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Abstract 

A workflow is an effective way for modeling complex applications and serves as a means for scientists and research-
ers to better understand the details of applications. Cloud computing enables the running of workflow applications 
on many types of computational resources which become available on-demand. As one of the most important 
aspects of cloud computing, workflow scheduling needs to be performed efficiently to optimize resources. Due to 
the existence of various resource types at different prices, workflow scheduling has evolved into an even more chal-
lenging problem on cloud computing. The present paper proposes a workflow scheduling algorithm in the cloud 
to minimize the execution cost of the deadline-constrained workflow. The proposed method, EDQWS, extends the 
current authors’ previous study (DQWS) and is a two-step scheduler based on divide and conquer. In the first step, 
the workflow is divided into sub-workflows by defining, scheduling, and removing a critical path from the workflow, 
similar to DQWS. The process continues until only chain-structured sub-workflows, called linear graphs, remain. In 
the second step which is linear graph scheduling, a new merging algorithm is proposed that combines the result-
ing linear graphs so as to reduce the number of used instances and minimize the overall execution cost. In addition, 
the current work introduces a scoring function to select the most efficient instances for scheduling the linear graphs. 
Experiments show that EDQWS outperforms its competitors, both in terms of minimizing the monetary costs of 
executing scheduled workflows and meeting user-defined deadlines. Furthermore, in more than 50% of the exam-
ined workflow samples, EDQWS succeeds in reducing the number of resource instances compared to the previously 
introduced DQWS method.
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Introduction
Nowadays, cloud computing offers an opportunity to 
execute scientific applications composed of hundreds or 
thousands of interrelated tasks [1]. In this context, the 
workflow model is an effective way to construct such 
complex applications. It consists of application tasks 
specified by nodes and the connection lines among 
nodes which create dependencies among these tasks in a 

directed acyclic graph (DAG) [2]. The workflow schedul-
ing problem in the cloud aims to assign the tasks to com-
puting resources in order to preserve task precedence 
while meeting some performance criteria [3].

Besides the total execution time of workflows, most 
research on workflow scheduling in the cloud has 
focused on optimizing the total usage cost of computing 
resources offered by cloud providers [2]. Moreover, faster 
and more powerful computing resources in the cloud are 
usually more expensive than slower ones. Therefore, the 
execution cost can be affected by employing powerful 
computing resources as this decreases the workflow exe-
cution time. Thus, the trade-off between cost and time 
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is a major challenge of workflow scheduling in the cloud 
[4]. To address this trade-off, two common methods are 
employed: either minimizing the total execution time 
under a budget constraint or minimizing the monetary 
cost under a deadline constraint.

Depending on user requirements and the work-
flow application, both cost and time can be consid-
ered as constraints or optimization objectives. Some 
workflows are structured in such a way that the results 
can be used whenever the execution of the workflow is 
completed before the deadline. The workflows of medi-
cal simulations and weather forecasting are examples of 
deadline-constrained applications [4]. To address such 
deadline-constrained applications, the current study pro-
poses a new workflow scheduling algorithm focused on 
minimizing the total execution cost while respecting the 
user-defined deadline.

The proposed algorithm, named enhanced divide and 
conquer workflow scheduling (EDQWS), is an extension 
of the present authors’ earlier study [5] which introduced 
a type of a divide and conquer-based approach. Simi-
lar to this previous work, in EDQWS, a large workflow 
is broken into a number of sub-workflows by identify-
ing the critical path of a workflow and then scheduling 
and removing it. The same series of steps are repeated in 
all sub-workflows. Creating sub-workflow with a chain 
structure, called linear graph, is the stop condition of 
the algorithm. The present authors extend their previous 
method of scheduling linear graphs. Since the scheduling 
of linear graphs as solvable problems is performed in the 
final step, the linear graphs resulting from different stages 
of the division process are independent of each other and 
can therefore be separately scheduled. However, the spe-
cific order or combination of their scheduling can affect 
the selected resource types and the total execution cost. 
To this end, the current study proposes a scoring func-
tion for determining the linear graph combination score 
on different resources. At each stage, the combination 
with the highest score is selected and the new combined 
graph is replaced by the original ones. This combination 
is binary and will continue until the scoring function 
reaches a negative score for all new combinations. Owing 
to the large number of linear graphs, the score calculation 
is performed in parallel. The present study also intro-
duces a new merge list algorithm that combines the tasks 
of linear graphs with respect to the laxity of the tasks. 
To evaluate the performance of the proposed method, 
it is compared with several state-of-the-art scheduling 
algorithms. The experimental results determine that the 
presented method outperforms others in total execution 
cost and the success rate of meeting deadlines. Moreo-
ver, the introduced approach can reduce the number 
of instances required for scheduling when compared to 

the previous work of the current authors. The rest of the 
present article is organized as follows: Section 2 reviews 
related workflow scheduling. Section  3 formulates the 
scheduling model and describes its workflow application 
and resource model. Details of the proposed algorithm 
are provided in Section 4. Section 5 discusses the experi-
mental results. Finally, the conclusion and future works 
are presented in Section 6.

Related work
In recent decades, workflow scheduling has been exten-
sively investigated by academia and industrial research-
ers. For a traditional distributed system, such as a grid 
and cluster, most existing research in workflow sched-
uling focuses on how to minimize the workflow execu-
tion time. However, workflow scheduling in the cloud 
environment is mainly a multi-objective problem. Thus, 
aside from the execution time, various criteria, such as 
monetary cost, energy usage, reliability, and security, 
are considered as QoS requirements [6–10]. Among 
these, monetary cost and execution time are substan-
tial requirements for workflow scheduling algorithms 
[2, 11–15]. Normally, for multi-objective cases in which 
some objectives must be optimal, it is difficult to solve 
the workflow scheduling problem in the cloud due to its 
NP-completeness [16]. Therefore, various meta-heuristic 
and heuristic techniques have been adopted to obtain 
near-optimal solutions. This section briefly reviews sev-
eral well-known heuristics and meta-heuristic workflow 
scheduling algorithms related to the present study’s pro-
posed method. As the main category, deadline-aware 
workflow scheduling algorithms are first reviewed. This 
is followed by a discussion on budget-aware and then 
multi-objective schedulers.

Deadline‑aware workflow scheduling
Malawski et  al. [17] present a mathematical model to 
optimize the workflow scheduling cost under a deadline 
constraint. Their method considers a multi-cloud envi-
ronment and formulates the scheduling problem as a 
mixed-integer program (MIP). Abrishami et al. [18] uti-
lize the Partial Critical Path (PCP) concept to develop 
a deadline-constrained workflow scheduler, named 
IC-PCP, in a cloud environment. IC-PCP [18] aims to 
minimize the overall execution cost of the workflow by 
determining a sequence of tasks as the partial critical 
paths (PCPs) and mapping all of these tasks to the same 
VM instance. The preference of the algorithm is to uti-
lize the already leased instances which are able to meet 
the deadline. IC-PCP distributes the overall deadline 
to the PCPs. The Enhanced IC-PCP with Replication 
(EIPR) algorithm [19] attempts to further reduce costs 
by replicating tasks during the idle times of instances 
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and eliminating some communications. Its experimen-
tal results show that the probability of meeting deadlines 
increases via task replications. The Deadline Constrained 
Critical Path (DCCP) [20] is a list-based scheduling algo-
rithm on the cloud that aims to meet the user-defined 
deadline while minimizing the overall workflow execu-
tion cost. In the preprocessing step, tasks are partitioned 
into different levels, to each of which a sub-deadline is 
assigned. These deadlines are distributed non-uniformly 
among all levels so that the levels with a longer task 
execution time receive a longer sub-deadline. In the 
task prioritization step, DCCP utilizes a concept called 
the Constrained Critical Path (CCP) to assign all tasks 
on a path to one resource in order to reduce the com-
munication time of the whole workflow. DCCP finds all 
CCPs and creates a list based on their modified rank. In 
each step, the ready tasks of each CCP are mapped to an 
appropriate resource and other tasks remain for the next 
steps. Rodriguez and Buyya [21] propose a metaheuris-
tic scheduler in the cloud that intends to minimize the 
execution cost for deadline-constrained workflows. In 
this algorithm, resource provisioning and task assign-
ment are integrated as a particle swarm optimization 
problem. The algorithm produces a near-optimal sched-
ule that determines the number and types of VMs with 
their leasing period and task assignment. Guo et  al. [1] 
also introduce a PSO1-based algorithm for scheduling a 
deadline-constrained workflow across multiple clouds. 
Their algorithm minimizes the execution cost of the 
workflow while meeting the user-defined deadline. Fur-
thermore, the algorithm optimizes the performance for 
both computation cost and data transfer cost across mul-
tiple clouds. Proportional Deadline Constrained (PDC) 
[12] is a workflow scheduling algorithm on the cloud 
that attempts to meet the user-defined deadline while 
minimizing the execution cost. In the preprocessing step, 
PDC partitions tasks into different levels and assigns a 
sub-deadline to each level. The user-defined deadline is 
distributed non-uniformly among all levels so that lev-
els with a longer task execution time receive a longer 
sub-deadline. PDC creates a list of ready tasks and pri-
oritizes them according to a downward rank. In [2], two 
schedulers, namely L-ACO2 and ProLiS,3 are presented 
to schedule the deadline-constrained workflow applica-
tion. ProLiS is a list scheduling algorithm that performs 
deadline distribution based on the new definition of the 
probabilistic upward rank. L-ACO is a meta-heuristic 
algorithm that accomplishes the cost optimization of a 

deadline-constrained workflow based on ant colony opti-
mization. Deadline distribution and service selection in 
L-ACO is the same as in ProLiS.

Budget‑aware workflow scheduling
A budget indicates the maximum amount of money that 
users are willing to pay for the execution of a workflow 
application in cloud resources [3]. In [22], the authors 
propose a Heterogeneous Budget Constrained Schedul-
ing (HBCS) algorithm that minimizes the total workflow 
while meeting the user’s specified budget. The HBCS 
defines an attribute called worthiness which combines 
the time and cost factors for the current task resource 
selection. Faragardi et al. [4] introduce Greedy Resource 
Provisioning and a modified HEFT (GRP-HEFT) for 
minimizing the workflow execution time subject to a 
budget constraint. They propose a greedy algorithm to 
list the instance types according to their efficiency rate 
and modify the HEFT [23] algorithm so that it considers 
a budget constraint. In [24], Wu et al. present a heuristic 
algorithm, called PCP-B, to schedule a workflow with a 
budget constraint. PCP-B implements the idea of balanc-
ing a budget among the partial critical paths according 
to their parallel or sequential structural nature. Budget 
distribution is performed based on the binary search 
method.

Multi‑objective workflow scheduling
In this category, most strategies try to find a suit-
able mapping of workflow tasks to cloud resources that 
respects deadline and budget constraints at the same 
time. Budget and Deadline Constraint Heterogeneous 
Earliest Finish Time (BDHEFT) [15] is a multi-objective 
algorithm proposed to schedule workflow applications on 
a cloud. BDHEFT leverages the upward ranks to assign 
a priority to each task. In addition, a set of best possible 
resources is constructed for each selected task via the 
following six variables: Spare Workflow Budget (SWB), 
Spare Workflow Deadline (SWD), Current Task Deadline 
(CTD), Current Task Budget (CTB), Adjustment Factor 
(BAF), and Deadline Adjustment Factor (DAF). By con-
sidering the spare deadline and spare budget of each task, 
the resource is selected from the best possible resource 
set for each task, in which the overall execution time and 
execution cost of the workflow execution are simultane-
ously minimized. Durillo and Prodan propose the multi-
objective heterogeneous earliest finish time (MOHEFT) 
algorithm [25] as an extension of HEFT [23]. MOHEFT 
computes a set of Pareto-based solutions from which 
users can select the best one. As noted by the authors, 
most of the solutions computing the Pareto-front are 
based on genetic algorithms. The algorithm is generic in 
terms of the number and types of objectives and so the 

1  Particle swarm optimization (PSO)
2  List scheduling ant colony optimization (L-ACO)
3  Deadline-constrained probabilistic list scheduling (ProLiS)
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makespan and overall cost of the workflow applications 
can be optimized. Wu et  al. [26] present a PSO-based 
strategy for workflow scheduling in the clouds. Their aim 
is to reduce either the makespan or cost while satisfy-
ing either the budget or deadline constraints. The elas-
ticity of resource provision is ignored and it is assumed 
that several initialized VMs are available in advance. In 
[27], a heuristic-based scheduling algorithm is proposed 
to schedule the workflow under deadline and budget 
constraints. The algorithm utilizes a novel trade-off fac-
tor between time and cost to determine the most viable 
scheduling and the most appropriate instance type for 
provisioning.

Problem statement
The present study addresses the problem of the cost opti-
mization of deadline constrained workflow scheduling in 
the cloud. This section first explains the workflow model, 
resource model, and definitions related to this problem. 
Subsequently, the problem formulation is presented.

Workflow model
A workflow application can be modeled as a directed 
acyclic graph (DAG), G = (V, E), where V = {t1, t2, …, tn} 
is a set of all workflow tasks illustrated by graph vertices 
and E = {ei, j = (ti, tj)| ti, tj ∈ V} represents the dependen-
cies among the tasks. Each ei, j indicates the precedence 
between ti and tj, meaning that tj can be performed 
when ti is completed. Besides the dependencies, the data 
transmission among tasks is represented by the weight 
attached to ei, j . Furthermore, datai, j shows the amount 
of data transferred to tj after ti is completed; hence, the 
execution of tj can only start after datai, j has already been 
made available. On the other hand, a task can be exe-
cuted if all its predecessors are terminated. Note that, on 
each edge, ei, j, ti is a predecessor of tj and tj is a successor 
of ti. Each task may have one or more predecessors and 
successors except for tentry and  texit . tentry is a task with 
no predecessor and texit is a task with no successor. To 
generalize the workflow with one entry and one exit, two 
dummy tasks, tentry and texit, with zero execution time and 
without data transmission, are added to the beginning 
and the end of the workflow, respectively. Fig. 1 illustrates 
a sample workflow represented by a DAG.

Resource model
The present article considers IaaS as a cloud service pro-
vider. IaaS provides a variety of computational resources 
with different costs via virtual machines (VMs) that 
feature different processing capabilities, memory, and 
storage. VMs with higher processing capabilities are 
assumed to have higher costs. A running virtual machine 
is called an instance and users can request infinite 

instances from the cloud service provider. In the cur-
rent study, instances are provisioned on-demand and the 
pricing model is considered to be pay-as-you-go hourly-
based, which is widely used by large public cloud pro-
viders [4]. In this model, a user must pay for the whole 
hour even though use of an instance is for less than an 
hour. The current work denotes VM = {vm1, vm2, …, vmn} 
as a set of heterogeneous computational resources 
offered by the cloud service provider via VM and 
Cost = {C1, C2, …, Cn} as the cost of using each VM for an 
hour. It is also assumed that all computational resources 
are in the same region. Thus, the average bandwidth 
between instances is roughly identical and internal data 
transfer is free of charge [2].

Definitions
Task execution time
Given that the VMs offered by the service provider are 
heterogeneous, each task has a different execution time 

Fig. 1  Workflow sample
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based on the type of VM running on it. Therefore, the 
execution time of task ti on vmj is denoted by wi, j. It 
should be noted that wi, j is the worst-case execution time 
of ti on vmj and it is assumed that only one task can be 
executed on each VM instance at any time.

Communication time
The communication time between two tasks is the 
amount of time necessary to transfer data from ti to tj, as 
shown in (1). When both tasks are executed on the same 
instance, the communication time becomes zero.

  where Inst(ti) represents the instance on which ti is 
mapped, datai, j shows the amount of data transferred to 
tj after ti ‘s completion, and BW is the bandwidth between 
the two instances.

Earliest start time (EST) and earliest finish time (EFT)
For each unscheduled task,  ti, EST(ti) is defined as the 
earliest time when ti can start its execution after all its 
predecessors have finished and after having received the 
associated data. EST is calculated as follows:

  where CMj, i is the communication time and W(tj) is the 
shortest execution time of tj, which is defined as follows:

According to the earliest start time definition, the earli-
est finish time of each unscheduled task, ti, can be calcu-
lated as follows:

Actual start time (AST) and actual finish time (AFT)
After assigning a task to the desired instance, AST and 
AFT are obtained for each task. These values can be dif-
ferent from the EST and EFT that are determined before 
scheduling. Equation (5) shows the relation between 
these parameters.

(1)CMi,j =

{

0 if Inst(ti) = Inst
(

tj
)

datai,j
BW otherwise

(2)EST (ti) =

{

0 if ti = tentry
max

tj∈predecessor(ti)
EST

(

tj
)

+W
(

tj
)

+ CMj,i otherwise

(3)W
(

tj
)

= min
k∈vm types

{

wj,k

}

(4)EFT (ti) = EST (ti)+W (ti)

(5)AST (ti) ≥ EST (ti)

  where j is the type of instance to which ti is assigned.

Critical path and critical tasks
The critical path (CP) in a workflow is the path from 
the entry task to the exit task which has the maximum 
summation of task execution times and inter-task com-
munication times among all paths [23]. All the tasks on a 
critical path are called critical tasks.

Linear graph and nonlinear graph
The present paper divides the workflow graphs into two 
categories: linear graphs and nonlinear graphs. A lin-
ear graph is a connected graph with a chain structure. 
Each vertex in this graph, which corresponds to a task 
in the workflow, has exactly one parent and one child, 
except for the entry task, which has no parent, and the 
exit task, which has no child. If a graph contains other 

AFT (ti) = AST (ti)+ wi,j

Fig. 2  Examples of a linear graph and a nonlinear graph
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structures, it is called a nonlinear graph. Figure 2 pro-
vides a graphic representation of linear and nonlinear 
graphs.

Problem formulation
The issue presented in the current article is the deadline-
constrained cost optimization of workflow scheduling in 
an IaaS cloud environment. Considering wf as the work-
flow and D as the workflow deadline, this subsection first 
defines the overall workflow execution cost and then for-
mulates the problem.

The total execution cost of a workflow, Costtotal(wf), is 
the summation of all the costs of the used instances dur-
ing scheduling, as follows:

  where Insti is the ith leased instance and n is the total 
number of leased instances. Cost(Insti) depends on 
two parameters: the total time of utilizing Insti and the 
price of Insti for an hour. As mentioned earlier, there is 
an hourly-based price model and the user must pay for 
the whole hour even though the instance is used for less 
than an hour. As a result, the instance cost is calculated 
as follows:

  where C(Insti) is the specified cost for utilizing Insti for 
1 hour. According to the previous definitions, the pre-
sent study’s optimization scheduling problem is applied 
to achieve a mapping of tasks to suitable instances so as 
to minimize the total monetary cost while not exceeding 
the deadline constraint. Relation (8) shows our problem 
formulation.

Proposed method
The proposed solution for the cloud workflow schedul-
ing problem is a static method that aims to minimize the 
execution cost of the workflow while meeting its deadline. 
For minimizing the execution cost, the introduced method 
focuses on the repeated use of the critical path concept. 
Dividing the initial workflow into several sub-workflows 
makes it possible to define the critical path in each resulting 
sub-workflow. According to the workflow structure and the 

(6)Costtotal
(

wf
)

=
∑n

i=1Cost(Insti)

(7)Cost(Insti) =











max
tj∈Insti Assigned tasks

�

AFT
�

tj
��

− min
tj∈Insti Assigned tasks

�

AST
�

tj
��

3600











×C(Insti)

(8)Minimize Costtotal (wf )

subject to AFT (texit) ≤ D

dependencies among tasks, the original divide and conquer 
method is modified to be consistent with the goals of the 
current study. The proposed algorithm consists of two main 
phases: the division phase and the linear graph scheduling 
phase. In the division phase, the workflow division algo-
rithm is presented to perform the workflow dividing opera-
tions according to the current authors’ previous research 
(DQWS) [5]. The division of the workflow is performed by 
determining, scheduling, and removing the workflow criti-
cal path. By removing the critical path, the workflow lefto-
vers are divided into one or more smaller sub-workflows 
and this process is repeated for each sub-workflow. The cre-
ation of sub-workflows as the structure of the linear graphs 
is the stop condition of the divide and conquer process and 
the sub-workflow scheduling is considered as a small solv-
able problem. By scheduling linear graphs with the scor-
ing method, the proposed linear graph scheduling phase 
takes on a completely different approach from the current 
authors’ previous work. As the difference between the pro-
posed method and the present authors’ past work (DQWS) 
lies in this second phase of the introduced algorithm, Sec-
tion 4–1 shall first present the generalities of the proposed 
workflow division algorithm while Section 4–2 will go on to 
explain the details of the proposed linear graph scheduling 
algorithm.

Workflow division algorithm
The workflow division algorithm follows different steps 
to divide the initial workflow into sub-workflows. Similar 
to DQWS [5], the proposed algorithm (Fig. 3) first deter-
mines the workflow’s critical path. This is achieved by 
the Find _ CriticalPath function shown in Fig. 4. In deter-
mining the critical path, it is important to identify the 
critical parent of each task. The critical parent of ti is one 
of its parents, such as tp, which maximizes the expres-
sion, EFT(tp) + CMp, i. CMp, i is the communication time 
between tp and ti.

After determining a critical path, a set of possible 
resources is defined to schedule it by the  Find _ Possi-
bleResources function. This function searches among 
a variety of resource types offered by the service pro-
vider that are capable of scheduling the critical path 
tasks before the user-defined deadline and creates a set 
of these resource types as a possible resource set. The 
cheapest resource type from this set is then selected 
and the critical path tasks are pre-assigned on an 
instance of the selected resource. Because the critical 
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path is eliminated from the workflow in the next steps, 
it is necessary to finalize the scheduling of the critical 
path task. The Check _ Subpaths function is responsible 
for finalizing critical path scheduling. To accomplish 
this, the Check _ Subpaths function checks all sub-paths 
leading to the critical path and examines the possi-
bility that each sub-path can be scheduled by at least 
one type of resource. The Find _ Subpaths function 

determines the sub-paths leading to each critical task, 
as shown in Fig. 5.

The successful output of the Check _ Subpaths func-
tion indicates that the critical path scheduling on the 
selected resource is finalized. Fig. 6 presents the details 
of this function. After finalization of the critical path 
schedule, the tasks in this path are removed from the 

Fig. 3  Workflow division algorithm

Fig. 4  Find_Criticalpath function
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workflow and the workflow is divided into one or more 
connected graphs. Depending on their structure, each 
of the resulting graphs is added to one of the linear 

graph or nonlinear graph sets. This operation is per-
formed for all graphs in the nonlinear graph set.

Fig. 5  Find_Subpaths function.

Fig. 6  Check_Subpaths function
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Linear graph scheduling algorithm
Since the linear graphs obtained from different stages 
of the workflow division are independent of each other, 
there is no requirement to observe a specific order in 
their execution. However, a specific arrangement or com-
bination in their scheduling can be effective in choosing 
the resource type, which, in turn, will affect the work-
flow execution cost. In contrast to the current authors’ 
previous study (DQWS) [5], which employs a greedy 
method to schedule linear graphs, the present paper uti-
lizes a scoring function for its linear graph scheduling. As 
shown in Fig. 7, the proposed algorithm consists of three 
different phases: the initialization phase, the internal 
combination phase, and the external combination phase. 
The following presents the details of these different algo-
rithm phases.

Initialization phase
The objective of the algorithm initialization phase (Lines 
2–9) is to determine the candidate resources for each 
linear graph and distribute the linear graphs in the sets 
associated with their candidate resources. A candidate 
resource is a resource type whose linear graph execution 

cost is the lowest among the other resource types. Each 
linear graph may have more than one candidate resource. 
At the beginning of this phase, a dependent set , SRi , is 
defined for each resource type, Ri, offered by the service 
provider and, for each linear graph, candidate resources 
are determined. Then, each linear graph is pre-sched-
uled on a new instance of each candidate resource type 
and then added to the sets that belong to its candidate 
resources.

Internal combination phase
The objective of the proposed algorithm’s second phase 
(Lines 10–19) is to reduce the workflow execution cost, 
as performed by pairwise combinations of linear graphs. 
During the process of combination, the preference of the 
algorithm is lowering the cost and, as a result, reducing 
the number of instances required for scheduling. In this 
phase, in each of the defined sets, SRi , all pairwise com-
binations of linear graphs are determined and the score 
of each combination is calculated by the Score _ Combi-
nation function. As shown in (9), the combined score is 
calculated as the difference in execution costs when both 

Fig. 7  Linear graph scheduling algorithm
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linear graphs are scheduled on one sample and when 
each is scheduled on a separate sample.

Due to the large number of linear graphs in each set, 
determining all pairwise combinations of the linear 
graphs as well as calculating the score of each combina-
tion is quite time consuming. For this reason, a parallel 
algorithm performs this function. Subsection  4–2–2-1 
provides the details of the Score _ Combination func-
tion. After the score of all combinations is calculated, the 
combination with the highest score and its set are deter-
mined and the combined graph is added to the selected 
set. Then the initial linear graphs making up the com-
bined graph are removed from all sets. Since the sets are 
not disjoint, the initial linear graphs must be removed 
from all the sets. Determining the pairwise combinations 
of linear graphs and selecting the best combination is 
repeated until the score of all combinations in all sets is 
negative.

Details of the scoring function  The score of each binary 
combination is calculated by the Score _ Combination 
function. Figure 8 presents the pseudo-code of this func-
tion. At first, the possibility of combining two linear 

(9)Score = costlinear_graph1 + costlinear_graph2 − Combination Cost

graphs is explored. If this is not possible, the combination 
cost is considered infinite.

Definition: G1 and  G2 are linear graphs and  D1 
and D2 are their deadlines, respectively. These linear 
graphs are uncombinable if the total execution time 
of their tasks is greater than both D1 and D2.

To determine the execution cost of the combinable 
graphs, two linear graphs are first pre-scheduled on one 
instance. Pre-scheduling is performed in two different 
ways: pre-scheduling for graphs with a time overlap and 
pre-scheduling for graphs without a time overlap.

Definition: Linear graphs, G1 and G2, are not time-
overlapped graphs if:

In this case, by pre-scheduling the tasks of both graphs 
on one instance, the order, start time, and finish time of 
the tasks does not change.

(10)







EST (G2) ≥ D1

or
EST (G1) ≥ D2

Fig. 8  Score combination function
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To pre-schedule linear graphs with a time overlap, the 
present study provides a new merge list algorithm. The 
proposed merge list algorithm receives two lists as input. 
Each list includes the tasks of one linear graph that are 
arranged from entry task to exit task. The output of 
this algorithm will also be a list that specifies the final 
sequence of the tasks in the combined graph. The cur-
rent work’s contribution to the merge list algorithm is the 
header selection method. To select a header, the laxity of 
all tasks in both graphs is first determined and the follow-
ing conditions are considered:

a.	 Selecting each header creates negative laxity for one 
or more tasks of the other list.

b.	 Selecting one of the headers creates negative laxity 
for one or more tasks of the other list.

c.	 Neither of the choices leads to negative laxity.

In case (a), it is not possible to combine two linear graphs; 
hence, the algorithm terminates. In case (b), a header is 
selected that does not create a negative laxity. In case (c), 

a header is chosen with an earlier start time in its initial 
linear graph and, if the start time of both headers is the 
same, then a header with lower laxity is selected. Fig.  9 
shows an illustrative example for combining two linear 
graphs, G1 and G2, with the proposed modified merge list 
algorithm.

After examining the possibility of combining linear 
graphs, the execution cost of the combined graphs is cal-
culated by (7).

External combination phase
In this phase (Lines 20–27), the proposed algorithm 
aims to transfer the scheduled tasks of the less power-
ful instances to the idle times of the more powerful ones. 
This transfer can reduce the number of used instances 
and consequently the overall execution cost. For this 
purpose, in each stage, the idle-time periods of the most 
powerful utilized instance are determined. For each idle 
time, the present study looks for an appropriate linear 
graph that can be scheduled on the idle time before its 

Fig. 9  Illustrative example for combining two linear graphs
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deadline. After the desired linear graph is determined, its 
tasks are transferred and the original instance is removed 
from the required instances.

Evaluation
This section first describes the current work’s experi-
mental setting and evaluation criteria, and then com-
pares the proposed method with state-of-the-art 
approaches that are similar in terms of objectives. The 
methods used for comparison are IC-PCP [18], BDHEFT 
[15], PDC [12], and the present authors’ previous study, 
DQWS [5]. All of these algorithms are reviewed in the 
Related Work section.

Experimental setting and evaluation criteria
To evaluate the performance of the proposed algo-
rithm, different simulation scenarios are run. Simu-
lation is a well-accepted approach for evaluating 
workflow scheduling algorithms. With simulation, it 
is possible to test the performance of the algorithms 
under a controlled setting [27] . In the present study’s 
simulation, which is performed by MATLAB, the ser-
vice provider offers five different VM types with differ-
ent costs and processing powers. The characteristics of 
the VMs are based on the US-east Amazon region and 
are presented in Table  1. Unlimited instances of each 
VM type are assumed. VMs are in a single data center 
and the average bandwidth between instances is fixed 
at 20 MBps [28].

The current study conducts its experiments using four 
different scientific workflows: CyberShake, Epigenom-
ics, LIGO, and Motif. These workflows are diverse in 
terms of structure, computational characteristics, and 
communication data. In addition, the workflows are 
employed in different scientific areas, such as earth-
quake science, biology, gravitational physics, and genet-
ics. Full descriptions of these workflows are provided in 
[29, 30]. Fig. 10 depicts the structure of each workflow 
in a relatively small size. These workflows are provided 

by the Pegasus workflow generator4 as a DAX (Directed 
Acyclic Graph in XML) format and, for each workflow, 
the details, including the DAG, the sizes of data trans-
fer, and the tasks execution time, are published. These 
workflows have been widely used for evaluating the per-
formance of scheduling algorithms, and thus they are 
included in the current study’s experiments. In order to 
determine the execution time of each workflow task by 
each VM type, we assume the published execution time 
for each task is calculated for the VM with ECU = 1. 
With this assumption, the execution time of each task 
on the other VM types is calculated by dividing its 
published execution time by the ECU value of the VM 
which is shown in Table 1. As shown in Table 2, the pre-
sent work chooses four different sizes for each workflow 
type and generates 50 random samples from each type 
and size of workflow.

To assess the performance of the compared algo-
rithms, it is necessary to determine the acceptable values 
for each workflow’s deadline. The concept of the fastest 
schedule is utilized to determine deadlines proportion-
ate to each workflow structure. The fastest schedule 
is the scheduling of each workflow task on a distinct 
instance of the fastest VM type without considering the 
communication time between tasks [18]. The makes-
pan obtained by the fastest schedule for each workflow, 
makespanLB, is the lower bound of the overall work-
flow execution time. Using  makespanLB, the present 
study calculates a variation for a deadline, from tight to 
relaxed, as follows:

α starts from 2 and is increased by 2 up to a value of 10. 
In this way, the impact of different deadlines (from tight to 
relaxed) is evaluated on the performance of each algorithm.

To evaluate the performance of the algorithm, the pre-
sent work analyzes the following metrics in its experi-
ments: normalized cost, success rate, and instance 
reduction. Each metric is explained as follows:

Normalized cost: The overall workflow execution 
cost obtained by each of the algorithms is a suit-
able criterion for evaluating the compared algo-

(11)dealline = α ×makespanLB2 ≤ α ≤ 10

Table 1  VM types based on Amazon EC2

Type ECU Memory (GB) Cost($)(per hour)

m3.medium 3 3.75 0.067
m4.large 6.5 8 0.126
m3.xlarge 13 15 0.266
m4.2xlarge 26 32 0.504
m4.4xlarge 53.5 64 1.008

Table 2  Different sizes of workflows according to the number of 
tasks

Scientific Workflow Small Medium Large Extra Large

CyberShake 30 50 100 500
Epigenomics 24 46 100 500
LIGO 30 50 100 500
Motif 30 50 100 –

4  https://​confl​uence.​pegas​us.​isi.​edu/​displ​ay/​pegas​us/

https://confluence.pegasus.isi.edu/display/pegasus/
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rithms. Because of the difference in the structure 
and characteristics of the benchmark workflows, 
the current paper employs a normalized cost met-
ric for comparison. The normalized cost of execut-
ing each workflow with any of the benchmark algo-
rithms is obtained by dividing its overall execution 
cost, cost(wf), by its scheduling cost based on the 
cheapest scheduling strategy(costlowest(wf)) [18], as 
follows:

Success rate: To evaluate the capability of each algo-
rithm to meet the deadline constraints, the present 
study defines the metric of success rate as the ratio 
between the number of successful schedules and the 
total number of schedules.
Instance reduction: To compare the performance 
of the proposed algorithm against that of the cur-
rent authors’ previous research (DQWS), an instance 
reduction parameter is introduced. This parameter 
shows the reduction factor in the percentage of the 
number of instances needed for scheduling each work-
flow type by EDQWS in comparison to DQWS. Since 
the present study’s focus in the linear graph schedul-
ing phase is the combination of linear graphs, reduc-
ing the number of instances, in addition to minimiz-
ing the cost, can serve as a metric for comparing the 
two methods. A reduction in the number of instances 
required to schedule workflows can lower the prob-
ability of instance failure. This is also helpful for cloud 
providers which have a limitation in the number of 
requested instances.

(12)Normalized Cost(wf ) =
cost(wf )

costlowest(wf )

Experimental result
The performance of the proposed algorithm is evaluated 
in three separate subsections. In the first subsection, the 
execution cost of each workflow type is examined by all 
compared algorithms. In the second subsection, the success 
rate of all compared algorithms is evaluated. In the third 
subsection, the two methods, DQWS and EDQWS, are 
compared in more detail. For this purpose, a comparison is 
made between the average cost reduction in EDQWS and in 
DQWS. Additionally, the number of instances required for 
each algorithm to schedule each workflow type is studied.

Normalized cost analysis
In this subsection, the execution cost of each workflow is 
examined by all the compared algorithms. In these exper-
iments, 50 random samples are generated from each 
type and size of the workflows, and each random sample 
is scheduled by all algorithms for five different deadline 
factors. Given that the results of running each algorithm 
on different workflow sizes are relatively similar, only the 
results of implementing the largest size of each workflow 
type are reported. Fig. 11 presents the normalized cost of 
all of the compared algorithms when executing the four 
workflow types (CyberShake, Epigenomics, LIGO, and 
Motif ). The normalized cost values are the mean value 
of the 50 random samples generated for each workflow 
type. Besides the mean values, the standard deviation is 
also provided in Fig.  11. The reporting of ‘Fail’ in each 
graph indicates that the specified algorithm was unable to 
schedule the workflow within the given deadline factor.

Figure  11.a presents the results of the CyberShake 
workflow execution by the five compared algorithms. As 
observed in Fig.  11.a, none of the compared algorithms 
are able to schedule this type of workflow within the 
deadline factor of 2. The lowest execution cost for this 
type of workflow is obtained by the EDQWS algorithm. 

Fig. 10  Structure of the examined workflow [54]. a CyberShake. b Epigenomics. c LIGO. d Motif
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Fig. 11  Normalized Cost vs. Deadline Factor for four different workflow sets (PDC was unable to schedule the CyberShake workflow). Note: the 
error bar indicates the standard deviation
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In this type of workflow, DQWS and EDQWS succeed 
in creating multiple linear graphs with a small number 
of tasks and short execution times. As a result, utilizing 
the idle time of instances for scheduling linear graphs can 
reduce the execution cost of this workflow type.

Although the two algorithms utilize the same linear 
graphs, a comparison of their normalized cost reduction 
indicates that EDQWS’ consideration of different lin-
ear graph combinations in instance type selection leads 
to more appropriate solutions than DQWS’ usage of the 
greedy method.

As seen in Fig.  11.a, the PDC algorithm failed to 
schedule any random samples of the CyberShake work-
flow within the specified deadlines. The failure of PDC 
in scheduling this type of workflow is due to the way in 
which it sets the initial deadline. PDC determines the 
initial deadline for each workflow by considering the 
communication time between tasks. If the user-defined 
deadline is sooner than the initial deadline, the workflow 
will not be scheduled. As mentioned earlier, for deter-
mining the deadline, the proposed algorithm employs the 
concept of the fastest schedule which eliminates the com-
munication time between tasks during the deadline cal-
culation. Because the execution time of CyberShake tasks 
are short and the communication time between them 
is long, the deadlines calculated by the fastest schedule 
are shorter than the PDC initial deadline. Therefore, the 
results of the PDC algorithm are not included in Fig. 11.a.

In Epigenomics, the possibility that DQWS and 
EDQWS will utilize the resource idle time is less than 

that of the other workflows because of the high execu-
tion time of tasks. As seen in Fig.  11.b, the normalized 
cost obtained by DQWS, EDQWS, and PDC is almost 
the same, while BDHEFT reports a higher execution cost 
than the other algorithms. For the deadline factors that 
IC-PCP is successful in meeting, its normalized execu-
tion cost nears that of DQWS, EDQWS, and PDC.

Figure 11.c shows the results of LIGO scheduling by all 
of the compared algorithms. In this type of workflow, the 
normalized cost obtained by EDQWS is the lowest among 
the other algorithms. Due to the existence of several paral-
lel tasks in the structure of this workflow, the creation of 
multiple linear graphs has increased the possibility of uti-
lizing instance idle times. Furthermore, the usage of the 
scoring method and examination of linear graph combina-
tions may be the reason why the normalized cost reduc-
tion in EDQWS is greater than that of the greedy method.

Figure 11.d provides the results obtained from the pre-
sent study’s simulations for the Motif workflow. As seen, 
IC-PCP, DQWS, and EDQWS outperform the BDHEFT 
and PDC algorithms. Based on the results obtained from 
IC-PCP, DQWS, and EDQWS, it is observed that, in tight 
deadlines, the DQWS and EDQWS algorithms perform 
better while, in relaxed deadlines, ICPCP’s performance 
is superior. For motif scheduling, EDQWS performs 
much like DQWS and the normalized cost of these two 
algorithms is the same. A possible reason for this simi-
larity may be that the motif structure creates single-task 
linear graphs during the division phase. Subsection 5–2-3 
shall compare these two methods in more detail.

Fig. 12  Success rates of the compared algorithms on the four workflow sets
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Success rate analysis
By considering different deadline factors, this section 
examines the success rate of the compared algorithms for 
each workflow type. All random samples created from 
any type of workflow are included in the success rate 
calculation. Fig. 12 provides the success rates of the five 
algorithms (EDQWS, DQWS, PDC, BDHEFT, and IC-
PCP). As the results show, the success rates of EDQWS 
and DQWS are exactly the same for all deadline factors 
and the different workflows. Given that these two algo-
rithms employ the same method to create linear graphs, 
it can be concluded that the method of scheduling lin-
ear graphs does not impact the success or failure of the 
schedule but only affects the workflow execution cost.

As shown in Fig.  12, for all workflow types, the pro-
posed method has a higher success rate than that of the 
PDC, IC-PCP, and BDHEFT algorithms. PDC’s low suc-
cess rate may be explained by the fact that this algorithm 
does not accept most of the deadline factors and so is 
unable to schedule the workflow.

The comparison of DQWS and EDQWS
This section compares the current authors’ newly intro-
duced EDQWS algorithm and their previous algorithm, 
DQWS. As mentioned earlier, the steps for creating 
linear graphs in these two algorithms are similar, but 
their methods differ in the linear graph scheduling 
phase. For scheduling linear graphs, DQWS utilizes 
a greedy method while the present paper’s EDQWS 

algorithm employs a scoring method. To evaluate the 
performance of these two algorithms, two compari-
sons are made. First, the number of instances required 
by EDQWS and DQWS to schedule each workflow 
type is compared. Second, the difference between these 
two algorithms’ normalized cost and the number of 
instances are examined.

Figure  13 shows the number of instances required by 
DQWS and EDQWS to schedule the CyberShake, Epig-
enomics, LIGO, and Motif workflows. It should be noted 
that the number of instance values is the mean value of 
50 random samples generated for each workflow type. As 
seen in Fig. 13, in comparison to DQWS, the number of 
instances required for scheduling CyberShake and Epi-
genomics is greatly reduced by the EDQWS algorithm. 
However, this reduction is not observed in the LIGO and 
Motif workflows.

Table  3 summarizes the results obtained from the 
above experiments. This table presents three different 
parameters for each algorithm: the average percentage 
of cost reduction in EDQWS compared to DQWS, the 
average percentage of the reduction in the number of 
instances in EDQWS versus DQWS, and the percentage 
of experiments in which EDQWS succeeds in reducing 
the number of instances in comparison to DQWS.

As seen in Table  3, the average normalized cost for 
the three types of workflow (CyberShake, Epigenomics, 
and LIGO) is reduced by the proposed algorithm when 
compared to the DQWS algorithm. Also, the current 

Fig. 13  Number of Instances vs. Deadline Factor for four different workflow sets
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work’s algorithm succeeds in reducing the average num-
ber of instances required to schedule CyberShake and 
Epigenomics. In LIGO, although the average number of 
instances in the proposed algorithm increases slightly, 
the number of instances in more than half of the experi-
ments decreases in comparison to DQWS. In Motif, 
despite the same normalized cost in both algorithms, the 
number of instances decreases in a small percentage of 
the proposed method’s experiments.

Conclusion
The present paper proposes a static scheduling algorithm 
called EDQWS, which is an extension of a previous study 
by the current authors [5]. EDQWS is a two-phase work-
flow scheduler based on divide and conquer and aims to 
minimize the overall workflow execution cost by consid-
ering a user-defined deadline. In the first phase, similar 
to the present authors’ previous research, the division of 
workflow into sub-workflows is achieved by determining 
and scheduling the critical path and removing it from the 
workflow. By eliminating the critical path, the workflow is 
divided into several sub-workflows, each of which under-
goes this same division. The stop condition is to attain a 
sub-workflow with a chain structure called a linear graph. 
For scheduling linear graphs in the second phase, the 
current work proposes a new merging algorithm to com-
bine the resulting linear graphs, reduce the number of 
used instances, and minimize the overall execution cost. 
Also introduced is a scoring function to select the most 
efficient instances for scheduling the linear graphs.

The experiments are conducted with four well-known 
workflows that determine whether EDQWS has an over-
all better performance than the state-of-the-art algo-
rithms, IC-PCP, PDC, BDHEFT, and DQWS. In terms of 
the normalized cost parameter, EDQWS shows accept-
able results when compared to the other methods. As 
for the success rate parameter, EDQWS and DQWS are 
completely the same in all deadline factors and for dif-
ferent workflows. Given that these two algorithms use 
the same method in creating linear graphs, the method 
of scheduling linear graphs has no effect on the success 
or failure of the schedule and only affects the workflow 

execution cost. However, the success rate of both algo-
rithms is higher than that of the other methods, especially 
under tight deadlines. In comparing the performance 
of EDQWS with that of the present authors’ previous 
research (DQWS), the results show that, in more than 
50% of the examined workflow samples, the number of 
resource instances decreases in EDQWS in comparison 
to DQWS. Reducing the number of resource instances 
in addition to decreasing the probability of instance 
failure also leads to a reduction in the overall execution 
cost of the examined workflows. According to the above 
description, it can be concluded that the definition of 
the scoring function and relying on it to combine linear 
graphs and select virtual machine types has led to a more 
appropriate selection of VM types than the other base-
line methods. The use of our new merge list algorithm as 
well as the policy for transferring the task from the less 
powerful instances to the idle times of the more power-
ful ones has also had a significant impact on improving 
the results. The new merge list algorithm combines the 
tasks of linear graphs with respect to the laxity of tasks 
and improves the scheduling of tasks by changing the 
mapping of pre-scheduled tasks on the instances. By 
transferring the pre-scheduled tasks from the less power-
ful instances to the idle times of the more powerful ones, 
the algorithm can use these idle times for which there is 
no need to pay extra, and remove less powerful instances 
from the list of required instances. For future work, the 
current authors intend to extend their merging algorithm 
for more than two linear graphs. Furthermore, a non-
greedy algorithm shall be proposed for selecting instance 
idle-time to transfer scheduled tasks in the external com-
bination phase.
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