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ABSTRACT 

Objective: Cognitively engaging lifestyles have been associated with reduced risk of conversion to 

dementia. Multiple mechanisms have been advocated, including increased brain volumes (i.e., 

brain reserve) and reduced disease progression (i.e., brain maintenance). In cross-sectional studies 

of presymptomatic frontotemporal dementia (FTD), higher education has been related to 

increased grey matter volume. Here, we examine the effect of education on grey matter loss over 

time. 

Methods: Two-hundred twenty-nine subjects at-risk of carrying a pathogenic mutation leading to 

FTD underwent longitudinal cognitive assessment and T1-weighted magnetic resonance imaging at 

baseline and at 1-year follow-up. The first principal component score (PC1) of the Graph-Laplacian 

Principal Component Analysis (gLPCA) on 112 grey matter region-of-interest volumes was used to 

summarize the grey matter volume (GMV). The effects of education on cognitive performances 

and GMV at baseline and on the change between 1-year follow-up and baseline (slope) were 

tested by Structural Equation Modeling (SEM). 

Results: Highly educated at-risk subjects had better cognition and higher grey matter volume at 

baseline; moreover, higher educational attainment was associated with slower loss of grey matter 

over time in mutation carriers. 

Conclusions: This longitudinal study demonstrates that even in presence of ongoing pathological 

processes, education may facilitate both brain reserve and brain maintenance in the 

presymptomatic phase of genetic FTD. 

 

Key words: frontotemporal dementia (FTD), brain reserve, brain maintenance, graph theory, 

magnetic resonance imaging (MRI)  



1. INTRODUCTION 

Frontotemporal Dementia (FTD) is a neurodegenerative disorder characterized by executive 

dysfunction, personality changes and language impairment, along with atrophy of frontal and 

temporal lobes.[1, 2] FTD has a strong genetic background with autosomal dominant inheritance 

in around a third of patients. Mutations in Microtubule-Associated Protein Tau (MAPT), Granulin 

(GRN) and chromosome 9 open reading frame 72 (C9orf72) genes are proven major causes of 

genetic FTD, accounting for 10-20% of all FTD cases.[3] 

There is wide variation in the age at onset within genes and within families with the same 

mutation, and possible disease modifiers have been recently reported. Identification of disease 

modifiers is key to correctly select subjects, reduce heterogeneity and increase statistical power of 

analysis of clinical trials, to stage presymptomatic disease and to enable long-term care planning in 

at-risk subjects. 

Genetic variations within Transmembrane Protein 106B (TMEM106B) have been suggested to 

modulate disease onset in Frontotemporal Lobar Degeneration due to TAR DNA binding protein 43 

proteinopathy (FTLD-TDP),[4, 5] and more recently, GDNF Family Receptor Alpha 2 (GFRA2) 

polymorphism and C6orf10/LOC101929163 locus have been further implied in affecting the onset 

in GRN and C9orf72 mutation carriers, respectively.[6, 7] 

Along with non-modifiable genetic determinants, modifiable factors that modulate brain structure 

and function have been identified. For example, educational attainment contributes to resilience 

against brain damage in neurodegenerative disorders including Alzheimer’s disease and FTD,[8, 9] 

in symptomatic and presymptomatic disease stages. In particular, it has been shown that higher 

educational achievements are associated with greater grey matter volumes in presymptomatic 

subjects carrying pathogenic FTD mutations.[10] These findings corroborated previous studies in 

healthy individuals, in which life exposures, such as educational and occupational attainments and 



engagement in leisure and social activities, have been associated with decreased risk of 

developing dementia[11, 12] and with greater brain volumes.[13, 14] 

These results argue that education, a proxy measure of brain reserve, may postpone FTD symptom 

onset; however, these findings cannot give any information on the role of educational attainment 

in counteracting the effect of the pathogenic mutation on brain changes over time, i.e. actively 

coping with pathology progression.[15] This concept, called brain maintenance, cannot be 

measured through cross-sectional data, but requires longitudinal studies.[16] Indeed, if lifetime 

exposures, such as education, influence brain maintenance in at-risk subjects, this would have to 

be carefully evaluated in defining clinical trials’ designs and outcomes and it might itself be 

considered an interventional approach. 

In the present study, we aimed at evaluating the effect of educational attainment on longitudinal 

grey matter changes and cognitive performances in a large cohort of at-risk subjects from the 

Genetic FTD Initiative (GENFI) study.  



2. METHODS 

2.1. Participants 

Data for this study were drawn from the GENFI multicentre cohort study, which consists of 27 

research centres across Europe and Canada (www.genfi.org.uk). For the purpose of the present 

study, we included subjects at-risk of carrying mutations in C9orf72, MAPT and GRN, as having the 

proband with monogenic FTD[17] and for whom both baseline and 1-year follow-up magnetic 

resonance imaging (MRI) was available. Conversion to symptomatic stage at follow-up visit or the 

presence of psychiatric disease or central nervous system pathology, including expansive or 

vascular lesions, were considered exclusion criteria.  

Between January 2012 and December 2017, 229 at-risk subjects fulfilled inclusion/exclusion 

criteria, namely 116 mutation carriers (C9orf72 n=31; GRN n=65; MAPT n=20) and 113 mutation 

non-carriers. 

Local ethics committees approved the study at each site and all participants provided written 

informed consent; the study was conducted according to the Declaration of Helsinki. 

For each subject we recorded demographic data, including years of formal schooling (education), 

past medical history, and a standardized clinical and neuropsychological assessment, as previously 

published.[17] We considered education as reserve proxy and Mini-Mental examination (MMSE) 

raw scores as measure of cognitive status. 

Furthermore, we considered age, sex and TMEM106B genotype (see[10] for details), as variables 

of interest in the statistical model. 

 

MRI processing 

Participants were scanned at their local site on scanners from three different manufacturers 

(Philips Healthcare, GE Healthcare Life Sciences, Siemens Healthcare Diagnostics). Magnetic field 



strength was 3T for 221 scans (96.5%) and 1.5T for 8 scans (3.5%). The protocol, designed to 

match across scanners as much as possible, included a volumetric T1-weighted MRI scan, as 

previously published.[17] 

Baseline and follow-up scans were processed using the standardized longitudinal voxel-based 

morphometry pipeline of the Computational Anatomy Toolbox (CAT v.12.1, extension to SPM12 

v.7219 running on MATLAB R2015a) (http://www.neuro.uni-jena.de/cat/). 

Baseline and follow-up grey matter volume (GMV) maps were parcelled into 112 cortical and 

subcortical regions (excluding the cerebellum because of some subjects with incomplete coverage 

of the inferior cerebellar hemispheres[18]) according to the maximum probability tissue labels 

derived from the “MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling” 

(https://my.vanderbilt.edu/masi/workshops/). This atlas was created from MRI scans belonging to 

the OASIS project (www.oasis-brains.org/) and labels were provided by Neuromorphometrics, Inc. 

(www.neuromorphometrics.com/). 

Tissue volumes were estimated in the native space, before any spatial normalization. Thus, region 

of interests (ROIs) values, representing the GMV contained in each ROI (expressed in milliliters, 

mL), were further corrected for the total intracranial volume (TIV). Estimates of TIV, total GMV, 

total white matter volume (WMV) and total cerebrospinal fluid volume (CSFV) were also 

computed to assess macroscopic differences. Total GMV, total WMV and total CSFV were 

expressed as percentage of TIV. 

 

2.2. Statistical analysis 

To overcome the complexity of MRI data, graph-Laplacian Principal Component Analysis (gLPCA) 

was applied to obtain a low dimensional representation of grey matter parcellation at baseline 

and at follow-up,[10] which incorporated graph structure. gLPCA has several advantages 



compared to Principal Component Analysis (PCA): (i) it is modelled on the representation of the 

data; (ii) it can be easily calculated, presenting a compact closed-form solution; and (iii) it allows 

noise removal. The first principal component score (PC1) was used to summarise GMV at each 

time point. A correlation threshold higher than 0.6 was used to define PC1, which was constituted 

by 100 ROIs belonging to frontal, cingulate, temporal and parietal regions. 

Successively, a two-group Structural Equation Model (SEM) was fitted on longitudinal data.  

SEM is a multivariate regression technique that models the covariance structure of a set of 

observed and latent (random effects) variables, and is based on a subset of possible paths 

connecting those variables, incorporating directional information (regression coefficients) and bi-

directional information (covariance). 

The study design was reported in Figure 1. We considered mutation carriers and mutation non-

carriers separately. In the two groups, the effect of education was evaluated on a) cognitive 

performances (as measured by MMSE) at baseline; b) GMV (as measured by PC1) at baseline; c) 

the slope of cognitive performances between 1-year follow-up and baseline; d) the slope of GMV 

between 1-year follow-up and baseline. Moreover, we evaluated the effect of e) GMV at baseline 

on the cognitive performances at baseline, f) GMV at baseline on the slope of cognitive 

performances; g) the slope of GMV on the slope of cognitive performances; h) the cognitive 

performances at baseline on the slope of GMV. Finally, we evaluated the covariance between i) 

the baseline and the slope of cognitive performances, and j) the baseline and the slope of GMV. 

Regression effects were adjusted by observed covariates, namely age and sex; in view of previous 

evidence for TMEM106B polymorphism effect on GMV in presymptomatic mutation carriers,[10] 

we also considered TMEM106B genotype (rs1990622 T/T, T/C, C/C, recorded using addictive 

coding 0,1,2), as covariate. 



We did not include random effects (latent covariates), such as family’s pedigree and Country, on 

the basis of an initial exploratory analysis that indicated no significant effects of these variables. 

 

Figure 1 about here. 

 

Baseline and follow-up demographic, cognitive and volumetric variables were compared across 

groups using independent t-test or paired sample t-test for continuous variables and Fisher’s exact 

tests for dichotomous variables. Exploratory Random Effect Models was performed by “lme4” R 

package. SEM analysis was performed via “lavaan” R package, using Full Information Maximum 

Likelihood Method (FIML) for simultaneously estimating SEM parameters and imputing MMSE 

score and TMEM106B genotype random missing values. In addition, for quality control, MMSE 

score and TMEM106B genotype missing values were imputed with Nonparametric Random Forest 

Imputation procedure of the “missForest” R package, and imputed data matrix was successively 

used for SEM analysis. Two-group SEM analysis was performed by an overall Likelihood Ratio Test 

(LRT) of two SEM models: model (1) with unequal regression coefficients, and residual 

(co)variances in the two groups vs. model (0) with equal regression coefficients, and residual 

(co)variances.  Finally, a model (2) was fitted considering the group as covariate and adding the 

interaction terms education*group and TMEM*group, for evaluating the statistical significance of 

the regression coefficient differences between the two-groups.  P-values less than 0.05 were 

considered significant.  



3. RESULTS 

Demographic characteristics of at-risk asymptomatic subjects, i.e. mutation carriers and mutation 

non-carriers, are reported in Table 1. Non-carriers were older than carriers (p=0.036); no other 

significant differences were found in sex, years of schooling, MMSE at baseline and brain volumes 

at baseline between groups. No significant group-wise differences were found in MMSE and brain 

volumes changes at 1-year follow-up in either carriers or non-carriers.  



Table 1. Demographical characteristics and brain volumes of the cohort. 

Variables 
Mutation 

carriers 

Mutation 

non-

carriers 

p-value^ 

N° of subjects    

All 116 113 - 

C9orf72, % 26.7 -  

GRN, % 56.0 -  

MAPT, % 17.2 -  

Sex, female % 60.3 58.4 n.s. † 
Education, years 14.4±3.4 14.0±3.2 n.s. 

Age at baseline visit, years 45.7±11.2 49.2±14.0 0.036 

Age at follow-up visit, years 47.1±11.3 50.6±14.1 0.038 

Expected age at onset, years* -12.1±11.5 - - 

MMSE, baseline  29.4±1.2 29.4±0.9 n.s. 

MMSE, follow-up  29.3±1.1 29.4±1.0 n.s. 

TIV baseline, mL 1498±151 1490±123 n.s. 

TIV follow-up, mL 1500±141 1492±128 n.s. 

Total GMV baseline, % 42.8±3.5 42.7±3.7 n.s. 

Total GMV follow-up, % 42.6±3.7 42.6±3.6 n.s. 

Total WMV baseline, % 34.0±2.5 33.6±2.5 n.s. 

Total WMV follow-up, % 33.7±2.5 33.6±2.7 n.s. 

Total CSFV baseline, % 23.1±4.8 23.7±4.8 n.s. 

Total CSFV follow-up, % 23.7±4.9 23.9±4.9 n.s. 

 

^Two sample t-test, otherwise specified: †Fisher’s exact test. 

p refers to mutation carriers vs. mutation non-carriers comparisons; no significant differences 

between baseline vs. follow-up MMSE scores and brain volumes in both mutation non-carriers and 

in mutation carriers were found. Results are expressed as mean  standard deviation, unless 

otherwise specified. 

MMSE: Mini-Mental State Examination; TIV: total intracranial volume; GMV: grey matter volume; 

WMV: white matter volume; CSFV: cerebrospinal fluid volume; n.s.: not significant. 

*computed as previously published [17] 

 

 



SEM fitting results are shown in Table 2 and Figure 2. Overall, the two-group models' difference 

was statistically significant (LRT=34.3, df=20, p-value=0.019). 

In mutation carriers, significant direct effects of education on cognitive performances (as 

measured by MMSE) and on GMV at baseline (as measured by PC1, which summarised ROI 

measures) were found (beta=0.349, 95%CI=0.047 to 0.650, p=0.023 and beta=0.284, 95%CI=0.047 

to 0.521, p=0.019, respectively). Moreover, education had a significant inverse effect on GMV 

slope (beta=0.270, 95%CI=0.501 to 0.041, p=0.021), the higher the years of formal schooling 

the lower the loss of GMV at follow-up. 

No significant effect of education on cognitive performances’ slope at 1-year follow-up was 

observed (beta=0.125, 95%CI=0.174 to 0.423, p=0.413). No direct effect (p>0.05) between 

baseline and slopes of cognitive performances and GMV was observed, while expected significant 

negative covariances were confirmed (cov=0.636, 95%CI=0.869 to 0.402, p<0.001 and 

cov=0.305, 95%CI=0.444 to 0.166, p<0.001 for cognitive performances and GMV, respectively). 

These above effects were similarly present in non-carriers, with the distinctive difference for the 

null effect of education on GMV slope (beta =0.020, 95%CI=0.181 to 0.140, p=0.806). Notably, 

in mutation non-carriers, the significant direct effect of education on cognitive performances was 

greater (two-fold) than in mutation carriers (beta=0.548, 95%CI=0.289 to 0.807, p<0.001). 

Nevertheless, the two-group beta differences (the two-way interaction effect) was statistically 

suggestive in the combined group SEM analysis (p=0.088). 

In addition, a significant covariate effect of TMEM106B genotype was observed in mutation 

carriers, and it was not shown in mutation non-carriers (the two-way interaction testing was 

statistically significant: p=0.041), confirming the previous evidence [10] of the modulating effect of 

TMEM106B genotype on GMV in presymptomatic FTD (beta=0.468, 95%CI=0.189 to 0.747, 



p=0.001 and beta=0.034, 95%CI=0.119 to 0.186, p=0.665 for mutation carriers and non-carriers, 

respectively). 

  



Table 2. Structural Equation Model in mutation carriers and mutation non-carriers. 

Variable Mutation carriers Mutation non-carriers 

Estimate 

 

SE 

 

z-value 

 

p-value Estimate 

 

SE 

 

z-value 

 

p-value 

MMSE, baseline         

GMV baseline 0.074 0.115 0.644 0.520 -0.025 0.110 -0.231 0.817 

Sex -0.003 0.208 -0.014 0.989 -0.058 0.163 -0.355 0.723 

Age -0.160 0.100 -1.599 0.110 0.006 0.076 0.078 0.938 

TMEM106B 0.147 0.184 0.797 0.425 0.058 0.129 0.447 0.655 

Education 0.349 0.153 2.279 0.023 0.548 0.132 4.145 <0.001 

MMSE, slope         

GMV baseline 0.092 0.122 0.748 0.454 0.101 0.153 0.661 0.509 

GMV slope 0.141 0.109 1298 0.194 0.123 0.185 0.668 0.504 

Sex 0.117 0.208 0.561 0.575 -0.370 0.207 -1.787 0.074 

Age 0.098 0.102 0.961 0.336 -0.200 0.099 -2.013 0.044 

TMEM106B 0.086 0.182 0.470 0.639 -0.249 0.162 -1.533 0.125 

Education 0.125 0.152 0.818 0.413 -0.307 0.166 -1.849 0.065 

GMV, baseline         

Sex 0.104 0.168 0.619 0.536 -0.020 0.140 -0.145 0.884 

Age -0.386 0.072 -5.333 <0.001 -0.428 0.051 -8.424 <0.001 

TMEM106B 0.468 0.142 3.287 0.001 0.086 0.110 0.778 0.437 

Education 0.284 0.121 2.347 0.019 0.277 0.110 2.515 0.012 

GMV, slope         

MMSE baseline -0.043 0.064 -0.664 0.507 -0.017 0.049 -0343 0.731 

Sex -0.357 0.160 -2.235 0.025 -0.178 0.098 -1.814 0.070 

Age -0.060 0.070 -0.857 0.392 -0.009 0.036 -0.256 0.798 

TMEM106B -0.072 0.136 -0.582 0.597 0.034 0.078 0.433 0.665 

Education -0.270 0.117 -2.303 0.021 -0.020 0.082 -0.246 0.806 

 

Covariances         

MMSE baseline with 

MMSE slope 

-0.636 0.119 5.340 <0.001 -0.514 0.096 -5.375 <0.001 

GMV baseline with GMV 

slope 

-0.305 0.071 4.309 <0.001 -0-186 0.038 -4.860 <0.001 

 

MMSE: Mini-mental examination test; GMV: grey matter volume as measured by first component 

(PC1, see text for details); SE: Standard Error; z-value= Estimate/SE. 

Significant results of educational attainment’s effect in boldface. 

 

Figure 2 about here.  



4. DISCUSSION 

Genetic FTD is preceded by a long period in which, despite the evidence of initial changes in 

biomarkers and brain structure, behaviour and cognition are spared.[17, 19-21] 

Pharmacological and non-pharmacological interventions may provide better clinical outcomes if 

applied in this phase, when the brain can still cope with pathology processes, and such treatments 

may eventually delay disease onset.[22] Beyond future disease-modifying drugs,[23] the possibility 

to intervene on environment and other modulating factors is attractive. Some evidence shows 

that cognitive stimulating environments lead to brain volumetric advantages and better cognitive 

performances. These effects are common to physiological[24-26] and initial pathological 

ageing,[27-29] suggesting that neuroplasticity is maintained even in diseased brains, regardless of 

the specific clinical picture or the underlying pathological process. 

Two alternate hypotheses address this issue. First, that lifestyle acts passively by increasing brain 

volume, but does not influence on brain loss; second, lifestyle acts by increasing brain 

maintenance. To test the latter hypothesis longitudinal data is required. These positive effects may 

diminish as disease progresses to the symptomatic phase. If this second hypotheses were the case, 

it would be plausible to think of modulating the disease course of dementing disorders by 

enrichment of lifetime exposures. 

In the current longitudinal study, we applied SEM analysis to test these hypotheses in 

presymptomatic monogenic FTD, evaluating the effect of the educational level on two outcome 

measures of reserve: cognitive performances and grey matter volumes. Our results seem to 

confirm the latter hypothesis, showing that higher education confers higher grey matter volumes 

and greater brain maintenance over time. Additionally, as previously reported,[10,30] TMEM106B 

genotype significantly modulates grey matter volume at baseline in mutation carriers. 



These findings are in line with previous longitudinal studies demonstrating that reserve proxies are 

associated with reduced rate of hippocampal atrophy,[31, 32] reduced rate of brain 

hypometabolism[33] and cerebrospinal fluid biomarkers changes[33] in healthy agers and 

Alzheimer’s disease. 

One intriguing aspect of brain maintenance is that it may reflect differences in the accumulation of 

pathology-related changes.[34, 35] Such demonstration in FTD requires in vivo pathological 

markers (i.e. tau or TDP-43 tracers), which are not currently available.[36] This neuroprotective 

effect may be related to changes at the molecular level, such as increased levels of neurotrophic 

factors[37] and glutamate neurotransmission,[38] or at the cellular level, with increased 

neurogenesis,[39] synaptogenesis[40] and angiogenesis,[41] and might be able to go beyond the 

underlying pathogenic mechanisms related to the specific mutation (GRN, C9ORF72, MAPT) or to 

specific proteinopathy (i.e. TDP-43 or tau). 

Interestingly, as previously reported,[10] years of education had a significant effect on grey matter 

volume even in mutation non-carriers, supporting the idea of a generalizable beneficial effect of 

education. Conversely, in the present work, we did not find any effect of education on brain 

maintenance in mutation non-carriers, but we recognize that this could be likely due to the low 

variance of grey matter volume within 1-year follow-up in healthy subjects. However, longer 

follow-up is necessary to draw definitive conclusions. 

Regarding cognition, higher education led to better cognitive performances at baseline, but not to 

significant effects on cognitive decline. This effect was comparable in mutation carriers and 

mutation non-carriers; of note, in subjects without pathogenic mutations, the beneficial effect of 

education on cognitive performances was greater than in mutation carriers. 

We acknowledge that this study entails some limitations. Despite that education represents an 

environmental factor, it is often immutable because acquired in childhood/young adulthood. Thus, 



the present results do not allow to directly conclude that interventional trials could delay disease 

onset. However, education is known to influence professional attainment, which has been already 

proven a proxy measure of reserve in FTD.[9, 42] Also, we chose MMSE as a global measure of 

cognition, acknowledging that MMSE is affected only close to disease onset[17] and that it does 

not represent the best measure of severity even in symptomatic phases.[43] Thus, the effect of 

more sensitive neuropsychological tests[17] has to be evaluated in future studies, especially to 

assess changes of cognitive performances over time. Moreover, we could not test the effect of 

educational attainment in each mutation due to low sample number: larger samples are needed to 

address this issue. Last, due to the observational nature of the study, data on possible 

confounders, such as concomitant vascular risk factors, were not available. However, in a recent 

large-scale Mendelian randomization study of the related condition, i.e. amyotrophic lateral 

sclerosis, the authors confirmed educational attainment to be an important modulator based on 

genetics.[44] 

In conclusion, these findings extend our knowledge of the reserve theory, demonstrating that in 

presymptomatic FTD the rate of atrophy was influenced by the educational level, with reduced 

grey matter loss in more educated subjects. Thus, even in presence of an ongoing pathological 

process, presymptomatic FTD subjects still maintain a high-performing reserve like in healthy 

brains, virtually turning back the clock of the disease natural history. The demonstration that 

differences in early lifestyle may slow down later disease progression suggests that even in 

monogenic disorders, outcomes are not wholly determined from birth, and this opens exciting 

perspectives for eventually delaying symptom onset. Future confirmatory studies assessing the 

role of other reserve proxies and their effect on longitudinal brain changes in symptomatic 

monogenic and sporadic FTD are needed.  
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FIGURE LEGENDS 

Figure 1. Model design of Structural Equation Model. 

The explanatory variable is enclosed in the blue box, while response variables in green (grey 

matter volume) and pink (Mini-mental examination test) circles. For convenience the indicator 

variables, covariates and error terms are not displayed. An arrow from one variable to another 

indicates that the first variable has a causal influence on the latter. 

Grey arrows indicate the tested effect of education on cognitive performances and grey matter 

volumes; orange arrows indicate the tested effect of grey matter volumes on cognitive 

performances at each time point; purple arrows indicate the tested effects of baseline measures 

on slopes’ measures; blue arrows indicate the tested interaction effects between slopes and 

baseline measures (see Methods for details). 

MMSE: Mini-mental examination test; GMV: grey matter volume; i: intercept; s: slope. 

 

Figure 2. Significant results from the Structural Equation Model. 

Significant effects in either mutation carriers and non-carriers are depicted by dark grey arrows, 

while significant effects only in mutation carriers are depicted by light grey arrows (see Results 

section for details). 

MMSE: Mini-mental examination test; GMV: grey matter volume; i: intercept; s: slope. 


