

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 23, 2022

eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting Self-
organisation and Self-healing

Boesen, Michael Reibel; Madsen, Jan

Published in:
Proceedings of the 2009 NASA/ESA Conference on Adaptive Hardware Systems

Link to article, DOI:
10.1109/AHS.2009.22

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Boesen, M. R., & Madsen, J. (2009). eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture
Supporting Self-organisation and Self-healing. In Proceedings of the 2009 NASA/ESA Conference on Adaptive
Hardware Systems: July 29 - August 1, 2009, Moscone Convention Center, San Francisco, California, USA (pp.
147-154). IEEE Computer Society Press. https://doi.org/10.1109/AHS.2009.22

https://doi.org/10.1109/AHS.2009.22
https://orbit.dtu.dk/en/publications/771cb7f4-d78e-40a2-ac18-d6c4ea00d57c
https://doi.org/10.1109/AHS.2009.22

eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture Supporting

Self-organisation and Self-healing

Michael Reibel Boesen, Jan Madsen

DTU Informatics

Technical University of Denmark

Kgs. Lyngby, Denmark

{mrb,jan}@imm.dtu.dk

Abstract—This paper presents the concept of a biologi-
cal inspired reconfigurable hardware cell architecture which
supports self-organisation and self-healing. Two fundamental
processes in biology, namely fertilization-to-birth and cell self-
healing have inspired the development of this cell architecture.
In biology as well as in our hardware cell architecture it
is the DNA which enables these processes. We propose a
platform based on the electronic DNA (eDNA) and show
through simulation, its capabilities as a new generation of
robust reconfigurable hardware platforms. We have created
a Java based simulator to simulate our self-organisation and
self-healing algorithms and the results obtained from this looks
promising.

Keywords-embryonics; self-organisation; self-healing; recon-
figurable hardware; biologically inspired;

I. INTRODUCTION

As geometries continues to shrink, the variability in-

creases resulting in an increasing number of both permanent

and transient faults, which in turn, increases the demand

for robust hardware systems. With current technology, one

way to address this problem is to develop hardware that

is able to repair itself. The human body and its biological

cells is an example of a very robust system. The biological

and chemical complexity of the fertilization and later birth

is immense - but the basic principles are easily understood.

In the fertilization-birth process a new organism is created

through cell replication and differentiation. If this self-

organising process could be copied to hardware, it would

allow individual components of the system to configure

and program themselves. A biological cell constitutes the

basic programming platform in biology with which a new

organism can be ”programmed” and built.

Another biological process which occurs many times

every day [1] is the cell self-healing process, in which a

dead cell is replaced with a new one of the same kind.

For instance the UV radiation from the sun causes some

of a persons skincells to die - if they were not replaced the

person would at some point become skinless. That is, this

process maintains our body, such that we do not die. If this

self-healing were implemented in hardware we would have

a system that would be able to find and repair faults within

itself.

In this paper, we present a DNA structure that can be

expressed and interpreted by a, for the purpose built, cell

architecture. Previous work assumes that ”hardware DNA”

is an FPGA-configuration-bitstring-type of datastructure,

where the hardware DNA instructs each particular cell

exactly what it will have to do. Our approach views the

self-organising and self-healing feature as a part of the same

process, thus creating a DNA type which allows the cells (as

oppposed to the designer) to autonomously decide where a

given functionality expressed by the DNA should be placed.

Thus creating a platform which is able to dynamically adapt

to any given application and fault-situation and furthermore

maintain the system by utilising the descriptive power of

our DNA. The proposed cell architecture shows promising

results as an underlying hardware platform in resilient sys-

tems, where it is critical that the system can recover after

failures.

A. Related work

There exists two research branches within biological

inspired hardware: Evolvable hardware and embryonics.

The purpose of evolvable hardware (EHW) is to use a

genetic inspired evolutional model in order to evolve the

hardware in question. Researchers working in this area are

all working from the Darwinian side of evolution, thinking

that the hardware should be evolved through many genera-

tions of more or less successful versions of the hardware.

The largest part of the teams working with EHW is

concerned with genetic algorithms (for instance [2], [3],

[4], [5], [6]). Genetic algorithms can be used to either

optimize circuits, to develop them or both. By using a

genetic algorithm, research groups have been able to evolve

small circuits, such as fx robust multipliers [4]. Others

[5] has been able to evolve larger circuits by raising the

logical granularity above gate level. Various advantages and

drawbacks can be discussed using this technique. Among the

advantages is the fact that evolution of such circuits actually

is possible using genetic algorithms and the thoroughness

with which genetic algorithms explore the search space. In

[7] Adrian Thompson succeeded in evolving a tone discrima-

!"#$%"&'

()$*+'

,-
).
%+/

&'

0+)$)*+#1$'

)-*1/+&2'
0+)$)*+#1$'#%$$'

3$%#.-+#1$'

)-*1/+&2'

%4!56,3'

7"/#8)/1$+.9'

!5' !5'

!5'!5'

3$%#.-+#1$'#%$$'

Figure 1. The biological analogy to the system and an overview of the different parts of the system.

tor in a digital (!) FPGA, because the genetic algorithm

exploited the physics of the silicon! However, among the

drawbacks is the fact that it is primarily an offline approach

and it is computational very heavy. Some groups have tried

battling this drawback by implementing genetic algorithm

operations in hardware (such as [8]). Some have tried to

enhance EHW by combining it with simulated annealing

[2] and neural networks [6].

Another team have investigated how co-evolution can

enhance artificial evolution [9]. Co-evolution is a technique

where two or more individuals in a given population battle

with each other - a sort of ”arms race”. The ”battling” is

implemented by designing a fitness function, which not only

considers the fitness of the individual in question but also

considers the competing individuals [9]. Another feature of

co-evolution is that because the fitness function changes

rapidly, the solution which the co-evolutioned systems come

up with is not likely to be caught in a local minima. So

theoretically, this approach would result in better solutions.

EHW has one major drawback, when the complexity

of the target circuit increases, so does the time it take to

evolve the circuit, thus EHW cannot (yet) be considered an

online approach to adaption.

In embryonics researchers are inspired by the biological

cell and therefore their work is centered around the creation

and configuration of this cell and its components, such as

fx the DNA. In [10] the authors have accomplished to make

a very robust watch consisting of several cells, which each

implement a given function for the watch. If one of the cells

dies (from a fault), the watch is able to restore the dead cell

and therefore continue operation as normal. When a cell dies

the entire column of cells in which the dead cell is located

is killed and shifted one position to the right and hereby

shifting the part of the organism which is to the right of the

dead cell one position to the right.

Yet another group has presented [11] a methodology for

how to design a cell-based system which also is highly fault-

tolerant. This approach rely on spare cells too, to avoid

removing an entire row of cells. But when all spare cells

in a row is used and another cell fault occur, the entire row

will be eliminated. Both [10], [11] use a DNA which place

the functionality for the cells leaving no room for autonomy

for the cells and both use a low logical granularity. Others

have tried to combine EHW and embryonics [12]. They used

the self-reconfigurability of the EHW to repair the fault if

possible. If impossible, they program new gates to repair the

fault. In 82% of the online test-cases the EHW were able to

repair the faults.

Our approach differ from these approaches by using a

higher logical granularity and by using a novel DNA type.

B. Introducing the system

Figure 1 shows a sketch of the complete system. It

also shows the analogy between a biological cell/organism

and our electrical cell (eCell) and electrical organism. The

biological organism consists of multiple biological cells as

does the electrical organism. The biological cell contains

several cell parts (more than is shown in this figure. One

which is shown is the golgi apparatus. The golgi is re-

sponsible for regulating substances in and out of the cell

and forwarding these for processing to the relevant parts

of the cell [1]. The eCell contains four such ”golgi” but

in hardware these are known as network adapters, which

have a similar function. The biological cell nucleus reads

and interprets the DNA and from this produces proteins,

which defines the function of the cell. Again the eCell

have similar parts. The eCell contains an eDNA processing

element which reads an interprets the eDNA and from this

determines the functionality of the eCell.

Basically, the eCell is the basic programming block in

the system. It can be compared to a mix between a CLB of

an FPGA and a small CPU. Just as an FPGA has several

CLBs, our system contains several eCells. The purpose

of each eCell is to read the eDNA and determine what

function it is to perform, just like a biological cell do

in biology. This will be further described in section II.

The eCells can communicate with one another through a

communication medium. This medium is a NoC. Currently,

no fixed network topology has been determined. Details

concerning the communication medium is purely a NoC-

related issue and will not be discussed any further here.

Therefore, in this paper we assume that the NoC is a 2D

mesh. The eCells contain the eDNA which is our proposed

DNA type. It is a programming language which is used to

describe the application the user wants to program on the

platform. The eCells are capable of interpretting this eDNA

and are thus able to program the platform autonomously.

This will be further described in section III.

The proposed system has two main features:

1) The self-organisation is the process where the eCells

read and interpret the eDNA in order to determine

what function they have to perform. This means that

the eCells know how to partition the eDNA code into

several smaller chunks and know how to implement

these chunks. This will be further described in section

IV.

2) The self-healing is the process where if an eCell

malfunctions (dies) other eCells detects this and move

the functionality which the dead cell had to another

functioning cell. This will be further described in

section V.

Section VI explains our Java based simulator, which

we used to test our system. Finally, our paper will end

in describing some results obtained from our Java-based

simulator in section VII. In section VIII we will discuss

future work with the proposed system and lastly, we will

conclude on the work in section IX.

II. ECELL: ELECTRONIC CELL

The eCell is the fundamental building block of our system.

It is the purpose of each eCell to read the eDNA and from

this determine what role it is to play in the application.

Figure 2 shows a state transition model of the behavior of

Init

Differentiated

Wait

Executing

Death
init_

done!

startR
eceived!

outputs_sent!reset!,eCellDeath!

reset!,eCellDeath!

reset!,eCellDeath!

func!

eDNA!

Figure 2. State transistion model of the behavior of the eCell.

the eCell and it is described in the following. An eCell is

activated once it receives the eDNA. In this case it enters

the Init state. Here the eDNA is stored in the memory,

thus we assume that the local memory of the eCells are

large enough. It is not strictly necessary that all eCells

contains a copy of the complete eDNA, but they need to

access it frequently when doing self-organisation and self-

healing, thus it will be beneficial performancewise for all

the eCells to a keep copy of the eDNA. Depending on the

strategy with which the eDNA is distributed amongst the

eCells, the eCell might also forward a copy of the eDNA

to another eCell. Several strategies exists; one idea could be

to feed the eDNA to the top row of the eCells and then let

each eCell forward a copy of the eDNA to the row beneath.

Once the initialisation is done the eCell take the transition

to the Differentiated state. Here the eCell reads and

interprets the eDNA in order to determine what function

it is to perform - i.e. it performs the self-organisation (see

section IV). When it has determined its function it moves

on to the Wait state. Here the eCell awaits inputs from

other eCells or from the environment. Once enough inputs

have been received (depending on the function the eCell

performs) the eCell moves to the Executing state, in

which it executes the function it differentiated to in the

Differentiated state. It also sends the result of this

execution to relevant eCells (which also were determined

during the Differentiated state). Once this result has

been sent it returns to the Wait state again. Only one

more state remains and this is the Death state. In this

state the eCell is dead and can never recover. The eCell

goes to the Death state once an error is discovered by

a built-in self-test or data integrity test, both of which is

based on wellknown techniques and thus not discused any

futher in this paper. Furthermore, from all states (except

Death) it can get to the Init state again by resetting

itself. This occurs whenever the user of the platform chooses

to reprogram the complete platform. Note, that the eCell

also can get to the Init state whenever an eCell receives

information about the death of an eCell. The reason behind

this can be found in section V.

III. THE EDNA: ELECTRONIC DNA

This section will present the DNA of our system - the
eDNA. Our eDNA is in fact a programming language and
this language is shown in BNF notation below.

dna ::= <statement>* | <parallel>*
statement ::= <assignment> | <while> | <if> |

return <var> | <parallel>

parallel ::= parallel <statement>* endparallel

assignment ::= <var> = <exp>

while ::= while <bexp> do

<statement>* endwhile

if ::= if <bexp> then

<statement>* else

<statement>* endif

exp ::= <var/c> [<op> <exp>]*
bexp ::= <var/c> [<bop> <bexp>]*
op ::= AND | OR | + | - | ...

bop ::= AND | OR | < | <= | == | != | ...

var ::= Letters{A-Z}* | RAM <var/c>

var/c ::= Letters{A-Z}* | <const>

const ::= 0<const>* | 1<const>*

The eDNA programming language resembles what can be

referred to as ”pseudocode”. That is, it does not allow you to

describe your application in great detail, but rather describes

the behavior of the application you want to implement. It

do allow you to use standard programming features such as

variables, array operations, branches and conditional loops.

Parallelism in your application will have to be marked

manually by using the parallel and end parallel

keywords.

Furthermore, we define a gene as a keyword, variable

or an operator in this eDNA and these genes are num-

bered chronologically. This means that if your application

described by this eDNA only contains the expression Z = a

then gene number 1 would be the Z, gene number 2

would be the = and gene number 3 would be the a. We

further elaborate on the gene-concept by defining a gene as

”expressable” if it is

• One of the keywords: While, if, endif.

• The first occurence of RAM.

• Any operator (except the assignment ”equal sign”).

The eCells are able to interpret this behavioral description

and implement the corresponding hardware functionality -

this is called the self-organisation (see section IV).

The way the ”behavior-to-hardware” translation is per-

formed is inspired by work done by Ian Page described in

[13]. In [13] Ian Page proposed a way to translate software

code directly to hardware, by introducing hardware blocks

which implements the same functionality as some typical

software code constructions. We will use the same basic

blocks, but with some minor alterations, which are described

in [14]. The resulting hardware blocks, the modifications

and what software structures they implement is shown in

figure 3(a)-(d). Each figure displays a start/finish

signal. The start/finish signal provides a sequencing

mechanism to the system. This means that the order of

operation of the software code are maintained by the signal.

The signal activates a given block. As seen on figure 3(b)

and (c) it is clear that the if and while block respectively

is inactive as long as the start signal coming from the

preceding block is low.

Based on figure 3, figure 4 illustrates the problem the

eCells face. They have some building blocks which they,

according to the eDNA, have to place on the cell architecture

- like a jigsaw puzzle. The next section will explain how the

eCells solve this problem.

IV. SELF-ORGANISATION

The purpose of the self-organisation for each eCell is to

interpret the function of the eCell from the eDNA. The self-

organisation consists of four steps:

EXP
EXP

IF

BE

EXP1

EXP2

WHILE

eDNA: IF฀฀BE฀฀EXP1฀฀EXP2฀฀WHILE฀฀BE

eCell

Figure 4. The problem of placing functionality on the cell architecture.

1) Compute_Cnr: Determine the eCell number of the

eCell.

2) Find_gene: From the eDNA, determine the function

the eCell has to perform.

3) Find_outputs: From the eDNA, determine which

eCells the eCell shall send its outputs to.

4) Find_GS_source: From the eDNA, determine

whether the start-signal of the eCell is coming from

the environment outside the chip.

The Compute_Cnr calculates

Cnr = ID − DCBC (1)

Where the ID is a constant defined either by the user

or hardwired in hardware and the DCBC (DeadCellsBe-

foreCell) is the number of dead eCells which are located

”before” the eCell in question. Now in order to understand

what ’before” means we define the spatial relations for

eCells.

Definition 1 An eCell X with an eCell number CX is

before another eCell Y with eCell number CY iff CX <
CY .

Definition 2 An eCell X with an eCell number CX is

after another eCell Y with eCell number CY iff CX > CY

It is also necessary to realise that

Definition 3 All non-dead eCells have a unique eCell

number, which (via an updateable table) referes to their

position in the NoC.

Each time an eCell dies the DCBC is being updated

thus causes some eCell numbers to change (see section V

for more about self-healing).
Find_gene makes the eCell search the eDNA for ex-

pressable genes. Note from the eDNA syntax in section III,
that not all genes are expressable. The algorithm describing
how the Find_gene work is shown below

start

finish

BOOL

start

finish

S1 S2

BOOL

start

finish

S

(a) (b) (c)

Z = A expr B if BOOL then
 S1
else
 S2
end if

While BOOL do
 S
end while

EXPR

S1 S2

start

(d)

Parallel
 S1
end parallel
Parallel
 S2
end parallel

guard

guard

data

...

finish

Figure 3. (a)-(c) Modified SW→HW blocks inspired by Ian Page [13]. (d) The parallel block introduced with the eDNA, which is not a part of [13].

int Gnr = 0

boolean GeneFound = false;

while (!GeneFound) do

Gene g = eDNA.getGene(Gnr);

if (GeneIsActive(g)

&& Gnr == getCellNumber()) then

GeneFound = true;

Func = g.getFunc();

else

gnr++;

end if

end while;

The Find_gene works in a way such that it assigns the

functionality of the code to eCells in chronological order.

That is the first expressable gene is implemented by the

eCell with eCellnumber = 1, the second expressable gene is

implemented by the eCell with eCellnumber = 2, and so on.

This property makes the job of the Find_outputs simple,

because the purpose of it is to analyze the algorithm de-

scribed by the eDNA and deduct the correct eCell numbers.

That is, the Find_outputs link the different blocks from

figure 3 with each other, this is simply done by counting

genes in the eDNA. By keeping to this simple chronological

order it is easy to link eCells with each other, because the

eCells can calculate the position of a given functionality

by counting expressable genes in the eDNA. Note, that for

eCells responsible for assignments this means that they will

need to calculate the position of all eCells which needs the

variable they assign. For instance if an eCell has determined

through the Find_gene that it shall compute the value of

Z = a + b, then it needs to locate all eCells which uses

this Z.

Finally, Find_GS_source makes the eCell search the

genes just before the gene it is supposed to express. If there

are no genes before this one in the eDNA, then it requests

the input from the environment. This concludes the self-

organisation.

V. SELF-HEALING

The self-organisation is designed in such a way, that

the self-healing process uses the same algorithms as the

self-organisation does. Refer to figure 5 for clarification

concerning the following. What happens is, that if a fault

is found the routers of the NoC alert the environment to

this (through a watch-dog mechanism), which then sends an

eCell death-signal to all eCells, notifying that an eCell death

has occurred. This causes the eCells to go to their Init

state (fig. 2) thus restarting the self-organisation. Because

the eCells entered the Init state by getting a eCell death-

signal, they calculate whether they were before or after the

dead eCell. If an eCell is located after the dead eCell it

simply increment the DCBC counter (which is used by

the Find_gene function in the self-organisation algorithm

- see section IV). Updating the DCBC counter has the

effect, that eCells which are located after the dead eCell

automatically gets an eCell number which is one less than

the one it had before (see equation 1 and figure 5). This

means that it will get the function as its neighbor just

one eCell behind got, thus copying itself in a simple, fast

and cheap way. However, just before restarting the self-

organisation algorithm, it forwards any inputs it has received

to the next non-dead eCell located just after, because it

knows it will move to this position after the self-organisation

algorithm has run. If an eCell is located before the dead

eCell it just checks whether eCells it is sending its outputs

to has moved. This is done by compairing these to the dead

Cell 1

@

Func A

Cell 2

@

Func B

Cell 3

@

Func C

Cell 4

@

No func

Cell 1

@

Func A

Cell 2

@

Func B

Cell 3

@

Func C

Cell 4

@

No func

Cell 1

@

Func A

Cell 2

@

Func B

Cell 2

@

Func B

Cell 3

@

Func C

(a) (b) (c) Function that

the cell just

before had

Recalculate

eCell number

Figure 5. The self-healing process in a small system. (a) The system
works as expected, (b) Cell number 2 dies and (c) the self-healing process.

eCell. If the eCells it is targeting is located after the dead

eCell then it updates the location of these eCells - and by

this the system has healed itself!

VI. THE SIMULATOR

In order to validate and investigate the algorithms for

self-organisation and self-healing we wrote a simulator in

Java. The main feature of the simulator were to provide

us with a fast method to examine the behavior of the

algorithms we invented. All algorithms were based on the

idea that they should run on the eCells which used a NoC

as communication medium, thus we created the simulator

in a way, such that the algorithms could be tested in a

”plug-and-play” fashion. This means that no matter what

set of algorithms we tested, the eCells and the NoC stayed

the same. Only the behavior of the eCells changed as a

result of the algorithms. Therefore in this section we will

describe how the underlying architecture of the simulator

works. In the following we distinguish between two types

of algorithms. The algorithms which the user would like

the eCells to implement are called the test-application and

the self-organisation and self-healing algorithms are named

accordingly.

The simulator has two main features; (1) the user should

be able to visually confirm that the self-organisation algo-

rithms and self-healing algorithms are behaving as antici-

pated and (2) the user should be able to get the results of

the test-application such that the user is able to confirm that

the system calculates correctly. The first feature requires that

the simulator has a GUI and that the rate at which the data

in the simulator changes is at a level such that the user has

time to confirm at runtime, that the algorithms are behaving

correctly. The second feature requires that the system is

able to send the results out of the system. This is done by

using the <return> part of the eDNA language. Whenever

the user writes a return statement, the returned variable is

”sent out” of the system to the ”output-environment”. The

system has an input-environment and an output-environment.

The input-environment is responsible for sending the global

start signal to the right cell (which is determined during the

Find_GS_source part of the self-organisation algorithm)

and the output-environment is responsible for receiving the

outputs and putting them in a file such the user can access

the outputs when the simulation of the test-application is

done.

A. Timing & synchronization

The routers being the ones which relays packets between

source and destination are therefore also the ones responsible

for the timing and the synchronization of the simulator.

Each router is instanced as a thread. The behavior of the

routers are quite simple. First all routers synchronize around

a monitor and then they increment the number of time

units passed by one. Then they check all incoming links

in the order; north, east, south, west for new packets. If new

packets are found they examine the header of each of these

and sends the packet in the right direction using dimension

order routing. They repeat this forever. But in order for the

user to be able to visually confirm that the algorithms work

as anticipated the routers sleep for a short while before

synchronizing around the monitor. In this way a packet

which is being sent between two routers (or a router and an

eCell) will pause in a link for a short while thus enabling

the user to see the packet being sent between routers and

eCells. Furthermore, when a packet flows through a link, the

link is colored in a specific color corresponding to the type

of packet being sent. In this way the user is able to quickly

see exactly what is going on. Once the cells has reached the

Differentiated state they also visually display which

function they perform and by clicking on an eCell the user

can access more data about a given eCell such as for instance

view the which the eCell is connected to through the NoC.

If a packet has reached the right destination the router

sends the packet to the network adapter of the eCell. The

network adapter forwards the packet to the eDNA Processing

Unit (eDNA-PU) which according to the header activates

the algorithm associated with the packet type. Many of the

packets an eCell receives requires the eCell to formulate

a response packet and since each router synchronize just

before repeating their loop again it means that no matter

how long the activated algorithm is, the eCell will complete

it in between this time. This gives an ”unbalanced” timing as

seen in figure 6. This is of course not realistic but was done

Router Link

Router NA
eDNA-

PU
NA

Router

Router

time-unit

Figure 6. The unbalanced timing of the simulator.

this way in order to make it more simpler to ”plug-and-play”

algorithms. This has no impact on our self-organisation and

self-healing algorithms as long as we do not specify any

timing constraints concerning how fast the eCell are able to

respond to something. And as seen for the self-organisation

algorithm (section IV) and self-healing algorithm (section

V), no such timing constraints exists. But it is very important

to realise this fact since if the system were to be build in

hardware the eCells would not be able to respond as quickly

as is simulated in the simulator.

VII. RESULTS

Through simulations, we demonstrated that the algorithms

described in this paper works as expected. Futhermore

our simulator shows that the algorithms described in this

paper works for larger examples such as the implementation

of the AES, CORDIC and similar algorithms. With the

simulator we investigated the three most important statistics

of the system; self-organisation speed, self-healing speed and

application execution speed. The performance unit for these

statistics is called a ”time-unit” and is defined as the latency

from a router through a network adapter, to the ALU in the

eDNA-PU and back to the network adapter (see figure 6).

Table I shows all results obtained for our simulator. The

applications simulated were the Greatest Common Divisor

(GCD) algorithm, Fibonacci number calculator (FIB), CO-

ordinate Rotation DIgital Computer (CORDIC) algorithm

and AES encryption (only key expansion part). These self-

GCD FIB CORDIC AES

#cells 9 11 21 88

S-O Speed 0.225 0.250 0.230 0.192

S-H Speed 3 3 4 8

Exe. Speed 97 168 1396 31419

RL 1.916 1.777 3.500 5.034

eDNA size 22 B 29 B 56 B 228 B

Table I
RESULTS FROM OUR SIMULATOR. THE ABBREVIATIONS TRANSLATES

TO: S-O: SELF-ORGANISATION, S-H: SELF-HEALING, EXE:
EXECUTION SPEED AND RL: ROUTING LENGTH.

organisation speed results shows as expected that the NoC is

degrading the performance. If the NoC had no influence at

all the results would have been 1 new eCell pr. time unit. We

can see that the number of eCells needed for each of these

algorithms vary a lot and even though the results are pretty

much the same. This is also as expected since, because we

would expect the NoC to punish the speed pr. eCell equally.

The self-healing speed results were obtained by killing

the eCell with eCell number equal to ⌈#eCells/2⌉, by

being consistent with this we should be able to compare

the GCD, FIB, CORDIC and AES. Speed was computed

by counting the number of time units until all eCells were

finished copying themselves. The results shows that when

applications get bigger, the time to repair increases. This is

also as expected, because the bigger the application becomes

the more eCells have to become aware of the eCell death.

The last statistics measured is the execution speed, that

is the time from the algorithm start executing and until it is

finished (note, that this of course is dependent on the inputs,

so here we just used arbitrary inputs). The execution speed

is measured from the time where the eCells are done self-

organising. The execution speed results can be used to show

what happens when the size and complexity of an algorithm

increases. It is definitely anticipated that the execution time

will increase the bigger the system becomes and this is

also what the results show. This is because the bigger it

becomes the more communication time is ”wasted” in the

NoC. This can also be seen from routing length results.

The routing length results explains the higher execution

times for the CORDIC and AES algorithms. The results

says that each time an eCell in the AES algorithm wants

to send its output to another eCell it will on average have

to travel approximately 5 hops to reach its destination, thus

on average 5 time-units pr. communication is ”wasted” in

the NoC (recall fig. 6). This gives us two hints; (1) The way

the current eCells are numbered initially may need revising

(that is the ID in equation 1 section IV may need to be

distributed in another way than it currently is) and (2) when

the user wants to implement bigger algorithms each eCell

may have to implement more than one expressable gene.

Finally, to give an idea of how much local memory the

eCells need to store the complete eDNA the final row

of table I shows the size in bytes of the eDNA for the

applications. Each keyword in the eDNA gets translated to a

sequence of bits and since we in the current implementation

has 23 keywords each gene in the eDNA occupies 5 bits

(because each needs its own encoding). In addition to this

come the variables, which might increase the gene size,

depending on the number of variables. It is clearly seen that

the eDNA is quite compact.

Since the eCell is not implemented as a hardware model,

the simulator cannot (yet) provide us with any performance

measures, but we created a block diagram of how the eCell

could look like in hardware and thus were able to calculate

an estimation of how many gates the eCell would consist

of. We then divided this number with the number of gates

needed to create the functionality which the eCell could

interpret from the eDNA in order to get a measure of wasted

gates pr. implemented gate (fx if an eCell can be created by

200 gates, and it can implement a function of up to 10 gates,

then we have wasted 20 gates pr. implemented gate). We

did the same for a Xilinx Virtex 4 CLB and it turns out that

this preliminary cost estimation says that our eCell wastes

approximately twice as many gates as a Virtex 4 CLB.

VIII. FUTURE WORK

The most important aspect to acquire some concrete

performance measures, i.e. how fast is the system able to

self-organise, self-heal? How much power does it need etc.

According to the results in table I it will also be necessary

to look into optimizing the NoC in order to save reduce

the latency in the NoC. Currently only a simple 2D-mesh is

used, other topologies may prove to be better. Thus we need

to implement the system as a hardware model and this will

be the next step of our work. Another important aspect to

illuminate is how the eCell numbers should be distributed

initially.

A detailed fault-tolerance analysis will also be interesting

to make, once we have a hardware model up and running.

It will be valuable to be able to give a clear view of how

robust the system is.

IX. CONCLUSION

This work presents the concept of a model of a new

generation of reconfigurable platforms, which also has self-

organising and self-healing features. The platform consists

of a number of undifferentiated eCells. In order to program

the eCells an eDNA is loaded to the eCells. The eDNA pro-

posed gives (unlike other work within this field) the eCells

much freedom, because the eDNA describes the behavior

of the circuit to be implemented with a small programming

language, leaving the interpretation and implementation to

the eCells. The eCells interpret and translate the eDNA

into functional blocks and then differentiates into these

functions - thus they are self-organised. Self-healing has

also been implemented. The self-healing was implemented

by updating the eCell numbers of the eCells (whenever an

eCell dies) and then rerun the self-organisation algorithm.

Thus creating a reconfigurable platform which is robust and

adaptable.

ACKNOWLEDGMENT

This work was supported by DaNES (Danish National

Advanced Technology Foundation) and ArtistDesign (FP7

Network-of-Excellence, 214373).

REFERENCES

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and
P. Walter, Molecular Biology of the Cell, 4th ed. Garland
Science, 2002.

[2] H. Guo-liang, L. Yuan-xiang, and L. Feng, “Design of evolv-
able hardware using adaptive simulated annealing,” Proceed-
ings. 2005 International Conference on Wireless Communica-
tions, Networking and Mobile Computing, 2005., vol. 2, pp.
1390–1392, 2005.

[3] K. Glette, J. Torresen, T. Gruber, B. Sick, P. Kaufmann,
and M. Platzner, “Comparing evolvable hardware to con-
ventional classifiers for electromyographic prosthetic hand
control,” 2008 NASA/ESA Conference on Adaptive Hardware
and Systems, pp. 32–39, 2008.

[4] H. Liu, J. Miller, and A. Tyrrell, “Intrinsic evolvable hardware
implementation of a robust biological development model for
digital systems,” 2005 NASA/DoD Conference on Evolvable
Hardware (EH’05), pp. 87–92, 2005.

[5] B. Karunya and R. Uma, “Functional level implementation
of evolvable hardware using genetic algorithms,” Proceedings
of the International Conference Mixed Design of Integrated
Circuits and System, 2006. MIXDES 2006., pp. 671–674,
2006.

[6] P. Subbiah and B. Ramamurthy, “The study of fault tol-
erant system design using complete evolution hardware,”
2005 IEEE International Conference on Granular Computing,
vol. 2, pp. 642–645 Vol. 2, 2005.

[7] A. Thompson, “An evolved circuit, intrinsic in silicon, en-
twined with physics,” Evolvable Systems: From Biology to
Hardware. First International Conference, ICES96. Proceed-
ings, pp. 390–405, 1997.

[8] M. Iwata, I. Kajitani, Y. Liu, N. Kajihara, and T. Higuchi,
“Implementation of a gate-level evolvable hardware chip,”
Evolvable Systems: From Biology to Hardware: 4th Inter-
national Conference, ICES 2001 Tokyo, Japan, October 3-5,
2001, Proceedings, p. 38, 2001.

[9] P. Husbands, J.-A. Meyer, and D. Floreano, “How co-
evolution can enhance the adaptive power of artificial evo-
lution: implications for evolutionary robotics,” Evolutionary
Robotics. First European Workshop, EvoRobot98. Proceed-
ings, pp. 22–38, 1998.

[10] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “To-
ward robust integrated circuits: The embryonics approach,”
Proceedings of the IEEE, vol. 88, no. 4, pp. 516–543, 2000.

[11] T. Plaks, X. Zhang, G. Dragffy, A. Pipe, N. Gunton, and
Q. Zhu, “A reconfigurable self-healing embryonic cell archi-
tecture,” International Conference on Engineering of Recon-
figurable Systems and Algorithms - ERSA’03, pp. 134–40,
2003.

[12] V. Sahni and V. Pyara, “An embryonic approach to reliable
digital instrumentation based on evolvable hardware,” IEEE
Transactions on Instrumentation and Measurement, vol. 52,
no. 6, pp. 1696–1702, 2003.

[13] I. Page, “Constructing hardware-software systems from a
single description,” Journal of VLSI Signal Processing, no. 12,
pp. 87–107, 1996.

[14] M. R. Boesen, “A model of bio-inspired hardware - the dna
approach,” IMM-DTU - Master Thesis, pp. 1–158, 2008.

