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Abstract—Effective screening of COVID-19 cases has
been becoming extremely important to mitigate and stop
the quick spread of the disease during the current period of
COVID-19 pandemic worldwide. In this article, we consider
radiology examination of using chest X-ray images, which
is among the effective screening approaches for COVID-19
case detection. Given deep learning is an effective tool
and framework for image analysis, there have been lots
of studies for COVID-19 case detection by training deep
learning models with X-ray images. Although some of them
report good prediction results, their proposed deep learn-
ing models might suffer from overfitting, high variance, and
generalization errors caused by noise and a limited number
of datasets. Considering ensemble learning can overcome
the shortcomings of deep learning by making predictions
with multiple models instead of a single model, we propose
EDL-COVID, an ensemble deep learning model employ-
ing deep learning and ensemble learning. The EDL-COVID
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model is generated by combining multiple snapshot mod-
els of COVID-Net, which has pioneered in an open-sourced
COVID-19 case detection method with deep neural network
processed chest X-ray images, by employing a proposed
weighted averaging ensembling method that is aware of
different sensitivities of deep learning models on different
classes types. Experimental results show that EDL-COVID
offers promising results for COVID-19 case detection with
an accuracy of 95%, better than COVID-Net of 93.3%.

Index Terms—Covid-19, chest X-ray images, deep learn-
ing, EDL-COVID, ensemble learning.

I. INTRODUCTION

T
HE novel Coronavirus Disease 2019 (COVID-19), as an

unprecedented infectious and dangerous disease around

the world, is caused by SARS-CoV-2, a severe acute respiratory

syndrome coronavirus 2, which has not been ever found in

humans before Dec 2019 [1]. There is a rapid person-to-person

coronavirus transmission between two people in close contact

via aerosols or small droplets created by talking, coughing,

and sneezing. Once infected, people tend to have the following

common symptoms after several days, including fever, cough,

taste/small loss, and shortness of breath. As of 10th January

2020, there are still more than 90 million active infected cases,

and 1.94 million people have died worldwide.

To stop the fast spread of COVID-19, an important task is to

find out infected people via effective screening such that they

can be isolated and received immediate treatment. So far, the

most commonly used screening approach for COVID-19 case

detection is to take a reverse transcription polymerase chain

reaction (RT-PCR) test over a sample of nasopharyngeal exudate

collected from suspectable people for the qualitative detection

of nucleic acid from SARS-CoV-2 attributes to its merits as a

simple but specific qualitative assay [6], [30]. Although RT-PCR

testing has been recognized as a “gold standard” for infected case

discovery of the disease, there are still several issues about it.

First, the sensitivity of its detection results is highly variable,

which can generate false-negative and false-positive results

according to a recent study by Tahamtan et al. [34]. Second,

due to the quick spread of COVID-19, there are not sufficient

PCR reagent kits to satisfy the overwhelming screening demand

especially in poor and heavily affected areas [35].

In addition to RT-PCR, radiography examination is an alterna-

tive effective screening method for fast detection of COVID-19,
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where the chest X-ray (CXR) and CT images are performed

and analyzed by radiologists to judge whether a suspectable

person has been infected or not by SARS-CoV-2 [3], [36]. Recent

studies have observed the abnormal features in radiography

images of COVID-19 cases and it has been widely used in

China at the earlier stage of the global outbreak [15], [16], [38].

Although CT scan has a higher sensitivity to pulmonary diseases,

there are several limitations for its practical uses in COVID-19

case detection at a larger scale, including nonportability, long-

time scanning, and the risk of exposing the hospital staff. In

comparison to CT scans, CXR imaging is portable, faster, more

readily available, and can be performed within an isolated room

while offering an acceptable accuracy in COVID-19 case detec-

tion [29]. Due to these benefits, many recent studies [7], [18],

[29], [36] have now focused on CXR image analysis for COVID-

19 case detection. Particularly, there are some studies [25]

suggesting to take portable CXR imaging as a reliance method

for COVID-19 case detection with the quick spread of the

pandemic.

While CXR imaging is very fast, it needs expert radiologists

to make judgment for COVID-19 case detection manually,

which requires professional knowledge and is a time-consuming

process. Meanwhile, the number of radiologists is much fewer

than that of people under detection. An artificial intelligence

(AI)-aided diagnostic system is thus needed to assist radiologists

to make screening of COVID-19 cases in a more rapid and

accurate way, otherwise it is prone to occur that infected people

cannot be detected and quarantined as soon as possible and in

turn cannot receive treatment timely [24], [36].

Essentially, COVID-19 case detection with CXR images

is a classification problem in the machine learning domain,

for which convolutional neural network (CNNs) enabled data-

driven deep learning methods have demonstrated promising

performance [21]. As such, many recent studies [6], [24], [26],

[36], are available for attempting to train new deep learning

models for infected case detection with CXR images by either

reusing or modifying existing deep neural networks atop of

collected CXR images datasets. However, due to the noise and

limited training data size in practice, a deep learning model

might suffer from overfitting, high variance, and generalization

errors although some studies in their articles report much high

prediction accuracy for their proposed deep learning models

with their own datasets.

To alleviate it, instead of using a single model, ensemble

learning that combines multiple models together with a proper

strategy (e.g., random forest [10], boosting [32], stacking [12])

is assumed to be an effective technique. It is able to not only

reduce the variance and generalization errors of predictions but

also can yield a better result than any single model [28].

In this article, to take advantage of both deep learning and

ensemble learning, we propose EDL-COVID, an ensemble deep

learning model for detecting COVID-19 cases with CXR im-

ages. There are several challenging issues for ensemble deep

learning model development. First, it needs to have multiple

deep learning models for combination, whereas training a deep

model generally takes a significant amount of computational

cost and a long time to converge. Moreover, the development

of a good ensemble deep learning model depends on both the

accuracy of each individual model and the diversity among these

deep learning models [13].

To reduce the computation cost as well as training time,

instead of training multiple different deep neural networks, we

consider an alternative approach of generating multiple deep

learning models using a single deep neural networks. Specif-

ically, we execute a single training run with multiple model

snapshots first, and then ensemble the prediction results for

a final prediction. However, there is a big problem with this

approach that the produced multiple models can be quite similar

to each other since they have the same network architecture

as well as training initialization, violating the model diversity

requirement of ensemble learning. Using these similar models

tends to result in similar predictions and prediction errors,

indicating that the combination of these models cannot offer

much benefit. To resolve it, one effective approach is to make an

aggressive learning rate change during a single neural network

training process, which can force the exploration of different

model weights and produce a diversity of multiple snapshot

models [22].

Specifically, our proposed EDL-COVID is based on COVID-

Net [36], which is state-of-the-art open-sourced deep CNN for

COVID-19 case detection from CXR images. By using COVID-

Net network architecture as well as its datasets of COVIDx [2],

we first train multiple snapshot deep learning models with a

cosine annealing learning rate schedule, for which the learning

rate fluctuates significantly in that it starts high and drops to

a minimum value close to zero rapidly before going up to the

maximum value again [22]. Next, the ensemble deep learning

model of EDL-COVID is developed by combining these models

with a proposed model ensembling approach called weighted

averaging ensembling (WAE), which is based on two observa-

tions that 1) there are different sensitivities for different classes

types of an individual deep learning model, and 2) different

deep learning models have different sensitivities for each class

type. WAE is based on the assumption that for a class type, a

model with a higher sensitivity should contribute more to the

final ensembling result by estimating its weight proportional

to its sensitivity. Finally, the experimental results show that

EDL-COVID achieves promising results for case detection from

CXR images with 95.0% accuracy, 96.0% sensitivity, and 94.1%

PPV for the COVID-19 class type.

In summary, the following contributions are made in this

article.

1) We propose a weighted average ensembling (WAE) en-

sembling strategy with the awareness of varied class-level

accuracies for different machine learning models.

2) We propose a snapshot ensemble deep learning model

called EDL-COVID based on the state-of-the-art deep

learning architecture of COVID-Net.

3) We evaluate EDL-COVID experimentally, showing the

promising results of EDL-COVID.

The rest of this article is organized as follows. Section II

provides a background of ensemble deep learning and COVID-

Net. In Section III, related work is reviewed. The proposed

EDL-COVID model is introduced in Section IV. Experimental
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evaluation of the proposed model is provided in Section V.

Finally, Section VI concludes the article.

II. BACKGROUND

For the sake of better understanding the EDL-COVID model,

we give a description of ensemble deep learning and COVID-

Net network that EDL-COVID is built on for COVID-19 case

detection.

A. Ensemble Deep Learning

As a powerful machine learning technique, deep learning is

widely applied to many studies, e.g., computer vision, speech

recognition, medical image analysis, drug design, etc [8], [23]. It

contains a multilayer neural network that can progressively ex-

tract higher level features from raw data such as images and pro-

duce prediction outputs based on those features. A deep learning

model computation consists of two stages, namely training and

inference. Training is an iterative and stochastic computation for

generating a model based on training data. Several arguments

need to be initialized before training computation, including

learning rate, epoch number, and batch size, where different

configurations tend to result in models with different accuracies.

Inference is a prediction process with the trained deep learning

model. Some popular deep learning architectures are available,

e.g., CNN and recurrent neural networks (RNN). In comparison,

CNN is the most popular one, which is good for applications

such as image detection/recognition, image classification, and

medical image analysis [5].

With the existence of the noise in the training data and the

randomness in the deep learning algorithm, however, it tends to

suffer from high variance problem and generalization error [19].

Although there are some commonly used techniques such as data

augmentation and regularization [9], the problems are still not

well addressed for deep learning models.

To overcome these problems for a single machine learning

model, ensemble learning is assumed to be an effective ap-

proach [28]. It is a hybrid learning paradigm that is able to

produce more accurate and robust prediction results than a single

model by combining multiple machine learning models intel-

ligently. Various ensemble strategies are available, including

averaging, random forest [10], boosting [32], and stacking [12].

To make the ensemble effective, we must make sure that multiple

models for combination is diverse. In the proposed work, we

study ensemble deep learning for COVID-19 case detection

by combining multiple deep learning models via an ensemble

strategy.

B. Covid-Net

COVID-Net [36] is by far the state-of-the-art deep convolu-

tion neural network for CXR image processing based COVID-19

case detection.1 Fig. 1 presents its network architecture, which

is a carefully designed model for COVID-19 case detection in a

1[Online]. Available: https://github.com/lindawangg/COVID-Net

Fig. 1. CNN architecture of COVID-Net [36].

human-machine collaborative manner with the following char-

acteristics. First, it exploits a design pattern of lightweight resid-

ual projection-expansion-projection-extension (PEPX) heavily,

which makes up of first-stage projection, expansion, depth-wise

representation, second-stage projection, and extension. Specifi-

cally, the First-Stage Projection is a 1 × 1 convolution to project

input features from a high dimension to a lower one. Expan-

sion is a reverse procedure that expands features to a higher

dimension with a 1 × 1 convolution. Dep-wise Representation

is responsible for learning spatial features to minimize com-

putational complexity while keeping representational capacity

via a 3 × 3 depth-wise convolutions. Second-stage Projection

projects features back to a lower dimension with a 1 × 1 convo-

lutions. Finally, Extension extends channel dimensionality to a

higher one to produce the final features with 1 × 1 convolutions.

Second, it contains long-range connectivities at different places

of the network architecture. Third, the COVID-Net network is

considerably diverse in order to realize a strong representational

capacity for COVID-19 case detection. All of these features

enable COVID-Net to achieve a strong representational capacity

while keeping computational complexity reduced. It offers a

COVIDx dataset for training, which classifies people into the

following cases, i.e., normal, pneumonia, as well as COVID-19

as Fig. 2 shows. By using the COVIDx dataset [2], it is re-

ported for COVID-Net that it can achieve an accuracy of 93.3%,

and positive predictive value (PPV) of 90.5%, 91.3%, 98.9%,
respectively, for normal, pneumonia, and COVID-19.

III. RELATED WORK

To reduce the burden of detection from radiography images

(e.g., CT and CXR images) for radiologists, there have been

several AI-aided detection systems proposed, which are based

on deep learning [20], [31], [37]. Due to several benefits of CXR

imaging including portability, availability, accessibility and fast

checking compared to CT imaging, CXR images are becoming a

popular and commonly utilized data source for COVID-19 case

detection.

Chowdhury et al. [11] made a model training comparison of

different deep learning networks including AlexNet, ResNet18,

DenseNet201, and SqueezeNet to classify two classes (i.e.,

COVID-19 and Normal) for CXR images, concluding that

https://github.com/lindawangg/COVID-Net
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Fig. 2. CXR images for normal and illness people from COVIDx datasets [2], which categorizes CXR images into classes of: (a) Normal case,
(b) pneumonia case, and (c) COVID-19 case.

SqueezeNet outperforms other neural networks. Instead, Narin

et al. [26] made a comparison of different CNN models (e.g.,

ResNet-50, Inception V3, and Inception-ResNetV2) trained

on CXR images for COVID-19 case detection, showing that

ResNet-50 outperforms the other two models with 98% accu-

racy. Farooq et al. [14] provided a COVID-ResNet by fine tuning

a pretrained ResNet-50 architecture with a reported accuracy of

96.23%. Wang et al. [36] made a tailored and first open-sourced

deep neural network called COVID-Net for COVID-19 case

detection with CXR images. Tulin et al. [27] trained a deep

learning scheme named DarkCovidNet, which detects COVID-

19 cases based on a number of only 125 CXR images. Maghdid

et al. [24] built deep learning models with pretrained AlexNet

based on its own established dataset of X-ray images and CT

images for COVID-19 case detection. Alom et al. [6] proposed a

multitask deep learning system called COVID_MTNet for case

detection by considering both CXR and CT images together.

HSMA_WOA [4] hybrids the novel Slime mould algorithm

together with whale optimization algorithm to address the CXR

based image segmentation issue for detecting COVID-19 cases.

In contrast, we focus on the COVID-19 case detection and

HSMA_WOA is complementary to our article.

While these studies seem to offer pretty good results, the

reliability of their proposed deep learning models can be ques-

tioned due to a serious bias problem for the COVID-19 dataset

collected from a small sized group of COVID-19 cases [33].

Moreover, since the training processes of deep learning models

rely on stochastic algorithms, they are sensitive to the specifies

of training data and can produce different weights each time they

are trained. Hence, the prediction result of a single deep learning

model is prone to suffer from high variance and generalization

errors due to the noise and a limited amount of COVID-19

datasets collected by far. Fortunately, these issues can be allevi-

ated with the adoption of the ensemble learning technique. An

ensemble deep learning model called EDL-COVID is proposed

in this article by combining multiple snapshot deep learning

models trained from state-of-the-art neural network of COVID-

Net with a proposed WAE approach (see Section IV-B) that is

aware of different sensitivities for different models on each class

type.

IV. EDL-COVID: ENSEMBLE DEEP LEARNING MODEL FOR

COVID-19 CASE DETECTION

In this section, we introduce EDL-COVID, a snapshot ensem-

ble deep learning model based on COVID-Net. As illustrated

in Fig. 3, the overall training flow for EDL-COVID consists

of two phases, namely, snapshot model training and model

ensembling. The snapshot model training phase is responsible

for producing multiple model snapshots (Section IV-A), which

are then combined together for a final prediction in the model

ensembling phase (Section IV-B). The detailed implementation

of EDL-COVID can be found in Appendix A.

A. Snapshot Model Training

To enable deep learning ensembling, there is a need to have

multiple pretrained deep learning models. However, the model

training process generally takes hours and a large amount of

computing resources, making deep learning ensembling become

a time-consuming and heavy computation process. To alleviate

it, we can instead train multiple model snapshots of a deep

learning network for ensembling during a single training run,

rather than training multiple models from different deep learning

networks separately. In this article, we choose COVID-Net as

the candidate to generate multiple model snapshots in terms of

its promising performance for its CXR image based COVID-19

case detection, as well as public accessibility for its source code.

To make model ensembling effective in practice, there is a

diversity requirement for multiple deep learning models that

have different distributions of prediction errors. However, a

limitation of such a model snapshot approach of a single deep

learning network training is that the generated model snapshots

tend to be similar, which can produce similar predictions and

prediction errors. To address it, a commonly used approach is to

take an aggressive learning rate schedule during a single training

run that makes large changes of model weights and in turn the

nature of model snapshots [22].

We take the cosine annealing learning rate schedule proposed

by Loshchilov et al. [22] to change the learning rate aggressively

but systematically to generate different model weights over

training epochs, by allowing the learning rate to start high and
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Fig. 3. Overall flow for EDL-COVID ensemble model training. It consists of two phases, namely, snapshot model training, and model ensembling.
We propose the WAE approach for model ensembling as described in Algorithm 1.

Fig. 4. Variations of learning rates and corresponding learning losses
under cosine annealing learning rate schedule over training epochs. The
aggressive change of learning rate produces different model weights
with significantly different training loss, making a set of diverse models.

decrease to a minimum value near zero at a relatively rapid

speed before being increased again to the maximum based on

the following formula

α(t) =
α0

2

(

cos

(

πmod(t− 1, ⌈T/M⌉)

⌈T/M⌉

)

+ 1

)

(1)

where α0 is the maximum learning rate, α(t) is the learning

rate at epoch t and, M denotes the number of cycles, and T
is the overall number of epochs. Then each time a new model

snapshot is produced after training a network for M cycles.

Specifically, we train multiple model snapshots by initializing

α0 = 0.002, T = 50, and M = 6 for COVID-Net network with

COVIDx dataset. Then 6 model snapshots would be produced

from the COVID-Net network. Fig. 4 shows the aggressive vari-

ations of learning rates and corresponding training losses with

the cosine annealing learning rate schedule during the model

training process. We can see that such a significant variation of

learning rate can produce different model weights by observing

the big changes of intermediate training losses.

B. Model Ensembling

After generating multiple model snapshots in the first phase,

we now come to the model ensembling phase for building EDL-

COVID by combining these models as illustrated in Fig. 3. As we

discussed in Section II-A, there are many ensembling strategies

for model ensemble. For snapshot ensemble learning, averaging

is a popular ensembling strategy [17]. For an input sample, it

simply averages the class probabilities for each class from all

models, respectively. Let M be the number of classifiers (i.e.,

deep learning models). Let pm,k(di) be the class probability of

the kth class output by themth classifier with respect to the input

sample di. Then the average class probability is
∑M

m=1 pm,k(di)
M

,

for k ∈ [1,K] of the input sample di, with K denoting the

number of classes.

The traditional averaging ensembling strategy is implicitly

based on the assumption that all models have the same weights.

However, there are two key observations as follows.

1) For a deep learning model, the testing accuracies for

different classes are generally different.

2) Different deep learning models tend to have different ac-

curacies for each class. It indicates that we cannot simply

treat each model equally during the model ensembling.

Based on the two observations above, we instead propose

a WAE approach for snapshot model ensemble as depicted in

Algorithm 1. Let ai,j be the test accuracy of the ith model for

the jth class over the test data of the CXR images dataset. Let

wi,j denote the normalized weight of the ith model for the jth

class. Then we have wi,j =
ai,j

∑M
m=1 am,j

(Line 7). For each input

sample di, we first get the output of every class probability

pm,k(di) from the mth model for ∀m ∈ M (Line 10–12). Then

we can estimate the class probability pk(di) of EDL-COVID by

summing up the weighted class probabilities of all models (Line

13–14) for ∀k ∈ K. Finally, we can get the predicted class by

returning the class index with the maximum class probability

for each input sample (Line 15).

V. EXPERIMENTAL EVALUATION

We have implemented EDL-COVID atop of TensorFlow

based on COVID-Net, and evaluated EDL-COVID using CXR

images of the COVIDx dataset in a GPU machine.

A. Experimental Setup

GPU Machine. We train and evaluate our proposed model on

a GPU machine consisting of two Intel Xeon E5-2640 CPUs,

256 GB of RAM, and two NVIDIA Tesla P100 GPUs. It runs

on CentOS 7.7 OS with TensorFlow 2.0.0 installed for deep
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Algorithm 1: Pseudo Code of the Proposed WAE Approach.

1: Input:

2: M : the number of classifiers (i.e., deep learning

models).

3: N : the size of CXR images dataset.

4: K : the number of classes for CXR images dataset.

5: ai,j : the test accuracy of the ith model for the jth

class.

6: di : the ith input sample of CXR images dataset.

7: wi,j : the normalized weight of the ith model for

WAE over the jth class prediction, where

wi,j =
ai,j

∑M
m=1 am,j

.

8: Output:

9: c(di) : the predicted class index for the ith input

sample with EDL-COVID.

10: for i = 1 to N do

11: for m = 1 to M do

12: Get the output (i.e., class probability vector

pm(di) = {pm,k(di)} for all K classes where

1 ≤ k ≤ K) of the mth model w.r.t. the input

sample di.
13: end for

14: for k = 1 to K do

15: pk(di) =
∑M

m=1 pm,k(di) · wi,k.

16: end for

17: c(di) = argmax1≤k≤K{pk(di)}.
18: Get the class index with the maximum class

probability for the ith input sample.

19: end for

learning model training and inference, where cuDNN is enabled

to speedup the training computation on a GPU device.

Dataset. We take the latest COVIDx dataset proposed

by Wang et al. [2] for model training and evaluation in

our experiment. It totally contains 15477 CXR images from

13870 cases by 20th June 2020, comprising of 6053 Pneu-

monia, 8851 Normal, and 573 COVID-19 cases images. The

COVIDx dataset is collected from five different data sources,

namely, ActualMed COVID-19 dataset,2 COVID-19 image

data collection,3 COVID-19 radiography database,4 COVID-19

CXR dataset initiative,5 as well as RSNA pneumonia detec-

tion challenge.6 In our experiment below, we take 13898 CXR

images from the COVIDx dataset for model training and the

remaining 1579 CXR images for testing. Specifically, for train-

ing data, it consists of 7966 Normal, 5459 Pneumonia, and 473

COVID-19 CXR images. In contrast, there are 885 normal, 594

pneumonia, and 100 COVID-19 CXR images for testing data.

2[Online]. Available: https://github.com/agchung/Actualmed-COVID-
chestxray-dataset

3[Online]. Available: https://github.com/ieee8023/covid-chestxray-dataset
4[Online]. Available: https://kaggle.com/tawsifurrahman/covid19-

radiography-database
5[Online]. Available: https://github.com/agchung/Figure1-COVID-

chestxray-dataset
6[Online]. Available: https://kaggle.com/c/rsna-pneumonia-detection-

challenge

Fig. 5. Overall prediction accuracy.

TABLE I
SENSITIVITIES OF DIFFERENT MODELS ON EACH CLASS (E.G., NORMAL,

PNEUMONIA, AND COVID-19), WHERE THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD

B. Performance Evaluation for Individual Model

Performance metrics of each individual model are evaluated

in the following aspects.

Accuracy Evaluation. We have trained six deep learn-

ing models (denoted as COVID-Net-M1, COVID-Net-M2, · · ·,
COVID-Net-M6) with COVID-Net network architecture on top

of COVIDx dataset. Fig. 5 presents the prediction accuracy for

all models. It shows that the ensembling approach of our pro-

posed EDL-COVID model can make it effectively outperform

the other six deep learning models by about 0.3%.

However, in practice, we cannot simply make a judgment that

a model with a higher accuracy must work better than a model

with a lower accuracy for a multiclass problem. We need to

further take a look at the other two important class-level metrics,

namely, sensitivity and positive predictive value (PPV) as well.

Sensitivity Evaluation. In medical analysis, the sensitivity

of a disease can be interpreted as the proportion of people with

a certain disease that has been successfully identified. Taking

COVID-19 for example, achieving a high sensitivity is quite

important since we do not want to omit any affected people

during our COVID-19 testing, otherwise the affected people

that have been omitted cannot receive immediate treatment,

and meanwhile, they can affect other people. Table I gives a

sensitivity analysis for each model with respect to each class

type. We have the following observations. It is seldom to have

a model that works best for all three classes. For example,

COVID-Net-M5 has the highest sensitivity in Normal class but

not for two other class types. In comparison, EDL-COVID has

the highest sensitivities for both Pneumonia and COVID-19

classes although its sensitivity of Normal class is not the best

https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://kaggle.com/tawsifurrahman/covid19-radiography-database
https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://kaggle.com/c/rsna-pneumonia-detection-challenge
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TABLE II
PPV OF DIFFERENT MODELS ON EACH CLASS (E.G., NORMAL, PNEUMONIA,

AND COVID-19), WHERE THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 6. Estimated class-level weights for six deep learning models
needed by WAE in model ensembling.

Fig. 7. Confusion matrix for EDL-COVID on COVIDx dataset that
consists of 100 COVID-19, 594 pneumonia, and 885 normal images.
The red box is the true prediction, and the light blue box is the false
prediction.

across all models. From a practical point of view, there is no

doubt to consider EDL-COVID since a high sensitive screening

for infectious diseases such as COVID-19 is very important.

PPV Evaluation. PPV denotes the probability of positive

results that are true positive results in diagnostic tests according

to (4). If this value is small, it means that there are many false

positives and a follow-up testing is needed for any positive

result with a more reliable result. For COVID-19 screening, if a

model’s PPV is small, we cannot make a judgment that a person

with a positive testing result is the true COVID-19 case and more

accurate testing is needed for positive testing results. Table II

gives a PPV analysis for each model on each class type. Still,

no model performs the best for all class types. COVID-Net-M6

has the highest PPV on pneumonia class, and our EDL-COVID

achieves the highest PPVs for Normal and COVID-19 classes.

Fig. 8. ROC curves of EDL-COVID prediction on COVIDx test dataset
with respect to each class type.

Fig. 9. Execution time for EDL-COVID under different numbers of
testing CXR images.

In summary, we can conclude that, although no model outper-

forms others on all metrics for all classes types, for COVID-19

case detection, our proposed EDL-COVID is the best choice

since it outperforms other models on the accuracy, sensitivity,

and PPV for COVID-19 class type.

C. EDL-COVID Evaluation Results

In this section, we evaluate the EDL-COVID model from the

following perspectives.

Weights Estimation for WAE. Recall in Section IV-B that we

proposed a model ensembling strategy called WAE to combine

multiple deep learning models with the awareness of different

accuracies on different class types for different models. We first

need to obtain weights for all deep learning models on each

class type for WAE. Fig. 6 illustrates the estimated class-level

weights for all deep learning models, which is based on the

estimated sensitivity result on each class type as shown in Table I.

We can see that different classes tend to have different weights

for different deep learning models. For example, for COVID-

Net-M6, it has the largest weight for the COVID-19 class but

relatively low weight for the Pneumonia class.

Predicted Results. The confusion matrix for the proposed

EDL-COVID is presented as in Fig. 7, which analyzes the

COVIDx dataset, including CXR images of 100 COVID-19

cases, 594 pneumonia cases, and 885 normal cases. For COVID-

19 testing, only four out of 100 CXR images of COVID-19 are

not screened out, and six out of 1579 CXR images are mistakenly
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Fig. 10. Core source codes of snapshot models training for EDL-COVID.

considered as COVID-19, indicating that the error ratio is minor

compared to the total number of CXR images for EDL-COVID.

To show the detection capability of EDL-COVID, we draw

ROC curves for EDL-COVID prediction on COVIDx test dataset

with respect to each class type in Fig. 8. Larger area of ROC

area is an indication of better prediction ability. We can see

that the ROC area for each class under EDL-COVID is much

closer to the maximum value of one, indicating that our proposed

EDL-COVID has a good prediction capability for each class type

in practice.

Model Execution Time Evaluation. Fig. 9 illustrates the

execution time for EDL-COVID to handle different numbers

of testing CXR images. We can see that a linear relationship is

demonstrated between the data size and the total execution time,

indicating that our proposed EDL-COVID is scalable. Moreover,

we also present the average execution time for processing a

CXR image. Interestingly, the average execution time drops

significantly we increase the number of CXR images at the

beginning and later becomes smooth when the total number

of images is larger than 1000. This is because EDL-COVID

takes time to load the six models during its computing process

(i.e., overhead), which cannot be ignored when the workload

size is small. However, it becomes relatively small for such an

overhead when the workload size becomes large, making the

average execution time per image becomes smaller first and later

keep stable as observed.

VI. CONCLUSION

In this article, to overcome several problems of overfitting,

high variance, and generalization errors of an individual deep

learning model for improved performance on COVID-19 case

detection, we proposed EDL-COVID, an ensemble deep learn-

ing model called for COVID-19 case detection from CXR

images on the basis of the open-sourced network architecture

called COVID-Net. We first generated multiple model snapshots

by training the COVID-Net network on top of COVIDx CXR

datasets, followed by ensembling these models with a proposed

WAE ensembling approach that is aware of different sensitivities

for different deep learning models on different classes types. Ex-

periments on a COVIDx test data of 1579 CXR images show that

EDL-COVID can detect COVID-19 cases with good promising

results of 96% sensitivity and 94.1% PPVs, outperforming each

individual deep learning model. We hope our AI-based screening

approach can aid radiologists to accelerate the screening of

COVID-19 cases while guaranteeing a high accuracy in the

current COVID-19 pandemic around the world.

Yet, current work is heavily dependent on work by Wang

et al. [36] on COVID-Net network architecture and COVIDx

dataset. There are several future work that can be done to enhance

EDL-COVID for practical use. First, the number of COVID-19

CXR images is still relatively small compared to CXR images

of other classes for the COVIDx dataset, indicating that we

cannot simply make a judgment that the currently trained model

snapshots from COVID-Net architecture continue to work well

with a high accuracy for unseen COVID-19 CXR images. To

improve EDL-COVID, we need to retrain model snapshots of

COVID-Net whenever new CXR images are available. Besides

snapshot models, we can also incorporate some other publicly

available good deep learning models into EDL-COVID for better

performance. Second, we would plan to extend EDL-COVID

for other COVID-19 applications such as risk stratification

for COVID-19 cases survival analysis, risk status analysis of

COVID-19 cases, which are important for patient hospitalization

and care planning.

APPENDIX A
THE IMPLEMENTATION OF EDL-COVID

As discussed in Section IV, EDL-COVID consists of two

parts, i.e., snapshot model training and model ensembling. In

this section, we present its key implementation codes for the

sake of a better understanding of EDL-COVID.

Fig. 10 shows the snapshot model training codes for EDL-

COVID. To output a set of diverse snapshot models, we leverage
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Fig. 11. Core source codes of snapshot models ensembling for EDL-COVID.

cosine annealing learning rate schedule to dynamically esti-

mate and adjust learning rate aggressively and systematically

(Line 26), which is implemented in CosineAnnealingLearn-

ingRateSchedule()(Line 2–22). Next, we load the training and

testing data (Line 27–46). After that, we start to train models

with provided COVID-Net network architecture (Line 47–101).

Typically, at the beginning of each epoch, we adjust the learning

rate dynamically (Line 78). We spill the intermediate snapshot

model into disks at every epochs_per_cycle configured by users

(Line 99–101).

Fig. 11 presents the model ensemble implementation for

EDL-COVID. We first use test data to estimate the class-level

accuracy for each snapshot model trained at the previous stage

with a prediction_accuracy function (Line 2–14), whose im-

plementation is given in Line 21–52. With the class-level ac-

curacies of snapshot models on each class, we next move to

estimate the class-level weights for each model (Line 16–18)

with class_weight_estimate function, whose implementation is

given in Line 53–70. Finally, we perform a model ensemble

for all snapshot models with WAE strategy (Line 19–22) via

wae_estimate function, which are detailed in Line 71–103.
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