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propensity to patent, and a negative OLS bias. Our counterfactual calculation 
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1 Introduction 

A cornerstone of much of recent growth theory is that ideas, being non-rival in nature, are 

a key source of growth (for surveys see e.g. Jones 2005 and Aghion and Howitt 1998, 

2009). Furthermore, ideas are produced by human capital. The central consequence of 

this line of thinking is aptly summarized by Jones (2005, pp. 1107): “The more inventors 

we have, the more ideas we discover, and the richer we all are”. This immediately leads 

to the following policy question: (How) can the number of inventors be increased? We 

seek to contribute to answering this question by studying the causal effect of education on 

invention. Education has been linked to growth in previous empirical work at the macro-

level,1 but to the best of our knowledge, we are the first to address the question at the 

micro-level and to focus on the link from education to individuals’ propensity to patent 

inventions. 

Both stylized facts and government policies support the view that education 

drives inventions and growth. First, both in cross section and over time, GDP per capita 

and levels of education are positively correlated. Second, societies invest increasingly 

large amounts (see e.g. Freeman 2010) in education - educational investments are 

typically 3 – 6% of GDP2 - suggesting a strong belief in the existence of a causal link 

between education and growth. Third, some rapidly developing countries, notably China 

and India, have singled out (science and) engineering education as a way to foster 

                                                 
1 The current consensus (see recent surveys by Silanesi and van Reenen 2003, Stevens and Weale 2004 and 
Krueger and Lindahl 2001) seems to be that there is at best weak empirical support for the causal relation 
between education and growth. In a recent paper, Aghion, Boustan, Hoxby and Vandenbussche (2009), 
using U.S. state level data, provide evidence of a causal link between education and growth (see also 
Vandenbussche, Aghion and Meghir 2005).  
2 See e.g. WDI education indicators at 
http://siteresources.worldbank.org/DATASTATISTICS/Resources/table2_9.pdf , accessed August 28th, 
2009. 

http://siteresources.worldbank.org/DATASTATISTICS/Resources/table2_9.pdf
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(future) growth. This is documented in Figure 1 that displays the number of  science and 

engineering graduates in selected countries (due to lack of data on the former, only the 

latter for India).3 The two countries showing a notable increase are China and India. In 

terms of comparing levels, it is interesting that these two countries outpace others, 

especially allowing for the fact that for India, only engineering graduates are included. 

Finally, the fact that the U.S. has dropped down in rankings in science and engineering 

graduates, both in absolute and in relative terms, has lead to alarm being raised in the 

U.S. together with some analyses on how to react to this (see e.g. Burrelli and Rapoport 

2009, Freeman 2006, 2010).4 

Figure 1 here 

We study the effect of individuals’ education, concentrating on university 

(master’s level or higher) engineering education, on their inventive productivity, as 

measured by patents and their quality. We use data on U.S. (USPTO) patents5 matched to 

individual level data on (essentially) the whole Finnish working population over the 

period of 1988 – 1996. Previous descriptive studies using data on individual inventors 

have shown that inventors tend to be highly educated. Giuri et al. (2007) report that 77% 

of European inventors in the PatVal survey have a university degree and 26% have a 

doctorate. In our data about 35% of the inventors have a master’s degree and 14% have a 
                                                 
3 The reason for this is that we did not manage to find comparable data on Indian science graduates. The 
recent India Science Report (Shukla 2005) reports (Table 2.3) that the ratio of science to engineering 
students is 3:1.  
4 See e.g. the Science Daily of Jan 18th, 2010: “The state of the science and engineering (S&E) enterprise in 
America is strong, yet its lead is slipping, according to data released at the White House January 15 by the 
National Science Board (NSB).” In the same issue, the assistant director for federal research and 
development, Kei Koizumi is quoted as saying: “ U.S. dominance [in science, technology, engineering and 
mathematics] has eroded significantly." See also the recent report by The Task Force on the Future of 
American Innovation”. In their list of “signs of trouble” they mention as first that “Undergraduate science 
and engineering degrees within the U.S. are awarded less frequently than in other countries. Among 
countries with higher rates they mention Finland. For a less alarmist view, see Gereffi,  Wadhwa, Rissing 
and Ong (2008) who argue that quality is more important than quantity. 
5 Obtained from the NBER patents and citations data file (Hall, Jaffe Trajtenberg 2001). 
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doctorate (see Table 1). In addition, our data shows that the majority of Finnish inventors 

have an engineering degree (66%), indicating that also the field of education is associated 

with patented inventions.6 This observation is interestingly in line with Murphy, Shleifer 

and Vishny (1991) who report some evidence that countries with a higher proportion of 

engineering college majors grow faster. While existing evidence thus suggests a 

significant positive association between individuals’ education and their inventiveness, 

the causality of this link remains unexplored. 

We identify the causal effect of university engineering education on the 

propensity to patent by using geographic and over time variation in the possibility to 

obtain a university engineering degree. During the 1960s and 1970s, Finnish education 

policies lead to a large increase and geographic widening in the possibility to obtain a 

university engineering degree. We use these changes as a quasi-natural experiment in the 

spirit of papers that use the distance to college as an instrument in studying the returns to 

education (surveyed e.g. by Card 2001), and of papers that use the schooling reform 

implemented in all Nordic countries in the 60s and 70s to study the effects of education 

on various outcomes (e.g. Meghir and Palme 2005 and Pekkarinen, Uusitalo and Kerr 

2006). We link the individuals to the distance to the nearest university offering 

engineering education and use this as an instrumental variable for the individuals’ 

schooling choice. 

Using Finnish data seems pertinent to the study of the effect of education on 

invention for two reasons: First, as documented by e.g. Trajtenberg (2001), Finland is 

                                                 
6 In the macroeconomic literature on the relationship between education and growth there is some work 
seeking to differentiate the impact of different levels of education on growth. See e.g. ch13 in Aghion and 
Howitt (1999). 
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among those nations that have accomplished a transformation from a resource based to an 

invention based economy. This is reflected in the large increase in Finnish patent 

applications to the USPTO in the past two decades. Second, while the increased 

availability of higher education is a widely spread phenomenon among the developed 

countries, this development has been particular in Finland in two respects. The first one is 

the scope of this change – the proportion of a cohort to whom there are higher education 

study places is among the highest in the world (OECD 2008). The second is that the 

Finnish enlargement of the higher education sector has had a strong emphasis on 

increasing the availability of engineering education. During this period (1950s – 1970s), 

three new universities offering engineering education were established in different 

regions of Finland. The share of engineering in higher education has traditionally been 

quite high in Finland. In 1950, engineering students accounted for about 15% of all new 

university students. While this share decreased from 1950 until 1965 to 9%, there was 

renewed focus with the establishment of the universities and the share increased back up 

to 15% by 1981. By way of contrast, in the U.S., the proportion of graduate students 

studying engineering has been around 5% between 1975 and 2005 (NSF 2006, Table 1). 

Among OECD countries, Finland stands out as the one with the highest emphasis on 

engineering: 27% of the Finnish working age population with tertiary education has a 

degree in engineering whereas the OECD average is 15% (OECD 2008). Given that 

engineering is the form of higher education that is most directly targeted towards 

industrial R&D, one could view the Finnish education policy as an experiment whose 

individual level treatment effect we seek to identify and from which other countries may 

learn. 
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To demonstrate these facts further, we show in Figure 2 the number of USPTO 

patents, and the annual intake of engineering students at Finnish universities. The catch 

of the figure is that the two highly correlated graphs (correlation coefficient 0.98) are 

from different periods: The patent series is from 1981-2007, the intake of engineering 

students from 1951-1977. While the (choice of) timing of the time-series is obviously 

open to criticism,7 it demonstrates that at the aggregate level, there is some reason to 

think that there could be a relationship between a policy that was implemented from the 

1950s to the 1970s and outcomes measured in the 1990s. 

Figure 2 here 

 By way of preview of our results, our Wald estimates that utilize the (different 

changes over time in the) regional variation in the distance to the nearest technical 

university show a positive treatment effect. In the IV-estimations, the first stage results 

show that the distance to the nearest university offering engineering is a good predictor 

for getting such degree. The estimated effect of a university engineering degree on the 

individuals’ propensity to patent is positive and significant, with a coefficient of 0.15 (0.3 

for the patent count). This is about 2.5 times as large as the OLS estimate. We thus find a 

strong negative selection bias in the OLS estimations. The potentially counterintuitive 

direction of the bias suggests that lowering the barriers (in particular reducing distance-

related costs) to university education may be an effective policy tool in attracting to 

formal (tertiary, engineering) education inventive individuals who would otherwise have 

chosen something else.8 We find some evidence that the estimated treatment effect is the 

                                                 
7 The qualitative message of the figure is robust to different timing choices. Naturally, the figure implies 
nothing about causality.  
8 That is, we identify the (weighted) local average treatment effect on the “compliers”, i.e,, those 
individuals that were prompted to enter university engineering education by a shift in the instrument we 
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average treatment effect on the treated instead of a local average treatment effect. Our 

back-of-the-envelope counterfactual calculation, where we look at what would have 

happened if the new engineering universities had not been established, shows that the 

number of USPTO patents assigned to Finnish inventors would have declined by some 

20%. 

We proceed as follows. In Section 2 we describe the data. In Section 3, we present 

the empirical framework and discuss the identification strategy. In Section 4 we present 

the results, in Section 5 the counterfactual analysis, and in Section 6 the conclusions. 

2 Data and descriptive analysis 

2.1 Data 

Our data comes from several sources. Information on inventors and USPTO patents 

comes from the NBER patents and citations data file described in Hall, Jaffe Trajtenberg 

(2002). This data is matched to the Finnish Linked Employer-Employee data of Statistics 

Finland (FLEED). The FLEED is a register-based dataset that contains detailed 

information on the population of Finnish working-age individuals and on their 

employers.9 Third, we use the Finnish 1970 census to add information on the parents of 

the individuals in our sample. Finally, we match the patent data to data on the universities 

and student intake in engineering in the years 1950-1981, obtained from the Finnish 

Educational Establishment Statistics, and obtain a matrix of inter-municipality driving 

distances from the Finnish Road Administration. 

 Briefly, the process of matching the inventors from the patent records to FLEED 

                                                                                                                                                 
use. See e.g. ch. 25 in Cameron and Trivedi (2005) or section 6.3.2 in Imbens and Wooldridge (2008). 
9 The FLEED is described in Korkeamäki and Kyyrä (2000). 
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was as follows.10 To identify the individuals, the information contained in the patent 

records (name of individual, address (at least the municipality) at which the individual 

resided at the time) was used to search the Finnish Population Information System for the 

identification codes of individuals that matched these data. In case there was more than 

one match, we picked the individual whose employer’s name in the FLEED matched the 

patent assignee in the USPTO data (at the time of application). If this process failed to 

identify a single individual, we excluded such individuals from our data. Out of the 8065 

inventor-patent records we were able to match 5905, consisting of 3253 individuals. 

 The Finnish Educational Establishment Statistics are available for each year from 

1945 onwards. They contain information on all the higher education establishments, 

including the type of the establishment and fields of education, size (by number of 

students), and geographical coordinates. We concentrate on engineering education at 

universities, because the inventors in our data are predominantly, if unsurprisingly, 

engineers with a university degree.11 For each individual, we measure the distance from 

each engineering establishment (in the year of the individual’s 18th birthday, to represent 

the relevant year of making the schooling choice) to the individual’s birth place.12 The 

distances we use are road driving distances from the Finnish Road Administration. We 

also measure the student intake in each of the establishments relative to the size of the 

potential applicant cohort as an alternative measure. 

                                                 
10 The matching process is described in more detail in Toivanen and Väänänen (2010). 
11 In Finland, a university level engineering degree is a (5-year)  master’s degree. Engineering colleges 
offer(ed) a 4-year degree that is equivalent to a bachelor’s degree. There is also a large fraction of college 
engineers in the data, thus we use both definitions in our analysis. 
12 Municipality of residence at the time of the schooling choice would be preferred, but is unavailable. 
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2.2 The sample 

 
To construct the sample, we take a cross-section of individuals in the year 1988, who 

were born between 1932 and 1963. These individuals made their schooling choices in the 

years 1950-1981, under the assumption that they did so when they are eighteen years old. 

In addition to all the individuals identified as inventors in the time period 1988-1996 

(2328 inventors), our data includes a random sample of working-aged individuals (non-

inventors) from the FLEED. The FLEED data contains the full Finnish working-age 

population. We take a 5% random sample from the 1988 cross-section for our analysis, 

after which we keep the observations for individuals born between 1932 and 1963. Our 

sampling weights are the inverse of the sampling probability (1/0.05), i.e., a weight of 20 

for each of the control observations. Thus the sampling procedure we use is "choice-

based" sampling, with separate random samples for observations with Y=0 and Y>0. 

2.3 Descriptive statistics 

Table 1 shows the means, measured in 1988, for the key variables for inventors, i.e., for 

those individuals who were inventors in a patent applied in any of the years 1988-1996, 

as well as for a random sample of the Finnish working-age population. The table shows 

that there are several characteristics according to which the inventors are different from 

the rest of the working-age population. They are more likely to be male (only 7% are 

female); they are highly educated, i.e., much more likely to have completed their high-

school matriculation and have a university education (a bachelor, master or a doctorate 

degree); and they are more likely to have their education in the fields of natural sciences 

and engineering. Finally, we note that they are particularly likely to be university 

educated engineers (33% of inventors compared to 3% of the random sample). 
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Table 1 here 

In Figure 3 we present histograms of the number of patents per inventor over the 

period of 1988-1996. The great majority of the inventors (60%) have just one patent over 

the whole time period, while about 20% have two patents and very few have more than 5 

patents.  

Figure 3 here 

Next, we explore the association between different types of education and patent 

output, and run an OLS regression with 46 dummies for the level-field combinations of 

education. We use weights in the regression to adjust for the sampling procedure. As 

control variables, we include in our estimating equation indicator variables for gender, 

nationality (Finnish, foreign), language (Finnish, Swedish, other) and birth-year. While 

most coefficients are small in absolute size, we find significant and large differences 

between different fields and levels of education. Table 2 shows the coefficients of the 

education dummies from the OLS regression. We see that engineering education has a 

positive significant coefficient at all levels of education but the lowest, with the 

magnitude increasing with the level of education.13 At the master’s and the doctorate 

level, the coefficients for the natural sciences are large and significant. At the doctorate 

level, also the coefficient of the health and welfare-field is large and significant. 

Table 2 here 

                                                 

13 Here it is interesting to note that according to the NSF (2009, chapter 3), in the U.S. 53% of those 
individuals that 1) hold a S&E degree and 2) who report R&D as a major work activity have bachelor's 
degrees as their highest degree. Only 12% have doctorates. 
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2.4 Data on engineering education 

In this section we present the data we use to generate our instrumental variable. Figure 4 

shows a graph of the number of new engineering students in each of the Finnish 

universities that offered engineering education during the period 1945-1981. In 1945, 

there were two universities offering engineering education, both in Southern Finland: the 

largest one in Helsinki (TKK) on the south coast,14 and a small Swedish-speaking one in 

Turku (Åbo Akademi) in the south-west corner of the country. Together they had a total 

of just over 400 new students starting that year. In 1959, the University of Oulu (over 

600km from Helsinki) in Northern Finland began to offer engineering education, 

followed by Tampere in Southern Finland (176km from Helsinki) in 1965 and 

Lappeenranta in Eastern Finland (221km from Helsinki) in 1969.15 From the year 1960, 

there has been rapid growth in the total number of new engineering students at 

universities, tripling from 600 to 1800 in less than 20 years. While the Helsinki 

University of Technology has doubled its student intake in engineering in the period 

1945-1981, the universities in the other regions have also grown to significant size. 

Figures 4 and 5 here 

In Figure 5, we show the Finnish map, with the locations of the technical universities 

and their distance to Helsinki highlighted. The figure demonstrates how the establishment 

                                                 
14 TKK itself moved from Helsinki to the neighboring Espoo starting in the late 1950s. The move was 
completed in 1966. The capital region of Finland consists of several independent cities and municipalities, 
the two largest of which are Helsinki and Espoo. This move obviously has only a very minor impact on the 
distance to the nearest technical university. 
15 Other universities, not offering an engineering education, were also established in cities shown on the 
map in Figure 5. Jyväskylä’s teacher college obtained the right to grant doctorate degrees in 1944, and 
established the Faculty of Philosophy in 1958. The planned University of Eastern Finland was initially split 
into three, one of which is the technical university in Lappeenranta: University of Joensuu was established 
in 1970, University of Kuopio in 1972. These two merged in 2010. University of Vaasa on the west coast 
was established in 1968, and started to offer also an engineering education in 1988 (i.e., too late to affect 
the educational choices of the individuals in our sample). Finally, University of Lapland was established in 
Rovaniemi in 1979. 
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of the new universities considerably changed  - even allowing for the fact that the Finnish 

population is concentrated in the south and south-western parts of the country16 - the 

distance to the nearest technical university for a large majority of the Finnish population. 

The distance between the “old” technical universities in Helsinki and Turku is 165 

kilometres. The new technical universities in Tampere, Lappeenranta and Oulu are 

clearly inland, to the east, and to north of the old technical universities. Our instrument 

builds to a large extent on this geographic and over-time variation in where university 

level engineering education was available. 

3 The empirical framework 

We estimate the effect of engineering higher education on individuals’ inventiveness, as 

measured by their total patent output (USPTO patents by application date) over the time 

period of 1988-1996. We use a linear specification and estimate equations of the 

following form: 

(1) . 

iY  is our output measure (a 0/1 indicator for patents granted to individual i,, sum of 

patents granted to individual i, or citations received by the patents of individual i), iX  are 

control variables describing the individual (gender, cohort dummies, native tongue), 

iENG  is an indicator equal to one if the individual has obtained a university engineering 

degree (master or doctorate) by the year 1988.   is the key parameter of interest, 

measuring the (weighted) local average treatment effect (see Imbens and Wooldridge, 

                                                 
16 This concentration has increased over time. In 1960, the three southern/south-western regions (lääni) of 
Uusimaa, Turun ja Porin lääni and Hämeen lääni housed 47% of the population; in 1996, the figure was 
54%. 

  iii ENGXY
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2008, section 6.3.2) of engineering education on inventive output, and   is a vector of 

parameters on the control variables.  

The error term in equation (1) may be correlated with the schooling measure and 

patents due to, for example, omitted variables related to unobserved individual ability, as 

in estimating the returns to schooling. However, it is not clear ex ante what the direction 

of the omitted variable bias is, because the unobserved ability affecting the propensity to 

patent (individual’s inventiveness) is not necessarily positively correlated with the ability 

that is typically thought to increase individual’s net benefits from schooling. In other 

words, individuals with low (effort) costs of studying could on average be less good at 

creative thinking that leads to invention, leading to negative correlation and a downward 

bias in the OLS estimate.  

In addition, there may also be an issue of essential heterogeneity or selection on 

gains, which generates positive correlation between schooling and the error term. If 

engineering higher education increases the propensity to patent, but mainly for those 

individuals with innate inventive ability, then those individuals have a higher additional 

benefit of schooling in terms of their increased propensity to patent, and are thus more 

likely to choose such schooling.  

We apply instrumental variables for the individuals’ schooling choice and identify 

the (weighted) local average treatment effect (LATE) for those individuals who are 

affected by the instruments we use. We discuss our identification strategy and our 

instrumental variables in the next section.  

3.1 Identification 

 
We borrow the idea of using (time-varying) geographic variation from the literature that 
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utilizes educational reforms to estimate e.g. the returns to education (Card 2001, Meghir 

and Palme 2005). The quasi-experiment we use is the growth of the Finnish university 

level engineering education system that took place in the period 1950-1981. This 

variation allows us to adopt an instrumental variable approach. 

Individuals choose their education by evaluating the costs and benefits of the 

alternatives. We use instruments generated from exogenous factors that affect the 

individuals’ cost of choosing an engineering education. Using individuals’ birth year and 

place, we determine the distance to and availability of university engineering education. 

These measures correspond to institutional variations on the supply side of the education 

system, and are typical of the kind of instrumental variables used in the recent literature 

studying the effects of schooling choices on labor market outcomes (Card, 2001).17 We 

combine distance-based instruments (geographical variation) with cohort-based 

instruments (over time variation).  

 Our instrumental variable is based on distance, which exogenously generates 

variation in the individuals’ mobility costs. Individuals, depending on where they live, 

face different costs of travelling or moving to a town where engineering education is 

offered. Our identifying assumption is thus that the distance between the location of an 

individual and the nearest technical university affects the probability to obtain a 

(university level) engineering degree, but does not directly affect the propensity to patent 

(or the quality of the patents, measured by citations).  

This instrument mainly has geographical variation, but there is also some variation 

                                                 
17 Kelchtermans and Verboven (2009) and Frenette (2009) study choice of higher education institutions. 
The former utilize a funding reform in Belgium (Flanders) and the latter the establishment of new 
universities in Canada. Both studies find that distance plays an important role in the choice of what to study 
(and where). 
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over cohorts, as three new universities are founded at different times during the time 

period. When using a location-based instrument, it is important to control for other 

factors that are correlated with the location. For example, families living in or near 

university towns are different to those living in smaller towns and rural areas, and family 

background can influence both schooling and inventiveness. We control for the level and 

field of the father’s education at reasonably high level of disaggregation, measured in the 

year 1970, the first year for which such data is available.  

The treatment effect we identify is LATE for individuals affected by the instruments 

we use. As our instruments generate variation in the costs of choosing university 

engineering education, the individuals affected by the instrument are those who are at the 

margin of choosing university engineering education over some other schooling choice. It 

is important to note that it is unclear what the relevant counterfactual is, i.e., what the 

individuals would have chosen had they not chosen university engineering education. We 

can only make a guess that the relevant next best choice for this group is either a lower 

level engineering degree, or a university degree in some other field.  

The LATE we identify is a however a relevant variable from the policy point of 

view. Viewing our instruments as being generated by variation in government 

educational policy, we are identifying the effect of this policy, to the extent that the 

policy can be represented by the location of universities. 

4 Results 

We estimate the effect of university engineering education on individuals’ propensity to 

patent, measured by the sum of their USPTO patent output over the time period of 1988-

1996. We begin by presenting simple difference- and Wald -estimates of the 
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establishment of the three new universities in the provinces where they were established. 

We then move on to the regression analysis. 

4.1 Wald -Estimates 

Table 3 presents simple difference- and Wald -estimates of the establishment of the three 

new universities in the provinces where the universities were established. The benefit of 

the Wald estimates is that they utilize in a straight-forward manner the differential 

variation over time in the availability of university engineering education at different 

locations. For each province, we look at groups of 9 birth-cohorts before the 

establishment of the university and the 9 cohorts after. As a comparison, we always look 

at the Uusimaa province (where the nation’s largest technical university existed 

throughout the period) over the same time period.18 We report the fraction of the cohort 

(of 18-year olds) born in the province that are a) inventors (i.e., obtain a USPTO patent in 

1988-1996), b) engineers (higher level college or university engineering degree), before 

and after the establishment of the university. 

Table 3 here 

In Panel A, we look at the Pohjois-Pohjanmaa province (for the years before 

1950-1958; after 1960-1968), where a technical university was established in Oulu in 

1959. The fraction of engineers increases from 0.7% to 2.2%, while the fraction of 

inventors increases from 0.04% to 0.19%. During the same period, there is also rapid 

growth in the fraction of engineers in the Uusimaa cohorts (as Helsinki University of 

Technology also experienced an increase in student intake), from 3.4% to 5.7%, and the 

fraction of inventors goes up from 0.18% to 0.27%. The Wald estimate of 0.09 for 

                                                 
18 The Uusimaa estimate is thus not a Wald-estimate, as the instrument (i.e., distance to the nearest 
technical university) does not change. 
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Pohjois-Pohjanmaa indicates that about 1/10 engineers became an inventor. For Uusimaa, 

the estimate is only about half the size, around 0.04. Thus for Uusimaa, where the initial 

level of engineers is higher, further increases appears to produce less inventors on 

average. 

Looking at the Pirkanmaa province (Panel B) and the years 1956-1964 (before) 

and 1966-1974 (after the establishment of the technical university in Tampere), there is a 

relatively modest increase in the number of engineers (there was an established 

engineering college in Tampere already before the establishment of the university), but 

the increase in inventors is larger (in percentage terms). The resulting Wald estimate is 

0.10 (notably similar to the figure for Pohjois-Pohjanmaa). For the same period for 

cohorts born in Uusimaa, the fraction of engineers in fact decreased, as did the fraction of 

inventors. The estimate is very similar to the one in the earlier period (0.04). 

Finally, looking at Etelä-Karjala before and after the establishment of the 

technical university in Lappeenranta (Panel C), we get a Wald estimate of 0.08, and for 

the same period comparison the estimate for Uusimaa (where again both the fraction of 

engineers as well as the fraction of inventors decreased) is 0.02. 

Altogether these results suggest that the increase in the number of engineers born 

in the provinces where new technical universities were established, around the time of the 

establishment, is associated with larger increases in the number of inventors (born in 

these provinces) than the increase of inventors for cohorts born in Uusimaa where an 

established university already existed and the initial level was already high. 

4.2 Regression Analysis 

We run our estimations for three different (2nd stage) dependent variables, (patent count, 
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patent dummy, expected citations) and for three different measures of education 

(engineering education, technical university education, and university education). 

Furthermore, we run these specifications with two sets of control variables (with and 

without father’s education). 

4.2.1 OLS-estimations 

 
Table 4 presents the estimated coefficients from the OLS estimations for our key variable 

of interest (i.e. a dummy variable indicating the type of education). The first column 

shows the results from the estimations based on a larger sample without controlling for 

family background, and the second column from the estimations with father’s education 

included as a control (45 dummies for field-level combinations of education). This 

sample is smaller, as father’s education is not available for all the individuals. The 

smaller sample is also somewhat different with regard to the ages of the individuals, as 

for the older cohorts it is more likely that the father is no longer alive in 1970.  

Table 4 here 

The OLS regressions show, throughout the different specifications, that education, 

in particular university level engineering education, has a positive and significant 

association with patenting. For the patent count as our dependent variable (the upper 

panel in Table 4), the coefficients on university engineering education range from 0.110 

(with s.e. of 0.007) to 0.118 (with s.e. of 0.009). The coefficients for engineering 

education in general (including college-educated engineers) is only about half of this, and 

those for university education in general are even smaller. When using either a patent 

dummy (middle panel in Table 4) or citations as the dependent variable (the lower panel 

in Table 4) we obtain results that mirror the previous ones.  
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As discussed earlier, the endogeneity bias in the OLS estimates could be in either 

direction. This is what we investigate next using instrumental variables.  

4.2.2 IV-estimations 

 
In the instrumental variable regressions, the results of which are reported in Tables 5 and 

6, we use the distance to the nearest university offering an engineering degree as our 

instrumental variable affecting the choice of engineering education. For the effect of 

university education in general, the instrumental variable is the distance to the nearest 

university (including universities that do not offer engineering degrees). Table 5 presents 

the estimated coefficients (and associated t-statistics below) on the instrumental variable 

in explaining the individual’s education type (first stage). Table 6 presents the IV-

estimates of the coefficients on the education dummy from the regressions on patent 

output. Similarly to the previous table, the first column shows the results from the 

estimations based on the larger sample without controlling for family background, and 

the second column from the estimations with father’s education included as a further 

(vector of ) control variable(s). 

Table 5 here 

Looking at columns one and two in table 5, we see that the distance to the nearest 

technical university has a significant negative effect on choosing such schooling, as 

expected. The coefficients on the distance (in 100km) are -0.0026 (without father’s 

education) and -0.0016 (with father’s education) for university engineering education. 

Given the average probability of choosing such education (0.022), this translates into 

about a 10% increase in the probability as distance decreases by 100km. We also see that 

our instrument is quite strong in both specifications, although somewhat reduced by 
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controlling for father’s education (t-value of almost 10 in the regression without father’s 

education, and 2.6 in the regression with). Part of this reduction in the strength of the 

instrument is also due to the younger sample in the regression with father’s education; 

when we run the specification without controls for father’s education on this sample, the 

t-value of the instrument falls to 6.5.  

Table 6 presents the estimation results from the second stage of the IV-

estimations, i.e., the patenting equation. The estimated coefficients throughout the 

different specifications are 2-2.5 times the respective OLS estimates. This result could 

indicate a negative selection bias, meaning that those who have a high innate propensity 

for invention have a lower propensity to study at a technical university. This 

interpretation is, in a sense, in line with the instruments we use and the treatment effect 

we identify. Individuals who are induced to obtain a university-level engineering 

education as a result of the proximity of a university (our instrument) are individuals at 

the margin and thus not those who have the highest net benefits. The LATE we identify is 

for the part of the population that is affected by these distance-related mobility costs. 

From the specification in column two for the effect of university engineering education, 

the coefficient of 0.3 indicates that inducing individuals to choose this kind of education 

due to its proximity (affected by the establishment of the new universities) leads to 

increases in patent output; about 3 university engineers are needed to produce one extra 

patent.  

Table 6 here 

Comparing the results across dependent variables reveals that the pattern 

discovered in the OLS estimations is replicated here, with the patent indicator yielding 
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the smallest coefficients, and the citation count the largest. When one compares the 

results across specifications it is clear that the statistical significance of the estimated 

treatment effect tends to decline as we include the vector of father’s education dummies 

as control variables. Finally, when comparing the three endogenous dependent variables 

(= measures of education), it is worth pointing out that the relative sizes of the 

coefficients are well in line with what the OLS estimates already suggested, with 

university engineering yielding the largest treatment effect estimate, university education 

the second largest, and engineering education the smallest.  

An additional interesting finding concerns gender differences in inventive 

productivity. While the OLS estimates show a strong negative association between 

female gender and patent output, this effect disappears once the endogeneity of 

engineering education is taken into account. A large majority of the engineers are male. 

This suggests that the observed gender difference in patent productivity is simply due to 

the different type of education chosen by women and men. 

In addition to the results reported here, we attempted to use another instrument, 

based on the variation over cohorts in the intake of students to engineering universities. 

This instrument however turned out to be weak, possibly due to measurement error.19 The 

2nd stage results are uninformative due to the weakness of the instrument (the point 

estimates vary in sign, and are insignificant), and we do not report them here.   

                                                 
19 We generate this measure in two alternative ways: First, the cohort size is defined as all those for whom 
the university is the closest one (in the relevant age cohorts). Thus, for example for the years 1950-1958 
when there were two universities, this measure takes on two values in each year, one for those who are 
closest to Turku and one for those who are closest to Espoo. Second, the cohort is geographically defined 
by a province, and we restrict the analysis to only those provinces where a university exists at one point in 
time. Here, the variable takes on 4 values each year (one for each province included in the analysis). With 
this definition, the intake measure is equal to zero for the cohorts in provinces before the establishment of 
the universities. Both measures have measurement error which may affect our first stage results. 
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4.3 Tests for heterogeneous effects 

We test for heterogeneous treatment effects using a test suggested by Heckman, 

Schmierer and Urzua (2009). We first run a Probit regression to estimate the propensity 

score of having a university engineering degree. We use the same set of control variables 

as in our main specification (including father’s education). We then include a polynomial 

of this propensity score, together with interactions of it with some of the controls, and test 

for nonlinearity of these terms. The results for a variety of specifications of the 

polynomial, reported in Table 7, suggest that we cannot reject the Null hypothesis of a 

homogenous treatment effect.  

Table 7 here 

The implication of accepting the test results would be that the treatment effect we 

have estimated is the average treatment effect on the treated, not the (weighted) local 

average treatment effect. That would obviously alter, and make stronger, our policy 

conclusions. We return to this below in the counterfactual analysis. Our reading of the 

results is that we have some, but no overwhelming, evidence in favor of our estimate 

being an average treatment effect on the treated. 

4.4 Discussion 

Taken together, the preceding analysis suggests that by increasing the geographic 

availability of university engineering education, Finland enticed young people to enter 

into engineering education, ultimately making them more likely to patent. The negative 

selection bias that we report suggests that a feature of the policy was to entice “non-

standard” (more inventive) individuals to enter into engineering higher education. 
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Returning back to our Wald –estimates, the finding of higher Wald –estimates for 

the provinces were new universities were established is in line with the finding of a 

LATE that exceeds the OLS coefficient. The LATE based on the distance to the nearest 

technical university derives its variation from the over-time and across region variation 

due to the establishment of the new universities (i.e. the variation used to calculate the 

simple Wald-estimates). In fact, the magnitudes of the Wald estimates are also similar to 

the IV-estimates (from the specifications with the patent dummy as the dependent 

variable). Also the relative magnitudes are similar: The Wald-estimates in each of the 

provinces is about twice as large as that for Uusimaa in the same time period (which is 

roughly by how much the IV-estimate exceeds the OLS). Note that the Uusimaa 

(Helsinki University of Technology) estimates are OLS estimates as (in contrast to the 

other provinces) there is no change in the distance to nearest technical university. 

Finally, it should be noted that the results need be treated with some caution, as it 

is also possible that our IV-estimates are biased upward due to instrument invalidity 

(possible correlation with the error term in the main equation). Invalidity of the 

instrument could be due to, for example, unobserved characteristics of the location which 

may affect the propensity to invent. In particular, if areas close to an engineering 

university are areas with an industrial structure that is conducive to invention, as is very 

likely, this may confound the results of the study. However, this problem of cross-

sectional correlation is somewhat alleviated by the over-time variation due to the 

establishment of the three universities.  

5 Counterfactual analysis 

Finally, we perform a counterfactual calculation (in the spirit of Ichimura and Taber 
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2000, 2004) of total patent output in 1988-1996 had the three new technical universities 

not been established. We do this by estimating the main equation (patent count as the 

outcome), now including the distance to the nearest technical university as an explanatory 

variable directly. We calculate the predictions in the actual scenario (and sum them over 

all the individuals) and compare them to the scenario where everyone’s distance is 

replaced by the distance to the technical university in Helsinki (Espoo, TKK). A 

comparison of the two scenarios shows a predicted decrease in patent output of about 

20% without the establishment of the three new technical universities. Specifications with 

different polynomials of the instrument show counterfactual reductions in patent output 

ranging from 13% to 20%.  

A key question is of course what lesson our results, taken at face value, offer to 

policy makers. A central message arises, which suggests that reducing the hurdles to 

university-level engineering education may indeed lead to an increase in inventive output. 

How then to achieve a lowering of the costs of an engineering education? It is not clear at 

all from our results that reducing the distance is the right policy tool everywhere, even 

though it seems to have worked in the post-war Finnish environment. Here, the different 

interpretations of the estimated treatment effect lead to different implications. If the 

estimate indeed is an average treatment effect on the treated, the choice of the policy 

instrument is of much less significance. Any policy that leads to an increase in engineers 

will lead to 0.2-0.3 patents more per every new engineer. If, on the other hand, the 

estimate is a local average treatment effect, then this increase in patenting will only be 

obtained if the implemented policy changes the behavior of the same part of the cohort 

choosing what to study, as the Finnish policy affected in the post-war period. Whether 
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this will be the case or not is obviously much harder to assess.  

Finally, notice that our counterfactual analysis is back-of-the-envelope because we 

have not estimated a structural model. We thus do not know what the (general 

equilibrium) effects of the adopted policy were, nor what would have happened if it had 

not been implemented. For example, our analysis does not shed light on what those 

individuals would have done who, because of the implemented policy, chose engineering 

education. It is possible that they could have contributed more to GDP growth in the 

alternative scenario even if they would have contributed less to Finnish patenting at the 

USPTO. 

 

6 Conclusions 

Paraphrasing Jones (2005, pp. 1107), the question we address is: Can we, through 

educational investments, increase the number of inventors, and thereby make us all 

richer? Existing evidence based on macro level studies provides at best weak evidence of 

a causal effect of education on growth (e.g. Krueger and Lindahl 2001), although Aghion, 

Boustan, Hoxby and Vandenbussche (2009), using U.S. state level data, find evidence of 

a positive effect of education on growth. To address the question directly at the micro-

level, we study the link between education and invention, using a matched dataset on 

Finnish inventors of U.S. patents in 1988-1996.  

 We find a strong positive (causal) effect of engineering education on the 

propensity to patent. We use a supply-side instrument - distance to the nearest 

engineering university as our instrument - generated from the Finnish educational 

policies of the period 1950-1981, i.e., the years in which the individuals in our sample 
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chose their education. The first stage result, that distance negatively affects individuals’ 

choice, indicates that the educational policy of increasing the geographic availability of 

engineering education worked, in the sense that it increased the probability that 

individuals from the nearby regions would enter university engineering education. The 

interesting result is not only that the instrumental variable estimate is positive and 

significant, but also that the OLS bias is negative, indicating that inventive individuals 

are not the typical people who would obtain a university (engineering) education. Our 

answer to the policy question is thus affirmative: Yes, the number of inventors can be 

increased through educational policy. Our counterfactual exercise suggests that if Finland 

had not established the new engineering universities in the post-war era, the number of 

USPTO patents obtained by Finnish inventors would have been 20% lower.  

Our results provide a potential explanation for the transformation of the Finnish 

economy, noted e.g. by Trajtenberg (2001) and analyzed by Honkapohja, Koskela and 

Uusitalo (2009), from a resource based to an innovation based economy. They also 

provide a potential basis for the widely adopted educational policies in countries like e.g. 

China and India that have invested heavily in increasing (science and) engineering 

education, and to the recent U.S. worries about losing its comparative advantage in this 

regard. Nevertheless, we stress that the result (of us having identified an average 

treatment effect) leading to the policy conclusion that any policy that increases the 

number of engineering students also increases innovation, rests on relatively thin 

evidence. The effect of engineering education on innovation may well be context- and 

policy-specific and thus not possible to generalize beyond the case examined here.  
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Table 1. Descriptive Statistics for the Inventors and for a Random Sample of the Population 

 

Notes: The numbers are percentages, except for age which is in years. 

Inventors Others

No. of observations 2,328 66,530

Level of education
upper secondary 14.4 37.8
lowest tertiary 11.0 13.0
lower-degree (bachelor) 18.0 5.4
higher-degree (master) 35.4 5.2
doctorate 13.6 0.4
unknown 7.6 38.3

Field of education
general 5.5 4.4
teacher education 0.3 1.9
humanities & arts 0.6 2.0
social science & business 2.7 11.9
natural sciences 11.2 1.2
engineering 65.9 22.2
agriculture and forestry 1.6 3.4
health and welfare 4.0 6.6
services 0.8 8.2
unknown 7.6 38.3

University engineering (master/doctor) 33.1 2.21

Age (years) 37 39
Female 7.9 49.3
Finnish-speaking 92.6 94.1
Swedish-speaking 6.5 5.4

Birth cohort
1931<born<1950 43.5 51.2
1949<born<1960 41.3 35.3
1959<born<1964 15.2 13.5

Labor market status
employed 95.7 83.6
unemployed 0.6 4.1
student 1.8 1.8
retired 0.5 5.4
other 1.5 5.1

Entrepreneur 6.4 11.9
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Table 2. OLS coefficients of fields of education 

  

Upper 

Secondary Lowest Tertiary Bachelor Master's Doctorate 

Teacher education -0.003*** -0.001** -0.002*** -0.003*** -0.003*** 

  0.000 0.001 0.000 0.000 0.001 

Humanities & arts -0.002*** -0.003*** -0.003*** -0.002*** -0.003*** 

  0.001 0.000 0.000 0.001 0.001 

Social science & 

business -0.002*** -0.002*** -0.002*** -0.003*** -0.004*** 

  0.000 0.000 0.001 0.000 0.000 

Natural sciences 0.000 -0.004*** -0.001 0.043*** 0.145*** 

  0.003 0.000 0.001 0.006 0.026 

Engineering -0.003*** 0.006*** 0.026*** 0.093*** 0.291*** 

  0.000 0.001 0.003 0.007 0.050 

Agriculture and 

forestry -0.004*** -0.004*** -0.004*** 0.004* 0.040* 

  0.000 0.000 0.000 0.002 0.024 

Health and welfare -0.002*** -0.002*** -0.001 0.003* 0.105*** 

  0.000 0.000 0.001 0.001 0.025 

Services -0.003** -0.003*** -0.003*** -0.004*** 0.044 

  0.000 0.001 0.001 0.001 0.064 
Notes: The dependent variable is the sum of patents of individual i in the period 1988-1996 (Patent Count) obtained by 

individual l i. The Table shows the estimated coefficient and standard error. *** indicate significance at 1%,** at  5% and * at 

10% level.  In all specifications, the control variables include gender, nationality, native tongue, and cohort dummies. The base 

category is “general” education (30). 
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 Table 3. Wald -Estimates 

 
Notes: The Table shows the fraction of the cohort that are inventors and engineers, both before and 

after the “treatment” of the establishment of a technical university in the province. In column 3 it 
presents the change in these, and in column 4 the Wald-estimate. The Uusimaa –province, where a 

technical university existed throughout the period, serves as the comparison group in each case. 

PANEL A 1950-1958 1960-1968 Diff Wald

Pohjois-Pohjanmaa

Cohort size No. 22367 31660

Inventors No. 10 59

% 0.0004 0.0019 0.0014

Engineers No. 163 706

% 0.0073 0.0223 0.0150 0.0944

Uusimaa

Cohort size No. 23107 50135

Inventors No. 42 139

% 0.0018 0.0028 0.0010

Engineers No. 794 2866

% 0.0344 0.0572 0.0228 0.0419

PANEL B 1956-1964 1966-1974 Diff Wald

Pirkanmaa

Cohort size No. 29088 34142

Inventors No. 53 96

% 0.0018 0.0028 0.0010

Engineers No. 890 1365

% 0.0306 0.0400 0.0094 0.1055

Uusimaa

Cohort size No. 39089 55728

Inventors No. 107 138

% 0.0027 0.0025 -0.0003

Engineers No. 2127 2692

% 0.0544 0.0483 -0.0061 0.0427

PANEL C 1960-1968 1970-1978 Diff Wald

Etelä-Karjala

Cohort size No. 13769 13857

Inventors No. 14 22

% 0.0010 0.0016 0.0006

Engineers No. 466 571

% 0.0338 0.0412 0.0074 0.0775

Uusimaa

Cohort size No. 50135 58019

Inventors No. 139 155

% 0.0028 0.0027 -0.0001

Engineers No. 2866 3025

% 0.0572 0.0521 -0.0050 0.0201
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Table 4. OLS Results 

Patent Count 

No Family 

Background 

+Father's 

Education 

University eng. 0.110*** 0.118*** 

  

0.007 0.009 

Engineering 0.0591*** 0.0628*** 

  

0.003 0.004 

University 0.0316*** 0.0348*** 

    0.002 0.002 

Patent Indicator     

University eng. 0.0493*** 0.0517*** 

  

0.003 0.003 

Engineering 0.0282*** 0.0296*** 

  

0.001 0.001 

University 0.0144*** 0.0156*** 

    0.001 0.001 

Citations       

University eng. 1.179*** 1.350*** 

  

0.101 0.132 

Engineering 0.618*** 0.357*** 

  

0.045 0.029 

University 0.313*** 0.707*** 

    0.021 0.059 

Nobs 

 

60234 33645 

 
Notes: The dependent variable is the sum of patents of individual i in the period 1988-1996 (Patent Count), an indicator 

for individual i obtaining at least one patent during 1988-1996 (Patent Indicator), or the citations to the patents 

obtained by individual i. The Table shows the estimated coefficient and the standard error below. *** indicate 

significance at 1% level. In all specifications, the control variables include gender, nationality, native tongue, and cohort 

dummies. Father’s education is included as 45 dummies representing educational field-level combinations. 
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Table 5. First Stage Estimates 

    

No Family 

Background 

+Father's 

Education 

University eng. -0.262*** -0.161*** 

  

0.029 0.061 

Engineering -0.452*** -0.461*** 

  

0.047 0.096 

University -1.08*** -0.378** 

    0.08 0.169 

nobs 

 

60234 33645 

 
Notes:  The Table shows the estimated coefficient and the associated standard errors below. *** indicate significance at 

1% level,** at  5% level. Coefficients and standard errors have been multiplied by a factor of 100. The instrument is 

distance to nearest technical university when the dependent variable is either the indicator for a university engineering 

degree or an engineering degree, and distance to nearest university when the dependent variable is a university degree.  

In all specifications, the control variables include gender, nationality, native tongue, and cohort dummies. Father’s 
education is included as 45 dummies representing educational field-level combinations. 
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Table 6. IV – Estimates 

Patent Count     

    No Family Background +Father's Education 

University eng. 0.234*** 0.302** 

  

0.038 0.15 

Engineering 0.136*** 0.106*** 

  

0.021 0.041 

University 0.067*** 0.202** 

    0.009 0.104 

Patent Indicator     

University eng. 0.108*** 0.155** 

  

0.015 0.068 

Engineering 0.063*** 0.054*** 

  

0.009 0.017 

University 0.030*** 0.093** 

    0.004 0.045 

Citations       

University eng. 2.322*** 2.592 

  

0.438 1.787 

Engineering 1.347*** 0.907* 

  

0.249 0.558 

University 0.736*** 2.137* 

    0.117 1.213 

Nobs   60234 33645 

Control Variables     

Fathers education no yes 

Regional dummies no no 
 Notes: The Table shows the estimated coefficient and the associated standard errors below. *** indicate significance at 

1% level,** at  5% level, * at 10% level. In all specifications, the control variables include gender, nationality, native 

tongue, and cohort dummies. Father’s education is included as 45 dummies representing educational field-level 

combinations. 
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Table 7. Tests of Heterogenous Treatment Effects 

  

No interactions With interactions 

    P-value P-value 

2nd order 0.805 0.926 

+3rd order 0.725 0.32 
Notes: The Table shows the P-values of the joint  significance (F-) tests. In all specifications, the control variables include 

gender, nationality, native tongue, and cohort dummies. Father’s education is included as 45 dummies representing 
educational field-level combinations. In column 2, we interact the instrument and its powers with nationality and native 

tongue – dummies. 
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Figure 1. Science and Engineering Graduates in Selected Countries 

 
Notes: Source for all other countries but India NSF Science and Engineering Indicators 2010, Figure O-8. 
See http://www.nsf.gov/statistics/seind10/figures.htm. For India, the source is Banerjee and Muley (2008). 

 

 

Figure 2. USPTO Patents and Engineering Student Intake at Universities 

 
Note: The USPTO patent series is 1981-2007, the engineering student intake series 1951-1977. 
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Figure 3. Histogram of the Patent Count for the Sample of Inventors 

 
 
Figure 4. Number of New Engineering Students at Each of the Universities
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Figure 5. Map of Finland, with Locations of Engineering Universities and Distances to 
Helsinki 

 
Note: Universities that did not offer engineering education (before 1988) were 
established in Jyväskylä (1944), Vaasa (1968), Kuopio (1972), Joensuu (1970) and 
Rovaniemi (1979). 

 




