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Editorial on the Research Topic

The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of

Complex Traits

Since the establishment of the mixed linear model (MLM) method for genome-wide association
studies (GWAS) by Zhang et al. (2005) and Yu et al. (2006), a series of new MLM-based methods
have been proposed (Feng et al., 2016). These methods have been widely used in genetic dissection
of complex and omics-related traits (Figure 1), especially in conjunction with the development of
advanced genomic sequencing technologies. However, most existing methods are based on single
marker association in genome-wide scans with population structure and polygenic background
controls. To control false positive rate, Bonferroni correction for multiple tests is frequently
adopted. This stringent correction results in the exclusion of important loci, especially for large
experimental error inherent in field experiments of crop genetics. To address this issue, multi-
locus GWAS methodologies have been recommended, i.e., mrMLM (Wang et al., 2016), ISIS EM-
BLASSO (Tamba et al., 2017), pLARmEB (Zhang et al., 2017), FASTmrEMMA (Wen et al., 2018a),
pKWmEB (Ren et al., 2018), and FASTmrMLM (Zhang and Tamba, 2018). Here we summarize
their advantages and potential limitations for using these methods (Table 1).

MULTI-LOCUS GENOME-WIDE ASSOCIATION STUDIES FOR
COMPLEX TRAITS

Comparison of GWAS Methodologies
Our methodological papers have showed their advantages in terms of quantitative trait nucleotide
(QTN) detection power and QTN effect estimation accuracy over existing methods (Wang et al.,
2016; Tamba et al., 2017; Zhang et al., 2017; Ren et al., 2018; Wen et al., 2018a). This conclusion
has been echoed in a number of other applied studies in this Research Topic. For example, Ma
et al. and Zhang et al. indicated that mrMLM, FASTmrEMMA, pLARmEB, and ISIS EM-BLASSO
outperform the R package GAPIT, with ISIS EM-BLASSO being the most powerful multi-locus
approach. Xu et al. compared one single-locus method (GEMMA) and three multi-locus methods
(FASTmrEMMA, FarmCPU, and LASSO) in the genetic dissection of starch pasting properties
in maize. As a result, FASTmrEMMA detected the most QTNs (29), followed by FarmCPU (19)
and LASSO (12), and GEMMA detected the least QTNs (7). In the genetic dissection of salt
tolerance traits in rice, Cui et al. compared all the sixmulti-locus approaches and identified themost
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FIGURE 1 | The pipeline framework of genome-wide association studies and their application.

co-detected QTNs from ISIS EM-BLASSO. Peng et al. used our
six multi-locus GWAS methods to analyze 20 free amino acid
levels in kernels of bread wheat (Triticum aestivum L.) and
found the reliability and complementarity of these methods.
In the detection of small-effect QTNs for fiber-quality related
traits in the early-maturity varieties of upland cotton, Su et al.
claimed that the multi-locus GWAS methods are more powerful
and robust than the MLM method in TASSEL v5.0. Hou et al.
demonstrated that 20 QTNs were associated with drought stress
response using mrMLM, while three QTNs were associated with
resistance to Verticillium wilt using EMMAX. Although the
above studies have shown the advantages of multi-locus GWAS
methods over single-locus GWAS methods, Chang et al., He
et al., Li et al., and Xu et al. recommended the combination
of single-locus methods and/or multi-locus methods to improve
the detection power and robustness of GWAS, and Cui et al.
recommended adding a bin analysis to the models or developing
a hybrid method that merges the results from different methods.
Our previous results in the analysis of real and simulated dataset
support the above recommendations.

In addition, Liu et al. adopted four multi-locus GWAS
algorithms (mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and
pLARmEB) to dissect the genetic foundation for fiber quality and
yield component traits in RILs. As a result, a significant number

of QTNs were found to coincide with the physical regions of
the confidence intervals of reported QTLs, demonstrating the
effectiveness and feasibility of multi-locus GWAS methods in
RILs.

The Critical P-Value or LOD Score for
Significant QTN
In single-locus GWAS, one key concern is the high false positive
rate (FPR). To reduce FPR, Bonferroni correction is frequently
applied in the single-locus methods, including EMMAX (Kang
et al., 2010), GEMMA (Zhou and Stephens, 2012), ECMLM (Li
et al., 2014), and MLM (Yu et al., 2006). In human genetics,
the genome-wide significance P-value threshold of 5 × 10−8 has
become a standard for common-variant GWAS (Barsh et al.,
2012; Fadista et al., 2016; Chang et al., 2018). However, this
correction or the critical P-value in human genetics is too
stringent to detect certain associated loci for complex traits
in crop genetics. To address this issue, a modified Bonferroni
correction has been proposed; in other words, the number of
markers (m) in the correction formulas is replaced by the effective
number of markers (me) (Wang et al., 2016; Guan et al.). In real
data analysis in crop genetics, some subjective and less stringent
P-value thresholds for significant level are frequently applied
owing to large experimental error, i.e., 1/m (m is the number
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TABLE 1 | Comparison of single- and multi-locus GWAS methodologies.

Single-locus GWAS Multi-locus GWAS*

QTN detection power Low High

P-value threshold of significant QTN 5 × 10−8 (human genetics for common variants) 0.05/m

∼ 1/m (crop genetics; m is no. of markers)

2 × 10−4 (or LOD = 3.0)

False positive rate Low (with Bonferroni correction) Low (with LOD = 3.0 or P = 2 × 10−4)

Multiple test correction Yes No

Polygenic background control Yes Yes (First step); No (Second step; all the potential

genes have been included)

Population structure control Yes Yes

SNP effect Fixed Random

No. of variance components Two (polygenic background and residual variances) Three (QTN, polygenic background and residual

variances; First step)

Multi-locus genetic model No Yes (second step)

How to reduce no. of variances a) To fix the polygenic-to-residual variance ratio

b) To estimate residual variance along with fixed effects

a) To fix the polygenic-to-residual variance ratio

(1∼5)

b) To estimate residual variance along with fixed

effects (1∼4)

c) Let the number of non-zero eigenvalues of XCX
T
C

be one (3∼5)

d) To whiten the covariance matrix of polygenic K

and noise (3∼5)

Running time Fast (GEMMA & EMMAX), slow (EMMA) Fast (2, 6), slow (5), moderate (others)

Software GEMMA: http://www.xzlab.org/software.html

EMMAX: http://genetics.cs.ucla.edu/emmax

mrMLM: https://cran.r-project.org/web/packages/

mrMLM/index.html

mrMLM.GUI: https://cran.r-project.org/web/

packages/mrMLM.GUI/index.html Parallel

calculation with multiple CPU; quickly read big

datasets; graphical user interface (GUI); To

continuously run the programs for multiple traits

*mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS EM-BLASSO are marked by 1, 2, 3, 4, 5, and 6 respectively.

of markers) (Li et al.; Xu et al.), 10−5 (Misra et al.), and 10−4

(Chang et al.). To balance high QTN detection power and low
false positive rate, Xu et al. replaced Bonferroni correction by
a less stringent criterion (1/m) for GEMMA, and a satisfactory
result was achieved in their Monte Carlo simulation studies.

Theoretically, correction for multiple tests is unnecessary in
multi-locus GWAS because all the potential genes or loci for
complex traits are fitted to a single linear model and their effects
are estimated and tested simultaneously. For example, 0.05 was
chosen as the P-value threshold in QTN detection of Khan
et al. (2018). Although relaxing the stringency of significance
level in multi-locus GWAS can identify more hits, confidence
in these hits will drop significantly. Thus, Segura et al. (2012)
and Liu et al. (2016) imposed Bonferroni correction on QTN
detection in their multi-locus GWAS methods. Our results
indicated that Bonferroni correction in multi-locus GWAS of
(Segura et al., 2012) and Liu et al. (2016) may be too stringent,
while the cutoff of 0.05 in multi-locus GWAS of Khan et al.
(2018) may be too relaxed due to the fact that a significance
level of 0.05 can result in a high false positive rate. Lü et al.
simply used LOD score ≥ 5 as a threshold for QTN detection
in their multi-locus GWAS. Based on our studies, we proposed
using LOD = 3.0 (or P = 0.0002) as a cutoff in multi-locus
GWAS to balance the high power and low false positive rate for
QTN detection.

Heritability Missing in GWAS
Heritability missing is a common issue in GWAS (Maher, 2008).
Human geneticists ascribe heritability missing to a few reasons,
including rare alleles, gene-by-gene and gene-by-environment
interactions, and miniature genetic effects of DNA variants that
can hardly reach the level of genome-wide significance (Eichler
et al., 2010). In our opinion, the stringent threshold in genome-
wide detection is also a factor, because certain QTNs cannot
meet the significant level if such P-value cutoff is applied. This
viewpoint is supported by the simulation results of Xu et al.

In most GWAS methodologies, the genotypes of a SNP, for
example, QQ, Qq, and qq, are conventionally coded as 2, 1, and
0, respectively. Thus, the estimated QTN effect is actually the
average effect of allelic substitution, being a + (q − p)d. Let
a + (q − p)d = 0, then d = a/(p − q). Where p takes different
values, such as p = 0.1, 0.3, 0.5, 0.7, and 0.9, so d = −1.25 a,
−2.5 a,∞, 2.5 a, and 1.25 a, respectively, indicating the difficulty
in the detection of QTNs with over-dominance. This may be
another reason for the heritability missing.

New methodologies have been proposed to handle heritability
missing, for example, GCTA (Yang et al., 2011) and GREML-
LDMS (Yang et al., 2015). In this Research Topic, we suggest that
part of the missing heritability may be regained by using multi-
locus GWAS methods, since more QTNs can be detected and
overall estimated heritability will be increased.
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HOW TO DETERMINE RELIABLE QTNS
AND MINE RELIABLE CANDIDATE GENES?

How to Determine Reliable QTNs?
Firstly, when several multi-locus methods are used to analyze
a same dataset, the QTNs identified by multiple approaches
are usually reliable. For example, all the 31 genomic regions
associated with four photosynthesis related traits were detected
by at least three multi-locus methods in Lü et al., five QTNs
associated with forage quality-related traits were detected by
at least two methods in Li et al., and all the common
QTNs either between single-locus methods and multi-locus
methods, or across several multi-locus methods were declared
in Misra et al. Secondly, the QTNs near previously reported
trait-associated genes should be reliable. For example, the
QTNs around genes GRMZM2G163761, GRMZM2G412611, and
GRMZM2G066749 likely contribute to the callus regenerative
capacity (Ma et al.), the QTNs around genes GRMZM2G032628
(ae1) and GRMZM2G392988 may be associated with starch
biosynthesis (Xu et al.), and theQTNs around genesGh_D102255
and Gh_A13G0187 perhaps participate in cellular activities for
fiber elongation (Liu et al.). Finally, the QTNs identified across
various environments (locations and/or years) are also reliable,
i.e., Liu et al. identified 57 QTNs that were associated with
cotton fiber quality and yield components in at least two
environments; Hu et al. repeatedly detected 39 QTNs clusters
to be associated with 14 agronomic traits in 122 barley doubled
haploid lines in multiple environments; Zhang et al. repeatedly
detected 22 common QTNs to be associated with protein
content in 144 soybean four-way recombinant inbred lines in 20
environments.

How to Mine Reliable Candidate Genes?
All known genes in the regions around reliable QTNs potentially
contribute to the traits of interest. However, only a subset
of them may be reliable candidate genes which are worthy
of further investigation. We can use homolog (previously
reported genes) in other species, e.g., Arabidopsis thaliana, to
mine reliable candidate genes in these regions. For example,
WOX2 in Arabidopsis has been reported to increase the rate
of resistant seedlings from transformed immature embryos in
maize and, therefore, the homologous gene GRMZM2G108933
might play an important role in controlling maize callus
regeneration (Ma et al.). Bioinformatics approaches, such as
the KEGG pathway analytic tool, may be used for mining
reliable candidate genes and relevant gene networks. For
example, two genes (LOC_Os01g45760 and LOC_Os10g04860)
are found to be involved in auxin biosynthesis in rice using
KEGG (Cui et al.). Experimental validations are often needed
to confirm the associations between these candidate genes
and the traits of interest. For instance, RNA-seq analysis and
qRT-PCR experiments verified that four genes (RD2, HAT22,
PIP2, and PP2C) are associated with drought tolerance in
cotton (Hou et al.); genomic DNA sequencing showed that
two candidate genes BnaA08g08280D and BnaC03g60080D are
different between the high- and low-oleic acid lines (Guan
et al.). The combined use of GWAS and experimental validation

has great potential for detection of new genes and their
biological functions. For example, a new geneGRMZM2G065083
was found by Xu et al. to play a critical role in starch
biosynthesis in maize by being involved in the gluconeogenesis
process, hexose biosynthetic and metabolic process, and glucose-
6-phosphate isomerase activity, providing insights into the
molecular mechanism underlying the pasting properties of maize
starch.

Important genes may be missed if we only select consensus
QTNs identified by more than one methodology or in more
than one experiment/environment. In practice, we found that
some QTNs detected by only one multi-locus method or
one environment may lead to important discoveries. These
QTNs may be used to mine candidate genes through network
analysis using bioinformatics analysis and/or experimental
validation.

How to Make Use of the GWAS Results?
The main product of GWAS includes the detected QTNs and
the candidate genes nearby. Three approaches are available
for applying these results to breeding programs. Firstly, one
can organize the detected QTN-allele matrix as the population
genetic constitution to facilitate the selection of optimal crosses.
For example, the top 10 optimal crosses were predicted according
to their 95th percentile weighted average values (Khan et al.,
2018). Secondly, we can develop SSR markers around the reliable
QTNs and utilize them in marker assisted selection of crops (Li
et al., 2018). Thirdly, all the SNPs that are significantly associated
with the trait of interest can be used for improving genome
selection (He et al.; He et al., 2019).

Figure 1 summarizes how to design a GWAS to identify QTNs
and mine candidate genes, of which the biological functions may
be further investigated or validated at a molecular level.

FUTURE PERSPECTIVES

It is becoming common to use multiple statistical methods to
detect major quantitative trait loci (QTLs) in the linkage analyses
of complex traits. Thus, we recommend using a few GWAS
methods, especially several multi-locus GWAS methods which
do not need correction for multiple comparisons, to investigate
complex traits. However, not all QTNs can be identified by
all these methods, posing difficulties for using these GWAS
results. This may be ascribed to the fact that the various
GWAS models are based upon different genetic or statistical
assumptions. Possible solutions have been provided in this
editorial to compare the results from various GWAS models and
screen for candidate QTNs or genes, facilitating the subsequent
validation or application.

Interaction at different omics levels, including QTL-by-
environment and QTL-by-QTL interactions, can be detected
with various software programs in linkage analysis. Nevertheless,
methods and software programs with comparable function are
quite limited in GWAS, especially for the studies of quantitative
traits in natural populations where large numbers of genomic
markers are analyzed. The number of variables in GWAS
models will increase sharply if interactions are considered,
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challenging both computational efficiency and detection power.
Multicollinearity among highly saturated and linked markers
is another issue in GWAS, which impairs the efficiency and
accuracy of the current statistical methods. Innovative strategies
are needed to distill many thousands of variables by removing the
redundant genomic markers such that the computational burden
and impact frommulticollinearity can be reduced and the studies
of interactions made more feasible.

Zhang et al. (2018) showed that the explained heritability
increases with sample size in GWAS, and also estimated that the
required sample size may range from a few hundred thousand
to multiple millions to account for most of the heritability. The
samples used in crop genetics, however, is often small, therefore,
increasing sample size in crop GWAS has a great potential in
future research.

With the rapid advances in various technologies, other types
of omic data, including transcriptomic, proteomic, metabolomic
and epigenetic data, have been recently exploited in crop research
(Peng et al.; Wen et al., 2018b). These multi-omic variables
may be treated as additional traits in GWAS, which promises to
reduce knowledge gap between genotype and phenotype and will
eventually benefit selective breeding. For example, omic-traits

(at various layers) that are mapped to the same genomic locations
with agronomic traits will provide multi-dimensional insights

of genetic architectures and the underlying biological pathways.
We believe multi-locus GWASmethodologies will become useful
and popular tools for analysis of omics big datasets and help
understand the mysterious world of genetics.
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