
Khojasteh Toussi et al.
Journal of Cloud Computing (2022) 11:13
https://doi.org/10.1186/s13677-022-00284-8

RESEARCH

EDQWS: an enhanced divide and conquer
algorithm for workflow scheduling in cloud
Ghazaleh Khojasteh Toussi1, Mahmoud Naghibzadeh1*   , Saeid Abrishami1, Hoda Taheri1 and
Hamid Abrishami2 

Abstract 

A workflow is an effective way for modeling complex applications and serves as a means for scientists and research-
ers to better understand the details of applications. Cloud computing enables the running of workflow applications
on many types of computational resources which become available on-demand. As one of the most important
aspects of cloud computing, workflow scheduling needs to be performed efficiently to optimize resources. Due to
the existence of various resource types at different prices, workflow scheduling has evolved into an even more chal-
lenging problem on cloud computing. The present paper proposes a workflow scheduling algorithm in the cloud
to minimize the execution cost of the deadline-constrained workflow. The proposed method, EDQWS, extends the
current authors’ previous study (DQWS) and is a two-step scheduler based on divide and conquer. In the first step,
the workflow is divided into sub-workflows by defining, scheduling, and removing a critical path from the workflow,
similar to DQWS. The process continues until only chain-structured sub-workflows, called linear graphs, remain. In
the second step which is linear graph scheduling, a new merging algorithm is proposed that combines the result-
ing linear graphs so as to reduce the number of used instances and minimize the overall execution cost. In addition,
the current work introduces a scoring function to select the most efficient instances for scheduling the linear graphs.
Experiments show that EDQWS outperforms its competitors, both in terms of minimizing the monetary costs of
executing scheduled workflows and meeting user-defined deadlines. Furthermore, in more than 50% of the exam-
ined workflow samples, EDQWS succeeds in reducing the number of resource instances compared to the previously
introduced DQWS method.

Keywords:  Workflow scheduling, Cloud computing, Critical path, Merging algorithm, Divide and conquer, Scoring
function

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Nowadays, cloud computing offers an opportunity to
execute scientific applications composed of hundreds or
thousands of interrelated tasks [1]. In this context, the
workflow model is an effective way to construct such
complex applications. It consists of application tasks
specified by nodes and the connection lines among
nodes which create dependencies among these tasks in a

directed acyclic graph (DAG) [2]. The workflow schedul-
ing problem in the cloud aims to assign the tasks to com-
puting resources in order to preserve task precedence
while meeting some performance criteria [3].

Besides the total execution time of workflows, most
research on workflow scheduling in the cloud has
focused on optimizing the total usage cost of computing
resources offered by cloud providers [2]. Moreover, faster
and more powerful computing resources in the cloud are
usually more expensive than slower ones. Therefore, the
execution cost can be affected by employing powerful
computing resources as this decreases the workflow exe-
cution time. Thus, the trade-off between cost and time

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: naghibzadeh@um.ac.ir

1 Department of Computer Engineering, Ferdowsi University of Mashhad,
Mashhad, Iran
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5550-5565
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00284-8&domain=pdf

Page 2 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

is a major challenge of workflow scheduling in the cloud
[4]. To address this trade-off, two common methods are
employed: either minimizing the total execution time
under a budget constraint or minimizing the monetary
cost under a deadline constraint.

Depending on user requirements and the work-
flow application, both cost and time can be consid-
ered as constraints or optimization objectives. Some
workflows are structured in such a way that the results
can be used whenever the execution of the workflow is
completed before the deadline. The workflows of medi-
cal simulations and weather forecasting are examples of
deadline-constrained applications [4]. To address such
deadline-constrained applications, the current study pro-
poses a new workflow scheduling algorithm focused on
minimizing the total execution cost while respecting the
user-defined deadline.

The proposed algorithm, named enhanced divide and
conquer workflow scheduling (EDQWS), is an extension
of the present authors’ earlier study [5] which introduced
a type of a divide and conquer-based approach. Simi-
lar to this previous work, in EDQWS, a large workflow
is broken into a number of sub-workflows by identify-
ing the critical path of a workflow and then scheduling
and removing it. The same series of steps are repeated in
all sub-workflows. Creating sub-workflow with a chain
structure, called linear graph, is the stop condition of
the algorithm. The present authors extend their previous
method of scheduling linear graphs. Since the scheduling
of linear graphs as solvable problems is performed in the
final step, the linear graphs resulting from different stages
of the division process are independent of each other and
can therefore be separately scheduled. However, the spe-
cific order or combination of their scheduling can affect
the selected resource types and the total execution cost.
To this end, the current study proposes a scoring func-
tion for determining the linear graph combination score
on different resources. At each stage, the combination
with the highest score is selected and the new combined
graph is replaced by the original ones. This combination
is binary and will continue until the scoring function
reaches a negative score for all new combinations. Owing
to the large number of linear graphs, the score calculation
is performed in parallel. The present study also intro-
duces a new merge list algorithm that combines the tasks
of linear graphs with respect to the laxity of the tasks.
To evaluate the performance of the proposed method,
it is compared with several state-of-the-art scheduling
algorithms. The experimental results determine that the
presented method outperforms others in total execution
cost and the success rate of meeting deadlines. Moreo-
ver, the introduced approach can reduce the number
of instances required for scheduling when compared to

the previous work of the current authors. The rest of the
present article is organized as follows: Section 2 reviews
related workflow scheduling. Section 3 formulates the
scheduling model and describes its workflow application
and resource model. Details of the proposed algorithm
are provided in Section 4. Section 5 discusses the experi-
mental results. Finally, the conclusion and future works
are presented in Section 6.

Related work
In recent decades, workflow scheduling has been exten-
sively investigated by academia and industrial research-
ers. For a traditional distributed system, such as a grid
and cluster, most existing research in workflow sched-
uling focuses on how to minimize the workflow execu-
tion time. However, workflow scheduling in the cloud
environment is mainly a multi-objective problem. Thus,
aside from the execution time, various criteria, such as
monetary cost, energy usage, reliability, and security,
are considered as QoS requirements [6–10]. Among
these, monetary cost and execution time are substan-
tial requirements for workflow scheduling algorithms
[2, 11–15]. Normally, for multi-objective cases in which
some objectives must be optimal, it is difficult to solve
the workflow scheduling problem in the cloud due to its
NP-completeness [16]. Therefore, various meta-heuristic
and heuristic techniques have been adopted to obtain
near-optimal solutions. This section briefly reviews sev-
eral well-known heuristics and meta-heuristic workflow
scheduling algorithms related to the present study’s pro-
posed method. As the main category, deadline-aware
workflow scheduling algorithms are first reviewed. This
is followed by a discussion on budget-aware and then
multi-objective schedulers.

Deadline‑aware workflow scheduling
Malawski et al. [17] present a mathematical model to
optimize the workflow scheduling cost under a deadline
constraint. Their method considers a multi-cloud envi-
ronment and formulates the scheduling problem as a
mixed-integer program (MIP). Abrishami et al. [18] uti-
lize the Partial Critical Path (PCP) concept to develop
a deadline-constrained workflow scheduler, named
IC-PCP, in a cloud environment. IC-PCP [18] aims to
minimize the overall execution cost of the workflow by
determining a sequence of tasks as the partial critical
paths (PCPs) and mapping all of these tasks to the same
VM instance. The preference of the algorithm is to uti-
lize the already leased instances which are able to meet
the deadline. IC-PCP distributes the overall deadline
to the PCPs. The Enhanced IC-PCP with Replication
(EIPR) algorithm [19] attempts to further reduce costs
by replicating tasks during the idle times of instances

Page 3 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

and eliminating some communications. Its experimen-
tal results show that the probability of meeting deadlines
increases via task replications. The Deadline Constrained
Critical Path (DCCP) [20] is a list-based scheduling algo-
rithm on the cloud that aims to meet the user-defined
deadline while minimizing the overall workflow execu-
tion cost. In the preprocessing step, tasks are partitioned
into different levels, to each of which a sub-deadline is
assigned. These deadlines are distributed non-uniformly
among all levels so that the levels with a longer task
execution time receive a longer sub-deadline. In the
task prioritization step, DCCP utilizes a concept called
the Constrained Critical Path (CCP) to assign all tasks
on a path to one resource in order to reduce the com-
munication time of the whole workflow. DCCP finds all
CCPs and creates a list based on their modified rank. In
each step, the ready tasks of each CCP are mapped to an
appropriate resource and other tasks remain for the next
steps. Rodriguez and Buyya [21] propose a metaheuris-
tic scheduler in the cloud that intends to minimize the
execution cost for deadline-constrained workflows. In
this algorithm, resource provisioning and task assign-
ment are integrated as a particle swarm optimization
problem. The algorithm produces a near-optimal sched-
ule that determines the number and types of VMs with
their leasing period and task assignment. Guo et al. [1]
also introduce a PSO1-based algorithm for scheduling a
deadline-constrained workflow across multiple clouds.
Their algorithm minimizes the execution cost of the
workflow while meeting the user-defined deadline. Fur-
thermore, the algorithm optimizes the performance for
both computation cost and data transfer cost across mul-
tiple clouds. Proportional Deadline Constrained (PDC)
[12] is a workflow scheduling algorithm on the cloud
that attempts to meet the user-defined deadline while
minimizing the execution cost. In the preprocessing step,
PDC partitions tasks into different levels and assigns a
sub-deadline to each level. The user-defined deadline is
distributed non-uniformly among all levels so that lev-
els with a longer task execution time receive a longer
sub-deadline. PDC creates a list of ready tasks and pri-
oritizes them according to a downward rank. In [2], two
schedulers, namely L-ACO2 and ProLiS,3 are presented
to schedule the deadline-constrained workflow applica-
tion. ProLiS is a list scheduling algorithm that performs
deadline distribution based on the new definition of the
probabilistic upward rank. L-ACO is a meta-heuristic
algorithm that accomplishes the cost optimization of a

deadline-constrained workflow based on ant colony opti-
mization. Deadline distribution and service selection in
L-ACO is the same as in ProLiS.

Budget‑aware workflow scheduling
A budget indicates the maximum amount of money that
users are willing to pay for the execution of a workflow
application in cloud resources [3]. In [22], the authors
propose a Heterogeneous Budget Constrained Schedul-
ing (HBCS) algorithm that minimizes the total workflow
while meeting the user’s specified budget. The HBCS
defines an attribute called worthiness which combines
the time and cost factors for the current task resource
selection. Faragardi et al. [4] introduce Greedy Resource
Provisioning and a modified HEFT (GRP-HEFT) for
minimizing the workflow execution time subject to a
budget constraint. They propose a greedy algorithm to
list the instance types according to their efficiency rate
and modify the HEFT [23] algorithm so that it considers
a budget constraint. In [24], Wu et al. present a heuristic
algorithm, called PCP-B, to schedule a workflow with a
budget constraint. PCP-B implements the idea of balanc-
ing a budget among the partial critical paths according
to their parallel or sequential structural nature. Budget
distribution is performed based on the binary search
method.

Multi‑objective workflow scheduling
In this category, most strategies try to find a suit-
able mapping of workflow tasks to cloud resources that
respects deadline and budget constraints at the same
time. Budget and Deadline Constraint Heterogeneous
Earliest Finish Time (BDHEFT) [15] is a multi-objective
algorithm proposed to schedule workflow applications on
a cloud. BDHEFT leverages the upward ranks to assign
a priority to each task. In addition, a set of best possible
resources is constructed for each selected task via the
following six variables: Spare Workflow Budget (SWB),
Spare Workflow Deadline (SWD), Current Task Deadline
(CTD), Current Task Budget (CTB), Adjustment Factor
(BAF), and Deadline Adjustment Factor (DAF). By con-
sidering the spare deadline and spare budget of each task,
the resource is selected from the best possible resource
set for each task, in which the overall execution time and
execution cost of the workflow execution are simultane-
ously minimized. Durillo and Prodan propose the multi-
objective heterogeneous earliest finish time (MOHEFT)
algorithm [25] as an extension of HEFT [23]. MOHEFT
computes a set of Pareto-based solutions from which
users can select the best one. As noted by the authors,
most of the solutions computing the Pareto-front are
based on genetic algorithms. The algorithm is generic in
terms of the number and types of objectives and so the

1  Particle swarm optimization (PSO)
2  List scheduling ant colony optimization (L-ACO)
3  Deadline-constrained probabilistic list scheduling (ProLiS)

Page 4 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

makespan and overall cost of the workflow applications
can be optimized. Wu et al. [26] present a PSO-based
strategy for workflow scheduling in the clouds. Their aim
is to reduce either the makespan or cost while satisfy-
ing either the budget or deadline constraints. The elas-
ticity of resource provision is ignored and it is assumed
that several initialized VMs are available in advance. In
[27], a heuristic-based scheduling algorithm is proposed
to schedule the workflow under deadline and budget
constraints. The algorithm utilizes a novel trade-off fac-
tor between time and cost to determine the most viable
scheduling and the most appropriate instance type for
provisioning.

Problem statement
The present study addresses the problem of the cost opti-
mization of deadline constrained workflow scheduling in
the cloud. This section first explains the workflow model,
resource model, and definitions related to this problem.
Subsequently, the problem formulation is presented.

Workflow model
A workflow application can be modeled as a directed
acyclic graph (DAG), G = (V, E), where V = {t1, t2, …, tn}
is a set of all workflow tasks illustrated by graph vertices
and E = {ei, j = (ti, tj)| ti, tj ∈ V} represents the dependen-
cies among the tasks. Each ei, j indicates the precedence
between ti and tj, meaning that tj can be performed
when ti is completed. Besides the dependencies, the data
transmission among tasks is represented by the weight
attached to ei, j . Furthermore, datai, j shows the amount
of data transferred to tj after ti is completed; hence, the
execution of tj can only start after datai, j has already been
made available. On the other hand, a task can be exe-
cuted if all its predecessors are terminated. Note that, on
each edge, ei, j, ti is a predecessor of tj and tj is a successor
of ti. Each task may have one or more predecessors and
successors except for tentry and texit . tentry is a task with
no predecessor and texit is a task with no successor. To
generalize the workflow with one entry and one exit, two
dummy tasks, tentry and texit, with zero execution time and
without data transmission, are added to the beginning
and the end of the workflow, respectively. Fig. 1 illustrates
a sample workflow represented by a DAG.

Resource model
The present article considers IaaS as a cloud service pro-
vider. IaaS provides a variety of computational resources
with different costs via virtual machines (VMs) that
feature different processing capabilities, memory, and
storage. VMs with higher processing capabilities are
assumed to have higher costs. A running virtual machine
is called an instance and users can request infinite

instances from the cloud service provider. In the cur-
rent study, instances are provisioned on-demand and the
pricing model is considered to be pay-as-you-go hourly-
based, which is widely used by large public cloud pro-
viders [4]. In this model, a user must pay for the whole
hour even though use of an instance is for less than an
hour. The current work denotes VM = {vm1, vm2, …, vmn}
as a set of heterogeneous computational resources
offered by the cloud service provider via VM and
Cost = {C1, C2, …, Cn} as the cost of using each VM for an
hour. It is also assumed that all computational resources
are in the same region. Thus, the average bandwidth
between instances is roughly identical and internal data
transfer is free of charge [2].

Definitions
Task execution time
Given that the VMs offered by the service provider are
heterogeneous, each task has a different execution time

Fig. 1  Workflow sample

Page 5 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

based on the type of VM running on it. Therefore, the
execution time of task ti on vmj is denoted by wi, j. It
should be noted that wi, j is the worst-case execution time
of ti on vmj and it is assumed that only one task can be
executed on each VM instance at any time.

Communication time
The communication time between two tasks is the
amount of time necessary to transfer data from ti to tj, as
shown in (1). When both tasks are executed on the same
instance, the communication time becomes zero.

 where Inst(ti) represents the instance on which ti is
mapped, datai, j shows the amount of data transferred to
tj after ti ‘s completion, and BW is the bandwidth between
the two instances.

Earliest start time (EST) and earliest finish time (EFT)
For each unscheduled task, ti, EST(ti) is defined as the
earliest time when ti can start its execution after all its
predecessors have finished and after having received the
associated data. EST is calculated as follows:

 where CMj, i is the communication time and W(tj) is the
shortest execution time of tj, which is defined as follows:

According to the earliest start time definition, the earli-
est finish time of each unscheduled task, ti, can be calcu-
lated as follows:

Actual start time (AST) and actual finish time (AFT)
After assigning a task to the desired instance, AST and
AFT are obtained for each task. These values can be dif-
ferent from the EST and EFT that are determined before
scheduling. Equation (5) shows the relation between
these parameters.

(1)CMi,j =

{

0 if Inst(ti) = Inst
(

tj
)

datai,j
BW otherwise

(2)EST (ti) =

{

0 if ti = tentry
max

tj∈predecessor(ti)
EST

(

tj
)

+W
(

tj
)

+ CMj,i otherwise

(3)W
(

tj
)

= min
k∈vm types

{

wj,k

}

(4)EFT (ti) = EST (ti)+W (ti)

(5)AST (ti) ≥ EST (ti)

 where j is the type of instance to which ti is assigned.

Critical path and critical tasks
The critical path (CP) in a workflow is the path from
the entry task to the exit task which has the maximum
summation of task execution times and inter-task com-
munication times among all paths [23]. All the tasks on a
critical path are called critical tasks.

Linear graph and nonlinear graph
The present paper divides the workflow graphs into two
categories: linear graphs and nonlinear graphs. A lin-
ear graph is a connected graph with a chain structure.
Each vertex in this graph, which corresponds to a task
in the workflow, has exactly one parent and one child,
except for the entry task, which has no parent, and the
exit task, which has no child. If a graph contains other

AFT (ti) = AST (ti)+ wi,j

Fig. 2  Examples of a linear graph and a nonlinear graph

Page 6 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

structures, it is called a nonlinear graph. Figure 2 pro-
vides a graphic representation of linear and nonlinear
graphs.

Problem formulation
The issue presented in the current article is the deadline-
constrained cost optimization of workflow scheduling in
an IaaS cloud environment. Considering wf as the work-
flow and D as the workflow deadline, this subsection first
defines the overall workflow execution cost and then for-
mulates the problem.

The total execution cost of a workflow, Costtotal(wf), is
the summation of all the costs of the used instances dur-
ing scheduling, as follows:

 where Insti is the ith leased instance and n is the total
number of leased instances. Cost(Insti) depends on
two parameters: the total time of utilizing Insti and the
price of Insti for an hour. As mentioned earlier, there is
an hourly-based price model and the user must pay for
the whole hour even though the instance is used for less
than an hour. As a result, the instance cost is calculated
as follows:

 where C(Insti) is the specified cost for utilizing Insti for
1 hour. According to the previous definitions, the pre-
sent study’s optimization scheduling problem is applied
to achieve a mapping of tasks to suitable instances so as
to minimize the total monetary cost while not exceeding
the deadline constraint. Relation (8) shows our problem
formulation.

Proposed method
The proposed solution for the cloud workflow schedul-
ing problem is a static method that aims to minimize the
execution cost of the workflow while meeting its deadline.
For minimizing the execution cost, the introduced method
focuses on the repeated use of the critical path concept.
Dividing the initial workflow into several sub-workflows
makes it possible to define the critical path in each resulting
sub-workflow. According to the workflow structure and the

(6)Costtotal
(

wf
)

=
∑n

i=1Cost(Insti)

(7)Cost(Insti) =











max
tj∈Insti Assigned tasks

�

AFT
�

tj
��

− min
tj∈Insti Assigned tasks

�

AST
�

tj
��

3600











×C(Insti)

(8)Minimize Costtotal (wf)

subject to AFT (texit) ≤ D

dependencies among tasks, the original divide and conquer
method is modified to be consistent with the goals of the
current study. The proposed algorithm consists of two main
phases: the division phase and the linear graph scheduling
phase. In the division phase, the workflow division algo-
rithm is presented to perform the workflow dividing opera-
tions according to the current authors’ previous research
(DQWS) [5]. The division of the workflow is performed by
determining, scheduling, and removing the workflow criti-
cal path. By removing the critical path, the workflow lefto-
vers are divided into one or more smaller sub-workflows
and this process is repeated for each sub-workflow. The cre-
ation of sub-workflows as the structure of the linear graphs
is the stop condition of the divide and conquer process and
the sub-workflow scheduling is considered as a small solv-
able problem. By scheduling linear graphs with the scor-
ing method, the proposed linear graph scheduling phase
takes on a completely different approach from the current
authors’ previous work. As the difference between the pro-
posed method and the present authors’ past work (DQWS)
lies in this second phase of the introduced algorithm, Sec-
tion 4–1 shall first present the generalities of the proposed
workflow division algorithm while Section 4–2 will go on to
explain the details of the proposed linear graph scheduling
algorithm.

Workflow division algorithm
The workflow division algorithm follows different steps
to divide the initial workflow into sub-workflows. Similar
to DQWS [5], the proposed algorithm (Fig. 3) first deter-
mines the workflow’s critical path. This is achieved by
the Find _ CriticalPath function shown in Fig. 4. In deter-
mining the critical path, it is important to identify the
critical parent of each task. The critical parent of ti is one
of its parents, such as tp, which maximizes the expres-
sion, EFT(tp) + CMp, i. CMp, i is the communication time
between tp and ti.

After determining a critical path, a set of possible
resources is defined to schedule it by the Find _ Possi-
bleResources function. This function searches among
a variety of resource types offered by the service pro-
vider that are capable of scheduling the critical path
tasks before the user-defined deadline and creates a set
of these resource types as a possible resource set. The
cheapest resource type from this set is then selected
and the critical path tasks are pre-assigned on an
instance of the selected resource. Because the critical

Page 7 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

path is eliminated from the workflow in the next steps,
it is necessary to finalize the scheduling of the critical
path task. The Check _ Subpaths function is responsible
for finalizing critical path scheduling. To accomplish
this, the Check _ Subpaths function checks all sub-paths
leading to the critical path and examines the possi-
bility that each sub-path can be scheduled by at least
one type of resource. The Find _ Subpaths function

determines the sub-paths leading to each critical task,
as shown in Fig. 5.

The successful output of the Check _ Subpaths func-
tion indicates that the critical path scheduling on the
selected resource is finalized. Fig. 6 presents the details
of this function. After finalization of the critical path
schedule, the tasks in this path are removed from the

Fig. 3  Workflow division algorithm

Fig. 4  Find_Criticalpath function

Page 8 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

workflow and the workflow is divided into one or more
connected graphs. Depending on their structure, each
of the resulting graphs is added to one of the linear

graph or nonlinear graph sets. This operation is per-
formed for all graphs in the nonlinear graph set.

Fig. 5  Find_Subpaths function.

Fig. 6  Check_Subpaths function

Page 9 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

Linear graph scheduling algorithm
Since the linear graphs obtained from different stages
of the workflow division are independent of each other,
there is no requirement to observe a specific order in
their execution. However, a specific arrangement or com-
bination in their scheduling can be effective in choosing
the resource type, which, in turn, will affect the work-
flow execution cost. In contrast to the current authors’
previous study (DQWS) [5], which employs a greedy
method to schedule linear graphs, the present paper uti-
lizes a scoring function for its linear graph scheduling. As
shown in Fig. 7, the proposed algorithm consists of three
different phases: the initialization phase, the internal
combination phase, and the external combination phase.
The following presents the details of these different algo-
rithm phases.

Initialization phase
The objective of the algorithm initialization phase (Lines
2–9) is to determine the candidate resources for each
linear graph and distribute the linear graphs in the sets
associated with their candidate resources. A candidate
resource is a resource type whose linear graph execution

cost is the lowest among the other resource types. Each
linear graph may have more than one candidate resource.
At the beginning of this phase, a dependent set , SRi , is
defined for each resource type, Ri, offered by the service
provider and, for each linear graph, candidate resources
are determined. Then, each linear graph is pre-sched-
uled on a new instance of each candidate resource type
and then added to the sets that belong to its candidate
resources.

Internal combination phase
The objective of the proposed algorithm’s second phase
(Lines 10–19) is to reduce the workflow execution cost,
as performed by pairwise combinations of linear graphs.
During the process of combination, the preference of the
algorithm is lowering the cost and, as a result, reducing
the number of instances required for scheduling. In this
phase, in each of the defined sets, SRi , all pairwise com-
binations of linear graphs are determined and the score
of each combination is calculated by the Score _ Combi-
nation function. As shown in (9), the combined score is
calculated as the difference in execution costs when both

Fig. 7  Linear graph scheduling algorithm

Page 10 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

linear graphs are scheduled on one sample and when
each is scheduled on a separate sample.

Due to the large number of linear graphs in each set,
determining all pairwise combinations of the linear
graphs as well as calculating the score of each combina-
tion is quite time consuming. For this reason, a parallel
algorithm performs this function. Subsection 4–2–2-1
provides the details of the Score _ Combination func-
tion. After the score of all combinations is calculated, the
combination with the highest score and its set are deter-
mined and the combined graph is added to the selected
set. Then the initial linear graphs making up the com-
bined graph are removed from all sets. Since the sets are
not disjoint, the initial linear graphs must be removed
from all the sets. Determining the pairwise combinations
of linear graphs and selecting the best combination is
repeated until the score of all combinations in all sets is
negative.

Details of the scoring function  The score of each binary
combination is calculated by the Score _ Combination
function. Figure 8 presents the pseudo-code of this func-
tion. At first, the possibility of combining two linear

(9)Score = costlinear_graph1 + costlinear_graph2 − Combination Cost

graphs is explored. If this is not possible, the combination
cost is considered infinite.

Definition: G1 and G2 are linear graphs and D1
and D2 are their deadlines, respectively. These linear
graphs are uncombinable if the total execution time
of their tasks is greater than both D1 and D2.

To determine the execution cost of the combinable
graphs, two linear graphs are first pre-scheduled on one
instance. Pre-scheduling is performed in two different
ways: pre-scheduling for graphs with a time overlap and
pre-scheduling for graphs without a time overlap.

Definition: Linear graphs, G1 and G2, are not time-
overlapped graphs if:

In this case, by pre-scheduling the tasks of both graphs
on one instance, the order, start time, and finish time of
the tasks does not change.

(10)







EST (G2) ≥ D1

or
EST (G1) ≥ D2

Fig. 8  Score combination function

Page 11 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

To pre-schedule linear graphs with a time overlap, the
present study provides a new merge list algorithm. The
proposed merge list algorithm receives two lists as input.
Each list includes the tasks of one linear graph that are
arranged from entry task to exit task. The output of
this algorithm will also be a list that specifies the final
sequence of the tasks in the combined graph. The cur-
rent work’s contribution to the merge list algorithm is the
header selection method. To select a header, the laxity of
all tasks in both graphs is first determined and the follow-
ing conditions are considered:

a.	 Selecting each header creates negative laxity for one
or more tasks of the other list.

b.	 Selecting one of the headers creates negative laxity
for one or more tasks of the other list.

c.	 Neither of the choices leads to negative laxity.

In case (a), it is not possible to combine two linear graphs;
hence, the algorithm terminates. In case (b), a header is
selected that does not create a negative laxity. In case (c),

a header is chosen with an earlier start time in its initial
linear graph and, if the start time of both headers is the
same, then a header with lower laxity is selected. Fig. 9
shows an illustrative example for combining two linear
graphs, G1 and G2, with the proposed modified merge list
algorithm.

After examining the possibility of combining linear
graphs, the execution cost of the combined graphs is cal-
culated by (7).

External combination phase
In this phase (Lines 20–27), the proposed algorithm
aims to transfer the scheduled tasks of the less power-
ful instances to the idle times of the more powerful ones.
This transfer can reduce the number of used instances
and consequently the overall execution cost. For this
purpose, in each stage, the idle-time periods of the most
powerful utilized instance are determined. For each idle
time, the present study looks for an appropriate linear
graph that can be scheduled on the idle time before its

Fig. 9  Illustrative example for combining two linear graphs

Page 12 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

deadline. After the desired linear graph is determined, its
tasks are transferred and the original instance is removed
from the required instances.

Evaluation
This section first describes the current work’s experi-
mental setting and evaluation criteria, and then com-
pares the proposed method with state-of-the-art
approaches that are similar in terms of objectives. The
methods used for comparison are IC-PCP [18], BDHEFT
[15], PDC [12], and the present authors’ previous study,
DQWS [5]. All of these algorithms are reviewed in the
Related Work section.

Experimental setting and evaluation criteria
To evaluate the performance of the proposed algo-
rithm, different simulation scenarios are run. Simu-
lation is a well-accepted approach for evaluating
workflow scheduling algorithms. With simulation, it
is possible to test the performance of the algorithms
under a controlled setting [27] . In the present study’s
simulation, which is performed by MATLAB, the ser-
vice provider offers five different VM types with differ-
ent costs and processing powers. The characteristics of
the VMs are based on the US-east Amazon region and
are presented in Table 1. Unlimited instances of each
VM type are assumed. VMs are in a single data center
and the average bandwidth between instances is fixed
at 20 MBps [28].

The current study conducts its experiments using four
different scientific workflows: CyberShake, Epigenom-
ics, LIGO, and Motif. These workflows are diverse in
terms of structure, computational characteristics, and
communication data. In addition, the workflows are
employed in different scientific areas, such as earth-
quake science, biology, gravitational physics, and genet-
ics. Full descriptions of these workflows are provided in
[29, 30]. Fig. 10 depicts the structure of each workflow
in a relatively small size. These workflows are provided

by the Pegasus workflow generator4 as a DAX (Directed
Acyclic Graph in XML) format and, for each workflow,
the details, including the DAG, the sizes of data trans-
fer, and the tasks execution time, are published. These
workflows have been widely used for evaluating the per-
formance of scheduling algorithms, and thus they are
included in the current study’s experiments. In order to
determine the execution time of each workflow task by
each VM type, we assume the published execution time
for each task is calculated for the VM with ECU = 1.
With this assumption, the execution time of each task
on the other VM types is calculated by dividing its
published execution time by the ECU value of the VM
which is shown in Table 1. As shown in Table 2, the pre-
sent work chooses four different sizes for each workflow
type and generates 50 random samples from each type
and size of workflow.

To assess the performance of the compared algo-
rithms, it is necessary to determine the acceptable values
for each workflow’s deadline. The concept of the fastest
schedule is utilized to determine deadlines proportion-
ate to each workflow structure. The fastest schedule
is the scheduling of each workflow task on a distinct
instance of the fastest VM type without considering the
communication time between tasks [18]. The makes-
pan obtained by the fastest schedule for each workflow,
makespanLB, is the lower bound of the overall work-
flow execution time. Using makespanLB, the present
study calculates a variation for a deadline, from tight to
relaxed, as follows:

α starts from 2 and is increased by 2 up to a value of 10.
In this way, the impact of different deadlines (from tight to
relaxed) is evaluated on the performance of each algorithm.

To evaluate the performance of the algorithm, the pre-
sent work analyzes the following metrics in its experi-
ments: normalized cost, success rate, and instance
reduction. Each metric is explained as follows:

Normalized cost: The overall workflow execution
cost obtained by each of the algorithms is a suit-
able criterion for evaluating the compared algo-

(11)dealline = α ×makespanLB2 ≤ α ≤ 10

Table 1  VM types based on Amazon EC2

Type ECU Memory (GB) Cost($)(per hour)

m3.medium 3 3.75 0.067
m4.large 6.5 8 0.126
m3.xlarge 13 15 0.266
m4.2xlarge 26 32 0.504
m4.4xlarge 53.5 64 1.008

Table 2  Different sizes of workflows according to the number of
tasks

Scientific Workflow Small Medium Large Extra Large

CyberShake 30 50 100 500
Epigenomics 24 46 100 500
LIGO 30 50 100 500
Motif 30 50 100 –

4  https://​confl​uence.​pegas​us.​isi.​edu/​displ​ay/​pegas​us/

https://confluence.pegasus.isi.edu/display/pegasus/

Page 13 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

rithms. Because of the difference in the structure
and characteristics of the benchmark workflows,
the current paper employs a normalized cost met-
ric for comparison. The normalized cost of execut-
ing each workflow with any of the benchmark algo-
rithms is obtained by dividing its overall execution
cost, cost(wf), by its scheduling cost based on the
cheapest scheduling strategy(costlowest(wf)) [18], as
follows:

Success rate: To evaluate the capability of each algo-
rithm to meet the deadline constraints, the present
study defines the metric of success rate as the ratio
between the number of successful schedules and the
total number of schedules.
Instance reduction: To compare the performance
of the proposed algorithm against that of the cur-
rent authors’ previous research (DQWS), an instance
reduction parameter is introduced. This parameter
shows the reduction factor in the percentage of the
number of instances needed for scheduling each work-
flow type by EDQWS in comparison to DQWS. Since
the present study’s focus in the linear graph schedul-
ing phase is the combination of linear graphs, reduc-
ing the number of instances, in addition to minimiz-
ing the cost, can serve as a metric for comparing the
two methods. A reduction in the number of instances
required to schedule workflows can lower the prob-
ability of instance failure. This is also helpful for cloud
providers which have a limitation in the number of
requested instances.

(12)Normalized Cost(wf) =
cost(wf)

costlowest(wf)

Experimental result
The performance of the proposed algorithm is evaluated
in three separate subsections. In the first subsection, the
execution cost of each workflow type is examined by all
compared algorithms. In the second subsection, the success
rate of all compared algorithms is evaluated. In the third
subsection, the two methods, DQWS and EDQWS, are
compared in more detail. For this purpose, a comparison is
made between the average cost reduction in EDQWS and in
DQWS. Additionally, the number of instances required for
each algorithm to schedule each workflow type is studied.

Normalized cost analysis
In this subsection, the execution cost of each workflow is
examined by all the compared algorithms. In these exper-
iments, 50 random samples are generated from each
type and size of the workflows, and each random sample
is scheduled by all algorithms for five different deadline
factors. Given that the results of running each algorithm
on different workflow sizes are relatively similar, only the
results of implementing the largest size of each workflow
type are reported. Fig. 11 presents the normalized cost of
all of the compared algorithms when executing the four
workflow types (CyberShake, Epigenomics, LIGO, and
Motif). The normalized cost values are the mean value
of the 50 random samples generated for each workflow
type. Besides the mean values, the standard deviation is
also provided in Fig. 11. The reporting of ‘Fail’ in each
graph indicates that the specified algorithm was unable to
schedule the workflow within the given deadline factor.

Figure 11.a presents the results of the CyberShake
workflow execution by the five compared algorithms. As
observed in Fig. 11.a, none of the compared algorithms
are able to schedule this type of workflow within the
deadline factor of 2. The lowest execution cost for this
type of workflow is obtained by the EDQWS algorithm.

Fig. 10  Structure of the examined workflow [54]. a CyberShake. b Epigenomics. c LIGO. d Motif

Page 14 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

Fig. 11  Normalized Cost vs. Deadline Factor for four different workflow sets (PDC was unable to schedule the CyberShake workflow). Note: the
error bar indicates the standard deviation

Page 15 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

In this type of workflow, DQWS and EDQWS succeed
in creating multiple linear graphs with a small number
of tasks and short execution times. As a result, utilizing
the idle time of instances for scheduling linear graphs can
reduce the execution cost of this workflow type.

Although the two algorithms utilize the same linear
graphs, a comparison of their normalized cost reduction
indicates that EDQWS’ consideration of different lin-
ear graph combinations in instance type selection leads
to more appropriate solutions than DQWS’ usage of the
greedy method.

As seen in Fig. 11.a, the PDC algorithm failed to
schedule any random samples of the CyberShake work-
flow within the specified deadlines. The failure of PDC
in scheduling this type of workflow is due to the way in
which it sets the initial deadline. PDC determines the
initial deadline for each workflow by considering the
communication time between tasks. If the user-defined
deadline is sooner than the initial deadline, the workflow
will not be scheduled. As mentioned earlier, for deter-
mining the deadline, the proposed algorithm employs the
concept of the fastest schedule which eliminates the com-
munication time between tasks during the deadline cal-
culation. Because the execution time of CyberShake tasks
are short and the communication time between them
is long, the deadlines calculated by the fastest schedule
are shorter than the PDC initial deadline. Therefore, the
results of the PDC algorithm are not included in Fig. 11.a.

In Epigenomics, the possibility that DQWS and
EDQWS will utilize the resource idle time is less than

that of the other workflows because of the high execu-
tion time of tasks. As seen in Fig. 11.b, the normalized
cost obtained by DQWS, EDQWS, and PDC is almost
the same, while BDHEFT reports a higher execution cost
than the other algorithms. For the deadline factors that
IC-PCP is successful in meeting, its normalized execu-
tion cost nears that of DQWS, EDQWS, and PDC.

Figure 11.c shows the results of LIGO scheduling by all
of the compared algorithms. In this type of workflow, the
normalized cost obtained by EDQWS is the lowest among
the other algorithms. Due to the existence of several paral-
lel tasks in the structure of this workflow, the creation of
multiple linear graphs has increased the possibility of uti-
lizing instance idle times. Furthermore, the usage of the
scoring method and examination of linear graph combina-
tions may be the reason why the normalized cost reduc-
tion in EDQWS is greater than that of the greedy method.

Figure 11.d provides the results obtained from the pre-
sent study’s simulations for the Motif workflow. As seen,
IC-PCP, DQWS, and EDQWS outperform the BDHEFT
and PDC algorithms. Based on the results obtained from
IC-PCP, DQWS, and EDQWS, it is observed that, in tight
deadlines, the DQWS and EDQWS algorithms perform
better while, in relaxed deadlines, ICPCP’s performance
is superior. For motif scheduling, EDQWS performs
much like DQWS and the normalized cost of these two
algorithms is the same. A possible reason for this simi-
larity may be that the motif structure creates single-task
linear graphs during the division phase. Subsection 5–2-3
shall compare these two methods in more detail.

Fig. 12  Success rates of the compared algorithms on the four workflow sets

Page 16 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

Success rate analysis
By considering different deadline factors, this section
examines the success rate of the compared algorithms for
each workflow type. All random samples created from
any type of workflow are included in the success rate
calculation. Fig. 12 provides the success rates of the five
algorithms (EDQWS, DQWS, PDC, BDHEFT, and IC-
PCP). As the results show, the success rates of EDQWS
and DQWS are exactly the same for all deadline factors
and the different workflows. Given that these two algo-
rithms employ the same method to create linear graphs,
it can be concluded that the method of scheduling lin-
ear graphs does not impact the success or failure of the
schedule but only affects the workflow execution cost.

As shown in Fig. 12, for all workflow types, the pro-
posed method has a higher success rate than that of the
PDC, IC-PCP, and BDHEFT algorithms. PDC’s low suc-
cess rate may be explained by the fact that this algorithm
does not accept most of the deadline factors and so is
unable to schedule the workflow.

The comparison of DQWS and EDQWS
This section compares the current authors’ newly intro-
duced EDQWS algorithm and their previous algorithm,
DQWS. As mentioned earlier, the steps for creating
linear graphs in these two algorithms are similar, but
their methods differ in the linear graph scheduling
phase. For scheduling linear graphs, DQWS utilizes
a greedy method while the present paper’s EDQWS

algorithm employs a scoring method. To evaluate the
performance of these two algorithms, two compari-
sons are made. First, the number of instances required
by EDQWS and DQWS to schedule each workflow
type is compared. Second, the difference between these
two algorithms’ normalized cost and the number of
instances are examined.

Figure 13 shows the number of instances required by
DQWS and EDQWS to schedule the CyberShake, Epig-
enomics, LIGO, and Motif workflows. It should be noted
that the number of instance values is the mean value of
50 random samples generated for each workflow type. As
seen in Fig. 13, in comparison to DQWS, the number of
instances required for scheduling CyberShake and Epi-
genomics is greatly reduced by the EDQWS algorithm.
However, this reduction is not observed in the LIGO and
Motif workflows.

Table 3 summarizes the results obtained from the
above experiments. This table presents three different
parameters for each algorithm: the average percentage
of cost reduction in EDQWS compared to DQWS, the
average percentage of the reduction in the number of
instances in EDQWS versus DQWS, and the percentage
of experiments in which EDQWS succeeds in reducing
the number of instances in comparison to DQWS.

As seen in Table 3, the average normalized cost for
the three types of workflow (CyberShake, Epigenomics,
and LIGO) is reduced by the proposed algorithm when
compared to the DQWS algorithm. Also, the current

Fig. 13  Number of Instances vs. Deadline Factor for four different workflow sets

Page 17 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13 	

work’s algorithm succeeds in reducing the average num-
ber of instances required to schedule CyberShake and
Epigenomics. In LIGO, although the average number of
instances in the proposed algorithm increases slightly,
the number of instances in more than half of the experi-
ments decreases in comparison to DQWS. In Motif,
despite the same normalized cost in both algorithms, the
number of instances decreases in a small percentage of
the proposed method’s experiments.

Conclusion
The present paper proposes a static scheduling algorithm
called EDQWS, which is an extension of a previous study
by the current authors [5]. EDQWS is a two-phase work-
flow scheduler based on divide and conquer and aims to
minimize the overall workflow execution cost by consid-
ering a user-defined deadline. In the first phase, similar
to the present authors’ previous research, the division of
workflow into sub-workflows is achieved by determining
and scheduling the critical path and removing it from the
workflow. By eliminating the critical path, the workflow is
divided into several sub-workflows, each of which under-
goes this same division. The stop condition is to attain a
sub-workflow with a chain structure called a linear graph.
For scheduling linear graphs in the second phase, the
current work proposes a new merging algorithm to com-
bine the resulting linear graphs, reduce the number of
used instances, and minimize the overall execution cost.
Also introduced is a scoring function to select the most
efficient instances for scheduling the linear graphs.

The experiments are conducted with four well-known
workflows that determine whether EDQWS has an over-
all better performance than the state-of-the-art algo-
rithms, IC-PCP, PDC, BDHEFT, and DQWS. In terms of
the normalized cost parameter, EDQWS shows accept-
able results when compared to the other methods. As
for the success rate parameter, EDQWS and DQWS are
completely the same in all deadline factors and for dif-
ferent workflows. Given that these two algorithms use
the same method in creating linear graphs, the method
of scheduling linear graphs has no effect on the success
or failure of the schedule and only affects the workflow

execution cost. However, the success rate of both algo-
rithms is higher than that of the other methods, especially
under tight deadlines. In comparing the performance
of EDQWS with that of the present authors’ previous
research (DQWS), the results show that, in more than
50% of the examined workflow samples, the number of
resource instances decreases in EDQWS in comparison
to DQWS. Reducing the number of resource instances
in addition to decreasing the probability of instance
failure also leads to a reduction in the overall execution
cost of the examined workflows. According to the above
description, it can be concluded that the definition of
the scoring function and relying on it to combine linear
graphs and select virtual machine types has led to a more
appropriate selection of VM types than the other base-
line methods. The use of our new merge list algorithm as
well as the policy for transferring the task from the less
powerful instances to the idle times of the more power-
ful ones has also had a significant impact on improving
the results. The new merge list algorithm combines the
tasks of linear graphs with respect to the laxity of tasks
and improves the scheduling of tasks by changing the
mapping of pre-scheduled tasks on the instances. By
transferring the pre-scheduled tasks from the less power-
ful instances to the idle times of the more powerful ones,
the algorithm can use these idle times for which there is
no need to pay extra, and remove less powerful instances
from the list of required instances. For future work, the
current authors intend to extend their merging algorithm
for more than two linear graphs. Furthermore, a non-
greedy algorithm shall be proposed for selecting instance
idle-time to transfer scheduled tasks in the external com-
bination phase.

Abbreviations
DAG: Directed Acyclic Graph; MIP: Mixed Integer Programing; VM: Virtual
Machine; CP: Critical Path; DAX: Directed Acyclic Graph in XML.

Acknowledgments
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Table 3  Comparison of EDQWS and DQWS in the number of instances and normalized cost

Workflow Average reduction in the normalized
cost of EDQWS vs DQWS

Average reduction in the number of
instances of EDQWS vs DQWS

Experiments that decrease the
number of instances of EDQWS vs
DQWS

CyberShake 8.6% 10.98% 68.92%

Epigenomics 3.4% 24.58% 81.6%

LIGO 10.5% −0.36% 51.6%

Motif 0% 0.05% 8.4%

Page 18 of 18Khojasteh Toussi et al. Journal of Cloud Computing (2022) 11:13

Funding
This work has no funding.

Availability of data and materials
The data used during the current study are available from the corresponding
author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Engineering, Ferdowsi University of Mashhad,
Mashhad, Iran. 2 Khorasan Electric Distribution Company (KEDC), Mashhad,
Iran.

Received: 6 September 2021 Accepted: 21 March 2022

References
	1.	 Guo W, Lin B, Chen G, Chen Y, Liang F (2018) Cost-driven scheduling for

deadline-based workflow across multiple clouds. IEEE Trans Netw Serv
Manag 15(4):1571–1585. https://​doi.​org/​10.​1109/​TNSM.​2018.​28720​66

	2.	 Wu Q, Ishikawa F, Zhu Q, Xia Y, Wen J (2017) Deadline-constrained cost
optimization approaches for workflow scheduling in clouds. IEEE Trans
Parallel Distributed Syst 28(12):3401–3412. https://​doi.​org/​10.​1109/​TPDS.​
2017.​27354​00

	3.	 Rodriguez MA, Buyya R (2017) A taxonomy and survey on scheduling
algorithms for scientific workflows in IaaS cloud computing environments.
Concurrency Comput 29(8). https://​doi.​org/​10.​1002/​cpe.​4041

	4.	 Faragardi HR, Saleh Sedghpour MR, Fazliahmadi S, Fahringer T, Rasouli N
(2020) GRP-HEFT: a budget-constrained resource provisioning scheme
for workflow scheduling in IaaS clouds. IEEE Trans Parallel Distributed Syst
31(6):1239–1254. https://​doi.​org/​10.​1109/​TPDS.​2019.​29610​98

	5.	 Khojasteh Toussi G, Naghibzadeh M (2021) A divide and conquer approach
to deadline constrained cost-optimization workflow scheduling for the
cloud. Clust Comput. https://​doi.​org/​10.​1007/​s10586-​020-​03223-x

	6.	 Singh V, Gupta I, Jana PK (2020) An energy efficient algorithm for workflow
scheduling in IaaS cloud. J Grid Comput 18(3):357–376. https://​doi.​org/​10.​
1007/​s10723-​019-​09490-2

	7.	 Garg N, Singh D, Goraya MS (2021) Energy and resource efficient workflow
scheduling in a virtualized cloud environment. Clust Comput 24(2):767–797.
https://​doi.​org/​10.​1007/​s10586-​020-​03149-4

	8.	 Jiang J, Lin Y, Xie G, Fu L, Yang J (2017) Time and energy optimization algo-
rithms for the static scheduling of multiple workflows in heterogeneous
computing system. J Grid Comput 15(4):435–456. https://​doi.​org/​10.​1007/​
s10723-​017-​9391-5

	9.	 Sreenu K, Sreelatha M (2019) W-scheduler: whale optimization for task
scheduling in cloud computing. Clust Comput 22:1087–1098. https://​doi.​
org/​10.​1007/​s10586-​017-​1055-5

	10.	 Wang S, Li K, Mei J, Xiao G, Li K (2017) A reliability-aware task scheduling
algorithm based on replication on heterogeneous computing systems. J
Grid Comput 15(1):23–39. https://​doi.​org/​10.​1007/​s10723-​016-​9386-7

	11.	 Kalyan Chakravarthi K, Shyamala L, Vaidehi V (2020) Budget aware schedul-
ing algorithm for workflow applications in IaaS clouds. Clust Comput
23(4):3405–3419. https://​doi.​org/​10.​1007/​s10586-​020-​03095-1

	12.	 Arabnejad V, Bubendorfer K, Ng B (2017) Scheduling deadline constrained
scientific workflows on dynamically provisioned cloud resources. Futur
Gener Comput Syst 75:348–364. https://​doi.​org/​10.​1016/j.​future.​2017.​01.​002

	13.	 Rizvi N, Ramesh D (2020) Fair budget constrained workflow scheduling
approach for heterogeneous clouds. Clust Comput 23(4):3185–3201.
https://​doi.​org/​10.​1007/​s10586-​020-​03079-1

	14.	 Cao, S., Deng, K., Ren, K., Li, X., Nie, T., and Song, J.: ‘A deadline-constrained
scheduling algorithm for scientific workflows in clouds’, in Editor (Ed.)^(Eds.):
‘Book A deadline-constrained scheduling algorithm for scientific workflows
in clouds’ (Institute of Electrical and Electronics Engineers Inc., 2019, edn.),
pp. 98–105

	15.	 Verma A, Kaushal S (2015) Cost-time efficient scheduling plan for executing
workflows in the cloud. J Grid Comput 13(4):495–506. https://​doi.​org/​10.​
1007/​s10723-​015-​9344-9

	16.	 Ullman JD (1975) NP-complete scheduling problems. J Comput Syst Sci
10(3):384–393. https://​doi.​org/​10.​1016/​S0022-​0000(75)​80008-0

	17.	 Malawski M, Figiela K, Bubak M, Deelman E, Nabrzyski J (2015) Scheduling
multilevel deadline-constrained scientific workflows on clouds based on
cost optimization. Sci Program 2015. https://​doi.​org/​10.​1155/​2015/​680271

	18.	 Abrishami S, Naghibzadeh M, Epema DHJ (2013) Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds. Futur
Gener Comput Syst 29(1):158–169. https://​doi.​org/​10.​1016/j.​future.​2012.​05.​
004

	19.	 Calheiros RN, Buyya R (2014) Meeting deadlines of scientific workflows
in public clouds with tasks replication. IEEE Trans Parallel Distributed Syst
25(7):1787–1796. https://​doi.​org/​10.​1109/​TPDS.​2013.​238

	20.	 Arabnejad, V., Bubendorfer, K., Ng, B., and Chard, K.: ‘A Deadline Con-
strained Critical Path Heuristic for Cost-Effectively Scheduling Workflows
C3 - Proceedings - 2015 IEEE/ACM 8th International Conference on Utility
and Cloud Computing, UCC 2015’, in Editor (Ed.)^(Eds.): ‘Book A Deadline
Constrained Critical Path Heuristic for Cost-Effectively Scheduling Workflows
C3 - Proceedings - 2015 IEEE/ACM 8th International Conference on Utility
and Cloud Computing, UCC 2015’ (Institute of Electrical and Electronics
Engineers Inc., 2015, edn.), pp. 242–250

	21.	 Rodriguez MA, Buyya R (2014) Deadline based resource provisioningand
scheduling algorithm for scientific workflows on clouds. IEEE Trans Cloud
Comput 2(2):222–235

	22.	 Arabnejad H, Barbosa JG (2014) A budget constrained scheduling algorithm
for workflow applications. J Grid Comput 12(4):665–679. https://​doi.​org/​10.​
1007/​s10723-​014-​9294-7

	23.	 Topcuoglu H, Hariri S, Wu MY (2002) Performance-effective and low-com-
plexity task scheduling for heterogeneous computing. IEEE Trans Parallel
Distributed Syst 13(3):260–274. https://​doi.​org/​10.​1109/​71.​993206

	24.	 Wu F, Wu Q, Tan Y, Li R, Wang W (2016) PCP-B2: partial critical path budget
balanced scheduling algorithms for scientific workflow applications. Futur
Gener Comput Syst 60:22–34. https://​doi.​org/​10.​1016/j.​future.​2016.​01.​004

	25.	 Durillo JJ, Prodan R (2014) Multi-objective workflow scheduling in
amazon EC2. Clust Comput 17(2):169–189. https://​doi.​org/​10.​1007/​
s10586-​013-​0325-0

	26.	 Wu, Z., Ni, Z., Gu, L., and Liu, X. (2010). ‘A revised discrete particle swarm
optimization for cloud workflow scheduling C3 - Proceedings - 2010 Inter-
national Conference on Computational Intelligence and Security, CIS 2010’,
in Editor (Ed.)^(Eds.): ‘Book A revised discrete particle swarm optimization
for cloud workflow scheduling C3 - Proceedings - 2010 International Confer-
ence on Computational Intelligence and Security, CIS 2010’, pp. 184–188

	27.	 Arabnejad V, Bubendorfer K, Ng B (2019) Budget and deadline aware
e-science workflow scheduling in clouds. IEEE Trans Parallel Distributed Syst
30(1):29–44. https://​doi.​org/​10.​1109/​TPDS.​2018.​28493​96

	28.	 Palankar, M.R., Iamnitchi, A., Ripeanu, M., and Garfinkel, S. (2008). ‘Amazon S3
for science grids: a viable solution?’, in Editor (Ed)^(Eds): ‘Book Amazon S3 for
science grids: a viable solution?’, pp. 55–64

	29.	 Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K (2013)
Characterizing and profiling scientific workflows. Futur Gener Comput Syst
29(3):682–692. https://​doi.​org/​10.​1016/j.​future.​2012.​08.​015

	30.	 Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., and Vahi, K.
(2008). ‘Characterization of scientific workflows C3–2008 3rd Workshop
on Workflows in Support of Large-Scale Science, WORKS 2008’, in Editor
(Ed.)^(Eds.): ‘Book Characterization of scientific workflows C3–2008 3rd
Workshop on Workflows in Support of Large-Scale Science, WORKS 2008’,
pp

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TNSM.2018.2872066
https://doi.org/10.1109/TPDS.2017.2735400
https://doi.org/10.1109/TPDS.2017.2735400
https://doi.org/10.1002/cpe.4041
https://doi.org/10.1109/TPDS.2019.2961098
https://doi.org/10.1007/s10586-020-03223-x
https://doi.org/10.1007/s10723-019-09490-2
https://doi.org/10.1007/s10723-019-09490-2
https://doi.org/10.1007/s10586-020-03149-4
https://doi.org/10.1007/s10723-017-9391-5
https://doi.org/10.1007/s10723-017-9391-5
https://doi.org/10.1007/s10586-017-1055-5
https://doi.org/10.1007/s10586-017-1055-5
https://doi.org/10.1007/s10723-016-9386-7
https://doi.org/10.1007/s10586-020-03095-1
https://doi.org/10.1016/j.future.2017.01.002
https://doi.org/10.1007/s10586-020-03079-1
https://doi.org/10.1007/s10723-015-9344-9
https://doi.org/10.1007/s10723-015-9344-9
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1155/2015/680271
https://doi.org/10.1016/j.future.2012.05.004
https://doi.org/10.1016/j.future.2012.05.004
https://doi.org/10.1109/TPDS.2013.238
https://doi.org/10.1007/s10723-014-9294-7
https://doi.org/10.1007/s10723-014-9294-7
https://doi.org/10.1109/71.993206
https://doi.org/10.1016/j.future.2016.01.004
https://doi.org/10.1007/s10586-013-0325-0
https://doi.org/10.1007/s10586-013-0325-0
https://doi.org/10.1109/TPDS.2018.2849396
https://doi.org/10.1016/j.future.2012.08.015

	EDQWS: an enhanced divide and conquer algorithm for workflow scheduling in cloud
	Abstract
	Introduction
	Related work
	Deadline-aware workflow scheduling
	Budget-aware workflow scheduling
	Multi-objective workflow scheduling

	Problem statement
	Workflow model
	Resource model
	Definitions
	Task execution time
	Communication time
	Earliest start time (EST) and earliest finish time (EFT)
	Actual start time (AST) and actual finish time (AFT)
	Critical path and critical tasks
	Linear graph and nonlinear graph

	Problem formulation

	Proposed method
	Workflow division algorithm
	Linear graph scheduling algorithm
	Initialization phase
	Internal combination phase
	External combination phase

	Evaluation
	Experimental setting and evaluation criteria
	Experimental result
	Normalized cost analysis
	Success rate analysis
	The comparison of DQWS and EDQWS

	Conclusion
	Acknowledgments
	References

