is also taken, where a rule is first induced using nominal
variables only, which serves as the basis for adding terms with continuous variables. As in
the technique by Sousa et al. (2004), the constricted PSO is used with the constriction coef-
ficient set to 0.73 and φ1, φ2 set to 2.05. Two dimensions are considered for each continuous
variable: one for the lower bound and one for the upper bound. The quality measure, taken
as sensitivity × specificity, seems to generate rules with sometimes very few covered data
instances. Therefore the Laplace corrected precision evaluation metric is used for rule qual-
ity assessment. The same rule pruning and stopping criteria as in AntMiner are used. The
induced rules are ordered according to their quality, which can be different to the order in
which they were induced from the data.

Holden and Freitas (2008) compared their PSO/ACO2 technique to the PART algorithm
on 27 UCI datasets. The results indicate that the performance of the proposed technique is
competitive in terms of accuracy, but far more comprehensible as the provided rule sets are
much smaller.

In Alatas and Akin (2009), rule mining is considered as a multi-objective optimization
problem with predictive accuracy and comprehensibility objectives. Each rule is evaluated
according to multiple rule evaluation criteria: accuracy and comprehensibility. The chaotic
PSO algorithm searches for Pareto optimal classification rules.

Each particle is represented as a concatenation of real-valued elements in the range [0,1].
The size of a particle is 2 · m: for each variable an attribute-existence part indicates whether
the variable occurs in the rule (if its value is larger than 0.5), and if so, the attribute-value
part encodes the value. Note that the encoding scheme makes a distinction between nominal
and ordinal types of variables.

The accuracy is measured as the number of data instances that satisfy both the rule an-
tecedent and consequent—0.5, divided by the number of examples satisfying all the condi-
tions in the antecedent. Comprehensibility is estimated as one minus the relative number of
variables that occur in the rule. Weights for accuracy and comprehensibility are set at 0.7
and 0.3 respectively. The minimal and maximal velocity are set to 0 and 1, learning rates φ1

and φ2 are set to 2. Experiments on four UCI datasets (mushroom, zoo, monk and nursery)
show that the algorithm is competitive with the included algorithms Ridor, OneR, Prism,
NNge and PART while also demonstrating good comprehensibility.

Although the multi-objective approach is surely interesting from a research perspective
(see also Coello Coello et al. (2009)), no comparison is made with other PSO rule learn-
ers, nor are any experiments done with single-objective approaches (followed by all other
proposed techniques). Since the induced rule sets from other PSO learners typically don’t
have an abundant number of variables in the rule antecedent, the additional value of the
multi-objective approach seems limited.

Nearest-neighbor like classification A second application of PSO to classification is de-
veloped by De Falco et al. (2007), with a different model representation and with extended
benchmarking experiments.

8A publicly available implementation of this technique is available at http://sourceforge.net/projects/psoaco2.

http://sourceforge.net/projects/psoaco2
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Considering a classification problem with c classes and m variables, De Falco et al.
(2007) see the classification problem as finding the optimal coordinates of c centroids in the
m-dimensional search space. Hence each particle has 2 ·c ·m components, encoding for each
class the m-dimensional centroid location and velocity. Given a solution, a data instance is
assigned to the centroid that is nearest. The linearly decreasing weight PSO variant is used
in their implementation.

Experiments are conducted on 13 UCI datasets, where the proposed technique is com-
pared to 9 popular classification techniques, including ANN, Bayesian Networks and Bag-
ging. The PSO based classification technique is quite competitive, yielding the best results
on three datasets, and obtaining an average ranking of four, while having an execution time
in the same order of magnitude as the other included techniques. It seems that the technique
is particularly suitable for binary classification problems but less for multiclass problems.
Finally, it should be noted that the model is a nearest neighbor like model, and as such is
surely less comprehensible than rule-based models.

PSO as optimizer within other learning algorithms PSO is used by Holden and Freitas
(2009) to learn hierarchical classification models, specifically aimed at bioinformatics clas-
sification problems. The technique generates hierarchical ensembles of hierarchical rule sets
(HEHRS), where the weights for combining the rule sets are optimized with PSO. This
kind of classification model is specifically suitable for protein function classification and
is applied to six datasets from that domain. Of the included four hierarchical classification
techniques, the PSO optimized technique performs best.

PSO has been used to train both ANN (Kennedy and Eberhart 1995) and SVM mod-
els (Paquet and Engelbrecht 2003). In Samanta and Nataraj (2009), this is combined with
PSO-based feature selection.

Clustering with PSO van der Merwe and Engelbrecht (2003) applied PSO for data cluster-
ing. Each solution is represented by the coordinates of a user pre-defined number of cluster
centroids. Each data instance is assigned to the nearest cluster centroid, using Euclidean
distance. The fitness function used is the quantization error, which can be seen as the av-
erage distance from a data point to its cluster centroid, averaged over the different clusters.
Equation 24 formally defines the quantization error, for a clustering problem with k clus-
ters, n data instances, uli a binary variable which is 1 if instance i is assigned to cluster l, xi

denoting instance i, zl the centroid of cluster l and d() the Euclidean distance.
The computational steps are described in Algorithm 9. The algorithm is further refined

using k-means to provide initial cluster centroids.

f =
∑k

l=1

(
∑n

i=1 uli · d(xi, zl)
)

/|Cl |
k

(24)

Using two artificial and four UCI datasets, the authors demonstrate the potential in terms
of improved quantization error. A drawback is that, as with k-means clustering, the number
of clusters needs to be predefined. The experiments are limited to low dimensional data, an
issue that is addressed in the following PSO based technique.

Clustering high dimensional data with soft projected clustering Clustering high dimen-
sional data is addressed with PSO by Lu et al. (2010). Due to the curse of dimensionality,
traditional data clustering algorithms typically fail at providing good quality solutions. In
soft projected clustering, a weight vector is assigned to each cluster, which denotes the rel-
evance of the dimensions to that cluster (Domeniconi et al. 2007). The objective function
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Algorithm 9 PSO-based clustering

1: Initialize each particle with k randomly selected cluster centroids
2: for t = 1 to max_iterations do

3: for each particle do

4: for i = 1 to n do

5: for cluster l = 1 to k do

6: if d(xi, zl) = minc=1:k{d(xi, zc)} then

7: data instance i is assigned to cluster l: uli = 1
8: else

9: uli = 0
10: end if

11: end for

12: end for

13: end for

14: Update personal and global best positions
15: Update particle’s positions and velocities
16: end for

to minimize is the sum of the within-cluster distances of each cluster, weighted across the
dimensions. So if a variable contributes strongly to the identification of a data instance in
a cluster, the weight for that dimension for that cluster should be high. Such clustering al-
gorithms are driven by the objective function and the search strategy used to minimize it.
The proposed PSOVW algorithm (PSO for variable weighting) uses the CLPSO variant to
optimize the objective function from (25), with xij the value of instance i in dimension j

and zlj the centroid of cluster l in dimension j (the other symbols are as before). The β

parameter is user defined and set to 8 by the authors, making the function more sensitive to
large weights, allowing them to play a stronger role.

f (W) =
k

∑

l=1

n
∑

i=1

m
∑

j=1

uli ·
(

wlj
∑m

q=1 wlq

)β

· d(xij , zlj ) (25)

such that

{

0 ≤ wij ≤ 1
∑k

l=1 uil = 1 uil ∈ {0,1} ,1 ≤ i ≤ n
(26)

The objective function is a generalization of the ones used in previous soft projected
clustering, such as LAC, W-k-means, EWKM and even k-means. The normalization of the
weights allows the equality constraint, stating that the weights should sum to one, to be
transformed into a less complicated boundary constraint.

A particle’s location is represented by the k ×m weight matrix W , the weight vectors for
each of the clusters. Data instances are assigned to the nearest cluster centroid, taking into
account the weights. The particle swarm wanders through the search space using the PSO
principles, attempting to optimize (26).

Experiments are conducted on 36 synthetic datasets, with different dimensions (100,
1000 and 2000), and different data and cluster subspace overlap. Compared to the LAC,
W-k-means, EWKM and k-means algorithms, PSOVW performs best on all 36 datasets
both in clustering quality and cluster stability. Further experiments show that the improved
performance is related to both the PSO search strategy, which unlike the other local search
techniques is not easily trapped in a local minimum, and the new objective function. Empir-
ical evaluation on three UCI datasets corroborate these findings. PSOVW is however more
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time consuming, though still acceptable: for the dataset with 2000 dimensions, the algorithm
takes about 5 minutes.

The algorithm is extended for text clustering by using the Jaccard coefficient instead of
Euclidean distance (and corresponding revised objective function), and a document repre-
sentation in term space. Using four datasets from 20 newsgroups (from UCI data repository),
and four large text datasets from the CLUTO clustering toolkit, a superior clustering perfor-
mance is also shown using the F-measure and Entropy.

As the technique is a k-means based technique, once again the number of clusters needs
to be defined beforehand. An automated determination of k is considered an issue for future
research.

3.4 Challenges

Current research for PSO-based classification aims at a wide variety of model types: rule-
based models, nearest neighbor classifiers and black box SVMs, and this even for different
kind of problems: binary to multiclass problems and even hierarchical classification. This is
probably driven by the larger potential of optimization problems in the continuous domain.
However, for both classification and clustering, a systematic investigation of the reasons for
the (improved) performance is largely missing. Since the use of PSO requires many choices,
the contribution of each needs to be studied. For example, if better performance is achieved,
is it because of the use of the PSO metaheuristic, specific PSO variant chosen, objective
function or data characteristics. We will come back to this issue in Sect. 5.

Since recently continuous ACO has been proposed to solve continuous optimization
problems, it is worthwhile investigating when either of the metaheuristics is to be preferred.

4 Prey model

4.1 Biological background

In animal life we typically observe a biological environment consisting of foragers and
preys. Upon encountering a prey, a forager needs to decide whether to attack the prey or
to continue searching. According to the prey model of (Stephens and Krebs 1986), a forager
compares the potential energy gain to the potential opportunity of finding an item of superior
type. By obtaining the necessary energy to survive, extra time becomes available to perform
activities as fighting and reproducing.

4.2 Foraging agents maximizing energy intake

In the foraging prey model, the average energy gain can be mathematically expressed in
terms of the expected time, energy intake, encounter rate and attack probability for each
type of prey. By maximizing this energy intake with respect to the probability to attack,
a forager should either attack a prey type each time it is encountered, or never at all. The
prey types to actually attack are the j top item types, ranked according to the energy intake
per time unit to process, such that when a forager encounters an item of type j +1 or inferior,
it benefits more from searching for items of types 1 through j than to process the item. For
a formal derivation and details, we refer to Stephens and Krebs (1986) and Giraldo et al.
(2010).
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4.3 Dimensionality reduction for visual exploration

The prey model is used for dimensionality reduction in Giraldo et al. (2010). The data items
are mapped to a two-dimensional grid such that clusters in the input space become visible
in this two-dimensional grid. As with the LF algorithm discussed earlier, the data items
are scattered randomly throughout the grid, of size M × M with M set at ceil (

√
10n), as

suggested by Handl et al. (2006) for the ant-based clustering grid. The agents (three in this
case) are placed on occupied grid positions. They can decide to either pick up a data item
and replace it or to continue to another occupied position. Once the forager has decided to
pick up/process a data item/prey, it moves to a randomly chosen free position and decides
whether to drop it there or move to another free position. The decision to pick up and drop
an item are related to the similarity between the considered data item and neighboring data
items, where a squared neighborhood is chosen that contains a fixed set of 9 neighbors. The
similarity function is a weighted function dependent on 1—the Euclidean distance, weighted
such that items nearby receive higher weights than those further away.

There are a user-defined number of types of data items, set to 100 by the authors. Each
type has the same energy intake, with data item types ranked from highest energy intake
to lowest. In pick up mode, higher energy gains are obtained for data instances with low
average similarity. Hence, the type number is an integer, low for low similarities, and high
for high similarities. Similarly for foragers in the drop mode.

A first visual evaluation is performed on three and two-dimensional datasets, show-
ing that the resulting clusters are indeed well-separated. The results are compared to the
ISOMAP (Tenenbaum and Silva 2000), t-SNE (van der Maaten and Hinton 2008) and the
previously discussed ant-based LF algorithms. Real-life datasets include two UCI datasets
(iris and wine) and the 4096 dimensional Olivetti face dataset. The complete-link algorithm
is used to partition and label the two-dimensional data instances (King 1967). For the iris
and Olivetti datasets, the prey model performs best in terms of clustering accuracy. For the
wine dataset, the prey model comes second, after t-SNE.

4.4 Challenges for prey model based dimensionality reduction

The main challenge for prey models within data mining comes from its novelty, as very
limited research has been conducted on the topic. The methodology employed by the prey
model for data organizing knows many similarities with the ant-based sorting techniques. As
for ant-based sorting, a large scale benchmarking study with high dimensional data, real-life
problems and other traditionally used clustering techniques is currently missing. A further
investigation of the (dis)similarities between ant-based sorting and prey models for data
clustering, and the optimal conditions to use either one of them, is currently lacking.

5 Directions for future research

Tables 1 and 2 provide an overview of the ant and PSO based data mining techniques. For
each of the techniques, we list the metaheuristic variant that was used, the objective function
to optimize, the type of the resulting data mining model, the solution component represen-
tation, the techniques which are used as benchmark, the datasets used in the benchmarking
experiments, and the approach from our unifying framework that is taken (effective search
versus data sorting). Note that for the artificial (arti) datasets, we also list the dimension (m)
and number of data instances (n). The techniques are ordered according to the model output
type and year.
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From these tables, we can observe that many techniques have been proposed, with little
consensus on optimal choice for any of the categories, even within the same data mining
task. Most techniques use a different metaheuristic variant to apply, objective function to
optimize, datasets to use and other techniques to benchmark with. Surprisingly, few re-
searchers compare their newly proposed techniques with existing swarm intelligence algo-
rithms. These observations lead to a number of directions for future research in this area,
which are discussed next. These can be categorized in the following four groups and are
discussed in more detail in what follows:

1. Broad-based experimental studies

– Systematic study into (hyper-)parameters used and metaheuristics adopted
– Need for real-life applications
– Need for open source implementations

2. Exploiting swarm intelligence advances

– Applying SI to other data mining tasks
– Using new SI techniques
– Combining approaches

3. Meeting data mining specific requirements

– Incorporating domain knowledge
– Interpretability

4. Exploiting the robust, dynamic and distributed nature of SI-based solutions

– Distributed – Privacy preserving data mining
– Distributed – Using networked data
– Dynamic and Robust – Real time applications

5.1 Broad-based experimental studies

5.1.1 Systematic study into (hyper-)parameters used and metaheuristics adopted

Researchers in this area often fail to provide a systematic empirical study where the ex-
plicit contribution of their proposed data mining technique is investigated. Benchmarking
on some datasets with popular data mining techniques to see how the technique performs
is commonly done (although this is already arguable when looking at the literature tables).
However, investigating whether the improvement in performance comes from the chosen
metaheuristic, specific variant, objective function to optimize, included functions, parame-
ters settings or data characteristics is most often missing. Of the proposed techniques, few
actually employ several metaheuristic variants to empirically investigate which performs
best in the specific data mining domain. The same applies for the other mentioned algorithm
building blocks. For example, most of the classification techniques use a sequential covering
approach to induce rule sets. The evaluation functions used for a single rule are quite diverse,
though most techniques base themselves on the product of sensitivity and specificity. An em-
pirical study of which rule quality metric to use and why, as done for example by Janssen
and Fürnkranz (2010), could surely improve the results, as well as provide insights in the
workings and explicit contributions of the algorithm.

Since this research area is rather new, a comparison with other swarm-based methods
that use the same metaheuristic would also be useful. A reason this is not done is probably
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the lack of overview of existing techniques, one of the contributions we hope to make with
this paper. Even across metaheuristics, similarities exist in some of the discussed data mining
techniques which are worth investigating empirically. For example, the ACO-based and prey
model-based technique for dimensionality reduction both operate in a two-dimensional grid
where agents move data instances according to some similarity-derived function. Investigat-
ing where and how these techniques differ in clustering behavior could provide interesting
insights in the metaheuristics themselves as well.

Whereas ACO is traditionally used for discrete optimization problems, PSO is used for
continuous optimization. However, with the recent introduction of continuous ACO variants,
a comparison between both approaches using continuous search spaces is more than ever
needed. Also, one could investigate whether the discretization step needed to apply ACO
adds or decreases the performance.

Based upon an extensive empirical study with a component-wise investigation, the most
relevant building blocks for a new technique can be investigated, combining the best of
each previously proposed technique. Such an approach, similar to the development of
the Frankenstein’s PSO (Poli et al. 2007) where based on an empirical study of various
PSO variants a new composite PSO variant is developed, could provide a high performing
Frankenstein Miner.

5.1.2 Need for real-life applications

Although the UCI data are commonly used for benchmarking and testing out new algo-
rithms, there is a real danger of repository overfitting, whereby marginal improvements on
frequently analyzed data sets are considered to be a clear sign of algorithmic superiority
(Soares 2003). Hence, it would be interesting to see more real-life applications of swarm
intelligence in well-known data mining domains, e.g. credit scoring, customer relationship
management, bio-informatics, text mining, etc. Comparing swarm intelligence based tech-
niques to other well-known machine learning techniques on real-life data will provide in-
sight into their behavior and performance.

5.1.3 Need for open source implementations

Most of the proposed techniques are not publicly available, making comparisons across
benchmarks difficult. The aforementioned direction of extensive empirical investigations
of all algorithmic building blocks would surely benefit from open source implementations.
Only few have been made publicly available, which are listed below. The addition of high
performing swarm based techniques to the Weka or RapidMiner workbenches should defi-
nitely be encouraged.

– AntMiner: http://sourceforge.net/projects/guiantminer
– PSO/ACO2: http://sourceforge.net/projects/psoaco2
– AntMiner+: www.antminerplus.com

5.2 Exploiting swarm intelligence advances

5.2.1 Applying SI to other data mining tasks

The literature tables reveal that swarm intelligence initiatives within data mining are lim-
ited to the classification and clustering tasks. Several other data mining tasks have not yet
been addressed with the discussed nature inspired techniques. Given the success of existing
swarm based techniques for data mining, similar promising results could be expected in the
following areas:
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– Regression: to the best of our knowledge, no swarm intelligence approach for regression
has yet been proposed. The first avenue in this research will probably be the adaptation of
ant-based classification techniques with continuous ACO or PSO in order to move from a
discrete to a continuous solution space which includes the target variable. Moving towards
continuous data also allows for continuous variables to be included in the classification
techniques (without the need for a discretization step), a direction in which initial steps
have been taken by among others cAntMiner and PSO/ACO2.

– Association/sequence rule mining: given that many techniques build rule-based classifi-
cation models, approaches that induce association or sequence rules seem a natural ex-
tension.

– Semi-supervised learning: Data mining techniques based on swarm intelligence are either
employed for clustering or classification. An interesting increasingly popular data mining
task can be found at the intersection of both: semi-supervised learning (Chapelle et al.
2006). It has been found that clustering results can significantly be improved by including
labels for some data instances.

5.2.2 Using new SI techniques

New PSO and ACO variants, such as Frankenstein’s PSO, are being proposed at a constant
rate nowadays. A modular approach where new variants can be plugged in would be of
great value in such a research arena. Interesting is also the application of other existing
swarm based approaches such as the gravitational search algorithm (GSA) (Rashedi et al.
2009) and group search optimizer (He et al. 2009). GSA is based on the law of gravity
where agents are represented by objects with a mass corresponding to their fitness value.
More suitable solutions have higher masses and attract other objects. Intuitively, one sees
the similarities with PSO. As such, data mining techniques employing this GSA idea can be
devised.

As we are constantly learning more fascinating ways in which nature is able to deal with
complex problems, computational descriptions of these phenomena become the basis of new
metaheuristics. The mathematical modeling of such behavior can lead to groundbreaking
advances in all engineering applications, including data mining. Whereas most of the current
literature can be divided according to the metaheuristics ACO and PSO, we foresee many
other swarm-based metaheuristic implementations in the near future.

5.2.3 Combining approaches

The successful swarm-based data mining approaches typically take some kind of hybrid ap-
proach. Some combine a swarm intelligence technique with some conventional optimization
technique, such as the PSO-based clustering technique of van der Merwe and Engelbrecht
(2003) that starts with the solution obtained by k-means clustering, and the ACOR LM tech-
nique that combines conventional Levenberg Marquardt with continuous ACO; while others
combine several swarm-based approaches, such as the PSO/ACO2 technique of Holden and
Freitas (2008). This motivates a closer look at combining swarm intelligence with other
state-of-the-art data mining techniques.

In many applications of ACO, adding local search improves the performance (Dorigo
and Stützle 2004). However, none of the discussed techniques actually adds local search as
well. In our experiments with AntMiner+ this did not reveal any additional performance
improvements. A closer investigation on where local search improves data mining models
and why constitutes another area for future research.
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5.3 Meeting data mining specific requirements

5.3.1 Incorporating domain knowledge

As with most data mining algorithms, the discussed techniques rely solely on modeling
repeated patterns that occur in the data. However, in some cases it might be beneficial to
include background domain knowledge during the pattern learning process to express known
facts and/or relationships within a given problem domain. Two example settings where this
could be especially useful are biased data sets and small data sets. Biased data sets frequently
occur in data mining because of historical policies adopted by firms. A popular example in
credit scoring is reject inference, whereby no performance information is available upon the
past rejected applicants due to the historical acceptance policy. Ignoring them during the
estimation will result in a biased sample, and hence domain knowledge can be used to limit
the effect of the potential bias. Data mining algorithms are also being more and more used
to analyse small data sets. Examples are data about new products or less common products
(e.g. project finance in a financial context). In these settings, it is of key importance to come
up with data mining algorithms that exploit the small volume data set to its fullest extent
possible, and combine the learnt patterns with domain knowledge for improved decision
making

Domain knowledge can come in multiple forms or shapes. In predictive modeling, a pop-
ular example is univariate constraints, whereby the impact of a variable on the target is speci-
fied beforehand. Multivariate constraints express known relationships between variables that
should be satisfied during the learning process. In descriptive modeling, domain knowledge
can express, e.g., which objects should or should not belong to the same cluster, a minimal
separation distance between clusters, the need for balanced clusters, etc. Also, it should be
possible to allow the domain constraints to be respected in a hard, absolute way, or in a soft,
preferred way, depending upon the statistical strength of the correlations and/or patterns in
the data.

Incorporating domain knowledge is an important issue for data mining in general, and
swarm intelligence provides a unique way to deal with the academically challenging prob-
lem of consolidating the automatically generated data mining knowledge with the knowl-
edge reflecting experts’ domain expertise. As individuals of a swarm explicitly look for
solution (components) in the defined search space, domain knowledge could be included
by guiding the individuals towards those regions that are of interest to the domain expert.
Potential approaches to do so are adapting the heuristic values (as done in Martens et al.
2006), explicitly enforcing constraints on the agents’ movements or including the domain
knowledge using some penalty addition to the objective functions. An alternative way of
incorporating domain knowledge could be by additional data generation and/or labeling,
possibly guided by the swarm intelligence model itself.

5.3.2 Interpretability

In domains where validation of the underlying model is required, e.g. credit scoring and
medical diagnosis, a clear insight into the reasoning made by the decision model is neces-
sary. Some data mining techniques, such as neural networks and support vector machines,
are quite powerful but their use is often limited in practice because they produce complex,
opaque, non-linear models. Experience has shown that decision makers are often reluctant
to use black box data mining models. Hence, in order to successfully deploy data mining
models in business settings, it becomes of key importance to have transparent, white box
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models which at the same time also provide satisfactory statistical performance. Note that
this will often amount to choosing an optimal trade-off between model performance and
model interpretability, especially since the latter is somewhat subjective in nature.

Until recently, many swarm intelligence algorithms largely focused on estimating mod-
els that perform optimally from a purely statistical perspective. The interpretability issue
now adds a different dimension to it. One popular example to come up with interpretable
models are classification rule induction or rule extraction techniques. Preliminary results
of using swarm intelligence algorithms for both purposes have already been reported, such
as the AntMiner algorithms and the work by Özbakir et al. (2009). More research is how-
ever needed to better quantify the added value of swarm intelligence algorithms, compared
to traditional/other rule induction and/or extraction techniques. Graphical models, such as
Bayesian networks, are also often considered as probabilistic white box models with a high
degree of transparency. Also here, swarm intelligence algorithms might have a role to play
by, e.g., offering new ways of learning graphical decision models from data.

5.4 Exploiting the robust, dynamic and distributed nature of SI-based solutions

Most applications of swarm intelligence explicitly use the robust, dynamic and distributed
characteristics as being key to the solutions. Previous data mining research focuses on the
performance in terms of predictive capability and clustering quality, although robust, dy-
namic and distributed behavior are also very relevant for specific data mining applications.

5.4.1 Distributed—parallelization

As originally intended, data mining applications more and more work on huge datasets
having millions of observations of high-dimensionality. Two popular examples of this are
bio-informatics and RFID data. Most of the proposed techniques are computationally very
expensive and running them on a single processor computer is not always possible. Further-
more, datasets often are distributed, and centralizing the data can come at high data transfer
and communication costs.

Using the distributed nature of ACO has proven to be of great value. One of the most dis-
tinctive applications that explicitly uses the distributed characteristic of ACO can be found
in AntNet, an algorithm for routing packages in an IP network (Caro and Dorigo 1998).
The algorithm shows excellent results, outperforming most of the state-of-the-art existing
algorithms. A similar approach could be used here.

Parallelization of the inherently distributed data mining algorithms discussed previously,
such that the agents’ tasks can be executed concurrently, can provide an answer to the
tremendous expansion of data, not only in size but also in location. In this case the work
of the agents is processed at several sites, and the agents carry the processed information
with them. Thinking for example of supermarket chains where large amounts of data are
gathered at each store: instead of sending the data to a centralized warehouse, one could use
swarm individuals that visit each of the distributed data sets.

5.4.2 Distributed—privacy preserving data mining

In many settings, data are naturally distributed, yet offer unprecedented potential for ad-
vanced and integrated data analysis when aggregated. This is especially relevant in the case
of small data sets, whereby a firm only has limited data about a certain product and/or
service. By pooling the data with other industry partners, it will become more feasible to
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apply data mining techniques at the pooled level. A popular example of this are low default
portfolios where banks only have limited observations of a particular target class (i.e. the
defaulters) and try to increase the default observations using pooling initiatives with other
banks and/or data poolers. By doing this, a much larger data set is created, facilitating the
use of data mining techniques. Pooling initiatives have also been proposed for appropriately
quantifying operational risk (Baud et al. 2002). Other applications can be thought of when-
ever a joint venture between firms is set up. Participating companies will surely be interested
in analyzing all data available, without actually wanting to share their own data.

Within a pooling context, privacy becomes a major issue. Privacy has increasingly be-
come one of the concerns of data providers in a data mining exercise (Agrawal and Srikant
2000). This surely is an issue when several parties would like to run data mining algorithms
on their joint datasets without revealing the data to each other. As the mentioned swarm
intelligence techniques typically work with simple creatures with limited memory that can
work on distributed data (for example a distributed construction graph within ACO), the
application of them in this setting might reveal an additional, increasingly important benefit.

5.4.3 Distributed—using networked data

Using networked data is a very promising research avenue within data mining. Previous
studies reveal the predictive power of using such data in supervised learning (see e.g. the
work by Mackassy and Provost (2007), Hill et al. (2006)). As Mackassy and Provost (2007)
motivate, a network learner typically consists of a local model which only considers object-
specific attributes, a relational model which takes into account relationships between objects,
and a collective inferencing procedure specifying how objects influence each other mutu-
ally. Also here, swarm intelligence techniques might offer interesting new insights and/or
perspectives. E.g. one can think of such data as an extreme form of distributed data, with
the number of data instances being in the order of the number of data locations. This data
typically is first centralized, after which the analysis takes place. However, since the data are
explicitly distributed, a swarm based approach that skims this environment could be better
suited as a scalable solution. As the future provides us even larger networks, the question be-
comes whether we will be able to centralize the (necessary) data anyway, and decentralized
solutions as those provided by swarm intelligence will become necessary.

5.4.4 Dynamic and robust—real-time applications

In real-time applications, datasets change on a continuous basis. Such applications include
fraud detection, real-time data mining based intrusion detection systems (Lee et al. 2001)
and counter terrorism. To genuinely be able to exploit the possibility to deal with such dy-
namic environments, the combination with distributed environments should be considered.
Similarly, swarm based techniques can deal with the case where the networked environment
is faulty, in the sense that some links within the network can go down. This has been proven
to be a major advantage of swarm intelligence based algorithms in the AntNet application,
where the failure of routers or connections are dealt with dynamically by the ants (Caro and
Dorigo 1998). Further investigating the practical problem domains where these distributed,
dynamic and robust solutions are of superior value constitutes a final promising issue for
future research.
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6 Conclusion

Swarm intelligence is a relatively new domain within AI research. Since its introduction
however, it has drawn increasing attention by the research community with applications
in a wide variety of engineering problems. The proposed data mining techniques that in-
corporate these swarm principles often show performance results that are competitive with
traditional techniques. Yet, many challenges and also opportunities exist. Since the swarm
intelligence research itself is still in its infancy, the research on the application thereof is
also continuously in motion. We have set up a framework in which the existing techniques
are categorized in two approaches: effective search and data organizing. We envision that
this framework provides a useful guide for researchers on comparing or placing new swarm
intelligence based data mining techniques within the existing literature.

Although the techniques show very promising results, the topic is still in its infancy. Sur-
veying this topic, we listed some challenges that constitute promising research directions.
Firstly, there is a need for more large scale benchmarking studies among the swarm intel-
ligence based techniques, as well as real life applications. Open source implementations in
data mining workbenches such as Weka or RapidaMiner will surely speed up such experi-
mental designs. This can prove the potential of such techniques as well as facilitate the use
thereof for data mining researchers and practitioners. From that perspective, adapting the
existing algorithms to meet specific data mining requirements will accelerate this adoption
even further. Secondly, the use of other swarm intelligence techniques besides ACO and
PSO, as well as the application to other data mining tasks besides (rule-based) classification
and clustering, are yet to be investigated. The good results of the existing techniques mo-
tivate such research. Finally, the main advantages of swarm intelligence have not yet been
fully used in a data mining context. Whereas other applications often rely on the solutions
being robust and able to deal with a dynamic and distributed environment, data mining tech-
niques based on swarm intelligence have not yet fully leveraged these properties. Doing
so may show great potential for dealing with emerging challenges in data mining such as
handling distributed, networked and real-time data.
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