
Softw Syst Model (2009) 8:447–449
DOI 10.1007/s10270-009-0124-5

EDITORIAL

Editorial to the theme issue on metamodelling

Thomas Kühne

Published online: 4 August 2009
© Springer-Verlag 2009

Linguistics, Mathematics, and Computer Science are
inherently reflective disciplines. Linguists use language to
talk about language. Mathematicians use mathematical meth-
ods to study mathematics itself, and Computer Scientists
describe descriptions in order to facilitate automation. For
instance, one of the most important concepts in computer
science, the universal Turing machine, can be regarded as a
program that executes other programs.

All the above examples of self-application are variations
of a common “meta” theme. All of them require care in avoid-
ing paradoxes which may be caused by uncontrolled self-
reference. Linguists are faced with associating semantics to
sentences like “This statement is false.” This self-referenc-
ing sentence is commonly referred to as “The Liar” and its
semantics refuses assignment into “true” and “false” catego-
ries. Linguists, therefore, strictly distinguish between “meta-
language” and “object-language” to avoid the paradoxical
nature of such antinomies. Mathematicians had to abandon
naïve set theory because of Russell’s set paradox, which is
nothing else but a mathematical version of the aforemen-
tioned “Liar”. Computer scientists have to deal with both the
blessing and curse of self-referencing programs and descrip-
tions. On the one hand, we can use this power to build inter-
preters which may even be parametrised with a language
definition, on the other hand we have to deal with non-
terminating programs and potentially inconsistent circular
definitions.

T. Kühne (B)
Victoria University of Wellington, Wellington, New Zealand
e-mail: Thomas.Kuehne@ecs.vuw.ac.nz

1 History of metamodelling

Early “meta” success stories in computer science date back as
far as 1960. The programming language LISP was described
using itself, giving rise to a so-called metacircular interpreter.
At the same time, the first compiler (or meta-compiler) for
the Atlas computer was written, i.e., a compiler that produced
a compiler. This principle, to use grammar and semantics
definitions to configure programs so that they behave in cus-
tomised ways, lived on in environments like the Cornell pro-
gram synthesizer, and led directly to today’s domain-specific
programming/modelling metacase tools. Metamodelling, as
applied in such tools, has a number of associated advanta-
ges:

– the tool can be reused many times for a vast range of
applications.

– the definition of a language is not hidden in the code of
a tool, making it easier to understand and correct.

– the definition can be altered by users of the tool
instead of requiring a new tool release by the manufac-
turer.

– one can reason about the definition and the artefacts it
describes.

Despite these early and continued successes, “meta”
technologies were not always viewed favourably. Early
metamodellers were occasionally suspected of withdraw-
ing into esoteric pursuits, escaping the hard realities of real,
first-order modelling. The prestige and importance of meta-
modelling, however, has changed considerably and irrevoca-
bly in the late 1990’s. In particular, the Object Management
Group’s use of metamodelling for defining the UML and its
model-driven architecture initiative paved the way for meta-
modelling to become fashionable.

123



448 T. Kühne

2 Metamodelling today

The latest incarnation in a series of attempts for raising the
levels of abstraction at which we instruct hardware, i.e.,
model-driven development, is unthinkable without a meta-
modelling foundation. Languages, their definitions, and their
definitions’ definition are described in metamodelling
description hierarchies. The same applies to the equally vital
notion of transformations. Here, the self-application theme
gives rise to so-called “higher-order transformations”, i.e.,
transformations which transform transformations, which
could also aptly be referred to as “meta transformations”.

Today, metamodelling is an established and successful
technology in a large variety of application areas such as data
integration, repositories, process definition, model transfor-
mation, and (domain-specific) language definition. In addi-
tion to these linguistic applications, metamodelling is also
used with an ontological flavour to remove accidental com-
plexity in multi-level modelling scenarios. All the above
applications gain value from explicitly modelling the defi-
nitions of artefacts in order to make these definitions flexible
or the subject of further analysis. In summary, metamodel-
ling has firmly established itself as an indispensable technol-
ogy for state of the art MDX software development (where
X ∈ {A,D,E, . . . }).

The success of metamodelling notwithstanding, many
open problems remain to be addressed. The journal Soft-
ware and Systems Modeling hence invited original, high-
quality submissions for this theme issue on Metamodelling.
An extensive reviewing process with four reviews per sub-
mission and a substantial revision procedure led to the accep-
tance of four articles addressing a wide range of topics from
theoretical to practical considerations.

3 In this issue

Despite the wide-spread use of metamodels for defining
domain-specific languages, the former’s formal foundation
has not received the same level of attention. Pursuing a
formal definition of the structural semantics of domain-
specific languages is easily motivated by the desire to
describe modelling artefacts independently from their imple-
mentation and the attractiveness of being able to apply
analysis techniques to their metamodels and corresponding
transformations. In Formalizing the Structural Semantics of
Domain-Specific Modeling Languages, Ethan Jackson and
Janos Sztipanovits use a non-monotonic extension of Horn
logic to represent a language’s syntax, well-formedness con-
straints, and corresponding transformations. This allows
them to smoothly integrate syntax definitions with constraints
and provide a notion of equivalence for languages. Further-
more, they can use structure preserving maps to guarantee

that legal input will always be transformed to legal output.
To illustrate the applicability of their formal foundation, they
apply it to a scaled-down version of the Model-Integrated
Computing (MIC) tool suite.

Once a model transformation has been designed it should
be validated before it is relied upon in practice. One par-
ticular validation approach requires the automatic genera-
tion of a large number of sentences in the input language.
In Generating Instance Models from Meta Models, Karsten
Ehrig, Jochen Küster, and Gabriele Taentzer propose a
method for using metamodels for such large scale testing.
To this end, the authors introduce instance-generating graph
grammars, thus allowing well-known techniques for gram-
mar-based languages to be transferred to metamodel-based
languages. The article contains a formal proof which guar-
antees that the derived grammars exactly produce the models
induced by their respective metamodels.

Domain-specific languages can be developed more effi-
ciently if it is possible to reuse commonly recurring building
blocks. In Supporting Domain-Specific Model Patterns with
Metamodeling, Tihamér Levendovszky, László Lengyel, and
Tamás Mészáros suggest that language developers should be
allowed to draw on domain-specific modelling design pat-
terns. In order to support the representation and instantiation
of such incomplete templates without requiring metamodels
to be explicitly adapted, the authors introduce the theoret-
ical foundation for a weakened form of instantiation. They
demonstrate that their so-called “partial instantiation” cor-
responds to a useful class of implied metamodel relaxations
by presenting a number of supported domain-specific design
patterns from various domains.

Recently a number of extensions to standard metamod-
elling have been proposed, such as strict metamodelling,
multi-level modelling with ontological classification, and
deep instantiation. To date no single language with a for-
mal semantics has combined all these extensions. In Nivel:
A Metamodelling Language with a Formal Semantics, Timo
Asikainen and Tomi Männistö propose such a language and
define its semantics by mapping it to the Weight Constraint
Rule Language. One interesting aspect of the latter is that
it features cardinality constraints which allow a direct rep-
resentation of attribute cardinality bounds and cardinality
constraints. The authors go beyond the above mentioned
metamodelling extensions, explicitly discussing how deep
instantiation applies to associations and how to interpret
generalisation between associations. They demonstrate the
applicability of their language design by applying it to a case
study on feature modelling.

Acknowledgments I thank Colin Atkinson with whom I had the
pleasure to start venturing into metamodelling land. I am grateful to
the Editors-in-Chief for suggesting a theme issue on Metamodelling.
I furthermore thank Martin Schindler who did an outstanding job of
supporting me in putting this theme issue together. The authors deserve

123



Editorial to the theme issue on metamodelling 449

the most credit for making this theme issue possible by submitting their
work and revising it according to the reviewers’ comments. Finally, I
am indebted to the reviewers for their timely efforts which in many
cases directly led to considerable improvements.

Author biography

Thomas Kühne is an Associate
Professor at Victoria University of
Wellington, New Zealand. Prior to
that he was an Assistant Profes-
sor at the Technische Universität
Darmstadt, Germany, an Acting
Professor at the University of
Mannheim, Germany, and a Lec-
turer at Staffordshire University,
UK. His research interests include
object technology, programming
language design, metamodelling,
and model-driven development.
He received a Ph.D. and M.Sc.
from the Technische Universität
Darmstadt, Germany in 1998 and
1992, respectively.

123


	Editorial to the theme issue on metamodelling
	1 History of metamodelling
	2 Metamodelling today
	3 In this issue
	Acknowledgments

