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Abstract

We introduce a genetic correlation by environment interaction model [(rG)xE] which allows for 

social environmental moderation of the genetic relationship between two traits. To empirically 

demonstrate the significance of the (rG)xE perspective, we use genome wide information from 

respondents of the Health and Retirement Study (HRS; n = 8,181; birth years 1920–1959) and the 

National Longitudinal Study of Adolescent to Adult Health (Add Health; n = 4,347; birth years 

1974–1983) to examine whether the genetic correlation (rG) between education and smoking has 

increased over historical time. Genetic correlation estimates (rGHRS = −0.357; rGAdd Health = 

−0.729) support this hypothesis. Using polygenic scores for educational attainment, we show that 

this is not due to latent indicators of intellectual capacity, and we highlight the importance of 

education itself as an explanation of the increasing genetic correlation. Analyses based on 

contextual variation the milieus of the Add Health respondents corroborate key elements of the 

birth cohort analyses. We argue that the increasing overlap with respect to genes associated with 

educational attainment and smoking is a fundamentally social process involving complex process 

of selection based on observable behaviors that may be linked to genotype.
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INTRODUCTION

Sociologists have long been interested in demonstrating that phenomena formerly 

considered innate, essential, or immutable in fact have social causes (Berger and Luckman 

1966; Winant and Omi 1994; Lorber 1994; Martin and Beittel 1998; Ridgeway and Correll 

2004; Saperstein and Penner 2012). In this vein, social scientists have argued that the effects 

of genes on complex human behaviors are contingent upon the environments in which 

people live, work, and play (Jencks 1980; Domingue et al. 2014; Boardman et al. 2014; 

Domingue et al. 2015; Branigan, McCallum, and Freese 2013). In this paper, we extend the 

sociological approach to another aspect of genetic inquiry by illustrating the capacity of the 

social environment to transform the relationship between two complex human behaviors at 

the genetic level.

Our arguments focus on “genetic correlation”. Genetic correlation (rG) is a measure of the 

extent to which the genetic origins of two traits overlap. We innovate by illustrating that 

social forces can be crucial to clear interpretation of genetic correlation. In particular, we 

propose that changes in social forces may induce changes in rG. A genetic correlation 

between two traits may differ as a function of social norms and structural constraints that 

serve to either enhance or mute the influence of genes on either or both traits. We refer to 

this process as genetic correlation-by-environment interaction [(rG)xE].

We empirically demonstrate the sociological significance of the (rG)xE perspective by 

documenting changes in the genetic correlation between educational attainment and 

smoking as a function of birth cohort, which we use as a measure of one’s environment. We 

find that the rG between educational attainment and smoking has increased across birth 

cohorts. We extend these findings using polygenic scores for educational attainment, 

showing that the genes that predict educational attainment are increasingly associated with 

smoking. The mediating role of educational attainment has grown across cohorts, while 

cognition shows comparatively little explanatory power. While our primary analysis focuses 

on temporal change in rG, we also utilize variation in geospatial social contexts to 

demonstrate one possible mechanism for the changes we observe across time. We conclude 

that genetic factors associated with successful navigation of educational systems select 

people into environments that are increasingly discouraging of smoking.

After describing observed trends in the relationship between educational attainment and 

smoking among U.S. adults, we introduce the concepts of gene-by-environment interaction 

and genetic correlation, as these are the foundation upon which (rG)xE rests. We then 

describe conditions under which (rG)xE will occur, outlining why the genetic correlation 

between education and smoking is expected to have changed across birth cohorts. Finally, 

we present our methods and results and conclude with a discussion of the broad sociological 

relevance of (rG)xE.
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Educational attainment and smoking

The environment in which decisions about education and tobacco use are made has changed 

dramatically across the past century. Changes in the labor market (e.g., industrialization and 

the decline of farming; the decline of highly paid jobs in manufacturing for low-skill 

workers; technological changes; etc.) have resulted in increased economic and social returns 

to education as well as diminished economic security among poorly educated workers (Hout 

1988, 2012; Goldin and Katz 2010). Meanwhile, the public’s knowledge and acceptance of 

the harms that smoking entails have become almost universal in recent decades. Prior to the 

1960s, such knowledge was less common and concentrated among highly educated persons 

(Link 2008). Perhaps owing to public health interventions and anti-smoking policies, 

smoking is now stigmatized in some social circles (Stuber, Galea, and Link 2008).

The relationship between education and smoking has important consequences for 

socioeconomic disparities in health, as smoking remains the leading cause of preventable 

death and disease worldwide (CDC 2016). Further, while smoking prevalence declined 

sharply across the second half of the twentieth century from 42% of American adults in 

1965 to just 17% in 2014 (CDC 2016), a socioeconomic gradient in smoking has emerged. 

Prior to the Surgeon General’s Report of 1964, which announced the dangers associated 

with smoking to a previously unaware public, smoking prevalence was roughly equivalent 

across the socioeconomic spectrum. Since that time socioeconomic disparities in rates of 

smoking have grown dramatically (Link 2008; Pampel 2009; Pampel et al. 2015). Today, 

smoking prevalence among high school dropouts is about four times higher (24%) than that 

among people with a college degree (6%).1 Jha et al. (2006) estimate that disparities in 

smoking prevalence explain nearly half of the educational disparity in mortality among 

middle-aged U.S. men. In this study we use tools from the field of genomics to shed light on 

the growing educational disparities in smoking prevalence. Our novel methods suggest that 

even the genetic relationship between the two traits is fundamentally social in nature.

Contemporary U.S. society continues to witness substantial geographic variation in smoking 

prevalence (CDC 2011–2015). Smoking prevalence ranges from 9% in Utah to 26% in West 

Virginia and Kentucky. Educational attainment also differs across states (U.S. Census 

Bureau, Decennial Census of Census of Population, 1940 to 2000). Census data from 2000 

suggests that the percentage of adults with a high school degree ranges from about 73% in 

Mississippi to 88% in Alaska and Minnesota. Thus, we can also use geographic variation in 

cultural contexts to study the degree to which the genetic relationship between smoking and 

educational attainment has varied as a function of social context.

Genetic effects on complex human behaviors

Gene-by-environment interaction—While voluminous evidence exists to support the 

idea that nearly all traits (often called phenotypes) are heritable (Polderman et al. 2015; 

Turkheimer 2000), there is also broad consensus that genetic effects are conditioned by 

one’s environment (Landecker and Panofsky 2013; Jencks 1980). This environmental 

1Author’s own calculations using data from the 2015 National Health Interview Survey (NHIS), which was compiled by the 
Minnesota Population Center and the State Health Access Data Assistance Center (2016).
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moderation of genetic effects is referred to as gene-by-environment interaction (GxE). 

Empirical analyses of GxE have often conceptualized the environment in terms of proximal, 

micro-level conditions (e.g., household characteristics: Guo, Roettger, and Cai 2008) or in 

terms of behaviors (e.g., engagement in exercise: Li et al. 2010). Yet scholars in the field 

have noted that limited and/or endogenous measures of the environment may be insufficient 

for a complete accounting of the ways in which genetic influences are shaped by the 

environment; consequently, there has been a call for a broader definition of the environment 

as multilevel, multidimensional, and longitudinal (Freese and Shostak 2009; Boardman, 

Daw, and Freese, 2013; Manuck and McCaffery, 2014). Sociologists are uniquely well-

positioned to answer this call given the discipline’s interest in macro-level social structures 

such as nation-states (Durkheim 1893) and historical eras (Elder 1999; Mills 1959). Indeed, 

in GxE work, sociologists have often operationalized “E” with aspects of geography 

(Branigan et al. 2013; Boardman 2009; Boardman et al. 2008), historical time (Tropf and 

Mandemakers 2017; Boardman, Blalock, and Pampel 2010; Boardman et al. 2011; Conley et 

al. 2016; Branigan et al. 2013), and demographic characteristics (Belsky et al. 2016; Wedow 

et al. 2016; Mitchell et al. 2014; Short, Yang, and Jenkins 2013; Briley and Tucker-Drob 

2013; Bergen, Gardner, and Kendler 2007; Eley, Lichtenstein, and Stevenson 1999).

GxE scholars have also stressed the need for measures of the environment to be exogenous 

with respect to genes (Conley and Rauscher 2013; Cook and Fletcher 2013). This is due to 

the typical problem of selection: genes are not necessarily distributed at random across 

environments. Whether this selection is active (e.g., individuals with specific genes select 

certain environments because of those genes), passive (e.g., people inherit their genes and 

their environments from their parents), or evocative (e.g., genes evoke particular 

environmental responses), the detection of environmental moderation of genetic effects is 

greatly complicated in the presence of such selection. The more distal aspects of the 

environment that sociologists have gravitated towards are less likely than more proximal 

environmental conditions or behaviors to present such problems of endogeneity.

Genetic correlation—Genetic correlation (rG) summarizes the extent to which genetic 

factors are implicated in an observed correlation between two traits. At one extreme, two 

heritable traits may be strongly correlated in the population, yet the genes associated with 

each trait may be independent (i.e., rG=0). In such a case, the observed correlation between 

the traits cannot be traced back to genes. On the other hand, genetic correlation may be non-

zero when some gene or set of genes influences both traits of interest. This effect is known 

as pleiotropy (Solovieff et al. 2013).

Two distinct types of pleiotropy are depicted in Figure 1, which provides examples plausible 

for the relationship between education (ED) and smoking (SM). Biological pleiotropy 

(Figure 1A) involves one or more genes exerting independent influence on each of the two 

phenotypes of interest. For example, research has found that one particular genetic variant 

increases risk of both prostate and colorectal cancers, likely by enhancing tumor growth in 

both colon and prostate tissue (Wasserman et al. 2008; Pomerantz et al. 2009). Mediated 

pleiotropy (Figure 1B), on the other hand, exists when a set of genes influence a phenotype 

that has its own causal effect on the second phenotype. Genes are causally associated with 

one trait and affect the second trait only through this mediated path. Scholars have identified 
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overlapping genetic effects on nicotine dependence and lung cancer risk (Hung et al. 2010; 

Thorgiersson et al. 2008). These effects may be due to mediated pleiotropy whereby genes 

influence nicotine dependence, which then affects lung cancer risk via smoking (Chanock 

and Hunter 2008). Notice that these forms of pleiotropy are not mutually exclusive—for any 

pair of phenotypes, one or both could simultaneously play a role in producing genetic 

correlation.

Neither are the models depicted in Figure 1 exhaustive. For instance, pleiotropy might occur 

through parental effects due to the intergenerational transmission of genes and, through 

environmental conditions, behaviors. Importantly, this type of pleiotropy is generated not 

through the effects of a child’s genes on his or her own phenotype(s). It is instead produced 

through a correlation between a child’s genes, which are passed on by parents, and 

environmental conditions set up by parents that either support or discourage certain 

behaviors and outcomes. Furthermore, assortative mating can produce pleiotropy if 

individuals with genes that predict one phenotype tend to select partners with genes 

predicting another trait. Their offspring will then be more likely to have genes predicting 

both phenotypes, and in the aggregate, genetic correlation will result. These complementary 

pleiotropic models are important to consider and they offer alternative explanations as to 

why genes may be increasingly correlated with both education and smoking over time.

To date, pleiotropic effects have been described almost exclusively as the result of natural 

selection (Lawson et al. 2011; Marchini et al. 2014). For example, the same genes affect 

one’s bone size and body mass presumably due to evolutionary forces selecting against a 

skeleton that cannot support the body’s weight (Marchini et al. 2014). As scholars begin to 

investigate genetic correlation between traits that are highly contextual, such as that between 

educational attainment (SSGAC 2016) and smoking (Tobacco and Genetics Consortium 

2010), additional considerations may become relevant. In particular, we focus on how 

differences in structural or cultural climate, across both time and space, are associated with 

differences in pleiotropic patterns and genetic correlation.

The genetics of educational attainment and smoking

There is substantial evidence pertaining to the moderate heritability of both traits (Branigan 

et al. 2013; Li et al. 2003; Polderman et al. 2015). In addition, the traits appear to be 

genetically correlated. For example, McCaffery et al. (2008) estimate a genetic correlation of 

−0.30 between educational attainment and smoking initiation in a sample of male twins from 

the U.S. Using molecular data from unrelated individuals, Bulik-Sullivan et al. (2015) 

estimate a very similar genetic correlation of −0.36 between education and having ever 

smoked.

There is also evidence that genetic effects on both phenotypes have, in general, shifted over 

time. Specifically, the heritability of education appears to have increased modestly (Branigan 

et al. 2013; Heath et al. 1985), as has the heritability of smoking in the U.S. (Boardman et al. 

2010; Boardman et al. 2011; Kendler, Thornton, and Pedersen 2013). In addition, the 

relative effects of genes on educational attainment have shifted across birth cohorts, as have 

the predictive power of polygenic scores for educational attainment and for smoking (Conley 

et al. 2016; Domingue et al. 2016).
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Given these observed temporal trends, we focus on the study of (rG) in distinct U.S. birth 

cohorts. Along the lines of earlier work (Elder 1999; Yang 2008; Boardman et al. 2010; 

Boardman et al. 2011; Liu and Guo 2015; Walter et al. 2016; Conley et al. 2016), we 

consider historical periods to be discrete social environments into which people have no 

ability to select themselves. In this way, these analyses are akin to exploiting a natural 

experiment. Any change in rG across birth cohorts can be interpreted as reflecting a causal 

effect of the social, institutional, and physical environments that are unique to each birth 

cohort on rG.

Social processes that could produce (rG)xE—Why might one observe (rG)xE? The 

mechanisms that drive (rG)xE will depend on the phenotypes and the aspect of the 

environment under consideration. In the context of smoking and educational attainment, we 

suspect that institutional selective forces and culture play large roles. Sudden changes to the 

formal institutions that condition behaviors may lead to changes in the salience of genotype. 

Alternately, mechanisms driving (rG)xE could involve subtler and more gradual shifts in the 

cultural regulations to which the phenotype(s) are subject.

In the case of educational attainment and smoking, selection mechanisms driving rG (and 

therefore (rG)xE) are likely found relatively early in the life course before people make final 

decisions regarding their education or smoking behaviors. They may therefore be located in 

latent genetic traits. These latent traits presumably exert influence on a person’s orientation 

toward the world from day one. Such effects on education and smoking may have increased 

across birth cohorts if, for example, genetic propensity for risk-taking has become 

increasingly predictive of both low education and smoking. This is a real possibility, as the 

risk inherent in a low level of educational attainment has grown (Hout 1988, 2012; Goldin 

and Katz 2009), and as the health-related dangers of smoking have been widely publicized 

since the mid-1960s (Link 2008). Similarly, general intelligence could also have become 

more predictive of both educational attainment and smoking over time via biological 

pleiotropy. This would be the case if people with greater cognition increasingly attend 

school at higher rates and/or if their desire to avoid smoking has strengthened relative to 

others.

Mechanisms driving the rG between education and smoking, and changes across birth 

cohorts therein, might also be located within the education system itself due to mediated 

pleiotropy. Mediated pleiotropic effects (Figure 1B) might have grown across cohorts if 

education has become an increasingly important causal mechanism for smoking. For 

example, the skills cultivated through schooling might be more important for fostering the 

efficacy and agency to avoid smoking among later generations who are more likely to have 

been aware of its dangers at an early age. As anti-smoking norms have proliferated, 

especially among the highly educated (Pampel, Krueger, and Denney 2010), education and 

the status associated with it might be more likely to encourage non-smoking.

Finally, while environmental contexts and the formal and cultural institutions governing 

selection into particular outcomes and behaviors differ across historical eras, inside a 

particular historical era, these mechanisms may also differ across discrete social contexts 

such as countries, states, neighborhoods, or schools (Myers et al. 2013). Examining variation 
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across contemporaneous environmental conditions can provide leverage for exploring 

(rG)xE, since the mechanisms - institutional differences and norms - might be easier to 

isolate and measure across more proximal conditions.

In sum, we expect that social transformations over the past century have driven the 

magnitude of pleiotropic effects for education and smoking up such that what these 

outcomes reflect at the genetic level has become increasingly similar over time. We posit 

that whether or not the genetic correlation between education and smoking behaviors has 

increased in tandem with the observed correlation sheds light on the mechanisms underlying 

the observed trend, and we attempt to explore some of these mechanisms in our analyses 

below. This study thus provides direction for future research on the sources of educational 

disparities in smoking and its consequences for health.

DATA, MEASURES, AND METHODS

Data

At present, genetic information is available for only a limited range of social surveys. 

However, in combination they contain a representative sample of U.S. births from across the 

20th century. We combine data from the Health and Retirement Study (birth years 1920–

1959) and the National Longitudinal Study of Adolescent to Adult Health (birth years 1974–

1983). Both of these surveys sample from the U.S. population, ask respondents similar 

questions regarding educational attainment and smoking history, and have recently 

genotyped a relatively large number of respondents. We describe these surveys and the 

measures constructed for analysis below.

Health and Retirement Study—To estimate genetic effects among earlier birth cohorts, 

we use data from the Health and Retirement Study (HRS), a panel study of U.S. households 

that began in 1992 with the intention of monitoring physical, emotional, and economic 

wellbeing during the transition into retirement and older age (RAND 2016). The HRS is 

now representative of the U.S. population over age 50, and its participants are surveyed 

approximately every two years.

As of 2008, 12,507 HRS respondents had been genotyped2. We limit the sample to non-

related individuals of European genetic ancestry, as the methods that currently exist for 

calculating genetic correlation are optimized for this population (SSGAC 2016)3. We also 

restrict the sample to respondents born between 1920 and 1959 in order to neatly delineate 

the range of birth years assessed. After making these and other quality control restrictions, 

our sample from the HRS includes 8,181 people.

National Longitudinal Study of Adolescent to Adult Health—We use the National 

Longitudinal Study of Adolescent to Adult Health (Add Health) to study genetic 

2Saliva samples were first collected from HRS respondents during in-home interviews in 2006, at which time a random subsample of 
households was asked to participate; of those invited, 83% consented to genotyping. In 2008, the genetic sample was expanded to all 
remaining households; 84% agreed to participate. Genotyping was performed using Illumina’s Human Omni2.5-Quad BeadChip 
technology by the NIH Center for Inherited Disease Research (Health and Retirement Study 2017).
3We recognize the limitations and inherent problems with this approach, as does the broader human genetics field. Efforts to collect 
such samples are already underway.
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relationships within a later birth cohort (Harris 2009). Add Health originated as an in-school 

survey of a nationally representative sample of U.S. adolescents enrolled in grades 7 through 

12 during the 1994–1995 school year. Respondents were born between 1974 and 1983. A 

subset of the original Add Health respondents has been followed up with in-home 

interviews, which allows researchers to assess correlates of outcomes in the transition to 

early adulthood.

In 2008, respondents were invited to provide a saliva sample for future genotyping4. The 

genetic data currently available to researchers represents a subset of these respondents5. As 

with the HRS, we limit the sample to non-related individuals of European descent. Our final 

sample from Add Health includes 4,347 respondents. For more details concerning the 

quality control of the genetic data in this study, see our Appendix.

Measures

We coded years of education similarly in the HRS and Add Health (Table 1). The resulting 

quasi-continuous variable ranges from 8 (attended school for 8 years or less) to 20 (earned a 

PhD or completed professional school). Average educational attainment among HRS 

respondents is 13.49 years; among Add Health respondents, it is 14.66.

Our second phenotype is a binary indicator of having ever smoked regularly. In their first 

interview, HRS respondents were asked, “Have you ever smoked cigarettes? By smoking we 

mean more than 100 cigarettes in your lifetime.” Those who reported that they had are 

considered to have smoked regularly. In the 2008 Add Health interview, respondents were 

asked, “Have you ever smoked cigarettes regularly, that is, at least 1 cigarette every day for 

30 days?” Both questions are commonly used to assess whether a person has ever smoked 

regularly (IARC 2008).

One complication is that HRS respondents were older at the time that their smoking history 

was assessed than were Add Health respondents, and thus had much more time to evolve 

into regular smokers. Nonetheless, we note that very few HRS respondents (just 8% of ever 

regular smokers) reported having started to smoke after the age of 24. Other evidence also 

suggests that the vast majority of smokers take up the habit in their teens (Elders et al. 

1999). Thus, despite the different ages at which respondents were asked to recount their 

smoking history, these measures should largely capture a comparable set of behaviors.

Methods

To assess the hypothesized changes in the genetic correlation between education and 

smoking across cohorts, we begin by estimating genetic effects on education and smoking 

through regression-based genome-wide association studies (GWAS). We then estimate 

genetic correlations using Linkage Disequilibrium Score Regression (LDSC). Finally, we 

4A total of n=12,234 (78%) consented. Genotyping was performed at the Institute for Behavioral Genetics in Boulder, CO using 
Illumina’s Human Omni1-Quad-BeadChip (McQueen et al. 2015).
5At the time of writing, we had permission to use the latest release of the Add Health data, which was in a “Freeze 2” hold. In Freeze 
2, 7,598 individuals were genotyped using the Illumina Human Omni 1 chip, and 2,098 individuals were genotyped on the Illumina 
Human Omni 2.5 chip. Because nearly 85% of subjects genotyped using the Omni 2.5 chip were of non-European ancestry, we 
excluded individuals on this chip both to reduce bias introduced by batch effects and also to avoid an unnecessary loss of SNPs when 
taking the intersection of SNPs common to both chips.
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construct polygenic scores for educational attainment to investigate mechanisms driving the 

change in pleiotropic effects on the two phenotypes.

Genome-wide association study (GWAS)—GWAS is the predominant method for the 

identification of genetic effects across the genome. We start by noting that the base unit of 

most molecular genetic analyses is the single nucleotide polymorphism, or SNP. Most 

genetic diversity across people exists because of differences in the number and type of 

nucleotides found at each SNP, which determines a person’s genotype at that SNP. GWAS 

considers the effect of genotype at several million SNPs across the genome on a phenotype 

of interest. Specifically, GWAS quantifies the extent to which an additional nucleotide of a 

particular variety (called a risk allele) at a particular SNP is associated with a higher or 

lower value of the phenotype. In effect, GWAS results consist of a long vector of estimated 

effects, one per SNP. GWAS results serve a variety of purposes. For gene discovery, 

extremely large sample sizes are required—much more than those available in the HRS and 

Add Health. However, when using LDSC to summarize the results of GWAS in estimates of 

heritability or genetic correlation, much smaller sample sizes can be used (Bulik-Sullivan et 

al. 2015).

We conduct GWAS for three phenotypes (years of education, our binary indicator of having 

ever smoked regularly, and height) separately for the HRS and Add Health cohorts. To 

conduct GWAS we use Rvtests (Zhan et al. 2016), which estimates linear and probit 

regression equations for each SNP in the data sets:

EduYears = β0 + β1Genotype + γ′PC + δ′Controls + ε, [Equation 1A]

probit EverSmk = β0 + β1Genotype + γ′PC + δ′Controls + ε, [Equation 1B]

Height = β0 + β1Genotype + γ′PC + δ′Controls + ε . [Equation 1C]

Genotype is the number of risk alleles present at the genetic marker being analyzed. PC is a 

matrix of the first ten principal components of the variance-covariance matrix of the genetic 

data. Including principal components in the regression equations controls for differences in 

genotype across ancestry groups that could confound the effects of genes on phenotypes. 

Finally, Controls is a matrix consisting of genetic sex, year of birth, squared year of birth, 

and interactions between sex and birth year as well as sex and squared birth year.

Linkage disequilibrium score regression (LDSC)—Genotypes at SNPs that are in 

close proximity to each other tend to be highly correlated. This phenomenon is referred to as 

linkage disequilibrium, or LD. Its implication is that the effect of one SNP on a phenotype 

may not be independent of the effects of nearby SNPs. LDSC is a method of adjusting 

GWAS estimates for the presence of LD (Bulik-Sullivan et al. 2015; Bulik-Sullivan et al. 
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2016)6. In addition, it provides unbiased estimates of genetic correlation. Briefly, in LDSC, 

genetic correlation is the correlation between the SNP-length vector of LD-adjusted genetic 

effects estimated for the first phenotype and those estimated for the second. For more details 

about LDSC, see the Appendix.

Polygenic scoring—Polygenic scores (PGS) summarize the extent to which a person 

possesses alleles (i.e., genotypes) associated with a trait of interest. These scores utilize 

GWAS results to link genetic variation to phenotypic variation. A PGS is essentially a 

weighted average of SNP effects estimated through GWAS:

PGSi = ∑ j = 1
J xi jw j, [Equation 2]

where xi j indicates the number of risk alleles individual i possesses at SNP j, and w j

indicates the weight or effect size of that SNP. To avoid “double counting” the causal effects 

of SNPs that are strongly correlated with each other, we transform the estimated effects 

using LDpred (Vilhjálmsson et al. 2015). Quality control of the genetic data relevant to the 

construction of our PGSs is described in our Appendix.

We construct a polygenic score for years of education, utilizing results from a GWAS in 

progress of over 700,000 individuals, one of the most highly powered polygenic scores 

constructed to date. Those who conducted the original GWAS report that the score explains 

about 10% of the variance in years of education in the HRS (incremental R2 = 0.089) and 

Add Health (incremental R2 = 0.103) samples. The effect of a standard deviation increase in 

the PGS for education is reported to predict a 0.77-year increase in educational attainment in 

the HRS (SE = 0.026), and a similar 0.71-year increase in Add Health (SE = 0.031).

After assigning each respondent in the HRS and Add Health with a polygenic score for years 

of education, we use that score to predict whether or not the respondent had ever been a 

regular smoker. We consider

probit EverSmk = β0 + β1PGS + δ′Controls + ε, [Equation 3]

where PGS is the respondent’s PGS for educational attainment and Controls is a matrix 

consisting of biological sex, year of birth, and an interaction between sex and birth year. We 

estimate Equation 3 by cohort. In general, if the coefficient on the PGS estimated among 

Add Health respondents is higher than that estimated among HRS respondents, we can 

conclude that the genetic variants that predict educational attainment have become 

increasingly predictive of smoking behaviors across birth cohorts.

We then consider mediation analyses. In particular, we first assess whether cognition7 

mediates the relationship between the score for education and smoking. We are only able to 

6LDSC also adjusts results for confounding of genetic effects by ancestry (population stratification).
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do this for the Add Health cohort, as no suitable measures of cognition are available in the 

HRS:

probit EverSmk = β0 + β1PGS + β2COGNITION + δ′Controls + ε, [Equation 4]

We compare β1 estimated in Equation 4 to that estimated in Equation 3. If it has declined in 

magnitude to a substantial extent, we can infer that the association between the score and 

smoking is due to the correlation of cognition with both variables.

Second, we estimate the following model for all three cohorts (early HRS, late HRS, and 

Add Health):

probit EverSmk = β0 + β1PGS + β2EDUC + δ′Controls + ε, [Equation 5]

If the relative decline in β1 between Equations 3 and 5 remains roughly constant across 

cohorts, it will indicate that the importance of achieved education for understanding the 

relationship between the PGS for education and smoking has neither grown nor shrunk. If 

the extent to which β1 is reduced in Equation 5 compared to Equation 3 grows across 

cohorts, this will indicate that the original association between the PGS for education and 

smoking is increasingly explained by the association of these two variables with actual 

education attained. This result is consistent with growth in mediated pleiotropy: that the 

effect of education on smoking has increased across cohorts.

We also extend our analysis of temporal variation in the rG between education and smoking 

to contextual variation in rG during a particular historical era. We limit this analysis to Add 

Health respondents. Specifically, using data from all students involved in the initial in-school 

survey, we calculated the average educational attainment of mothers in each school. We then 

divided the genotyped sample into three groups based on the average education of mothers 

in the school they attended and we estimate Equations 3 and 5 for each of these three groups.

Finally, we include and examine association between height and years of education as a 

robustness check. We evaluate change in the genetic correlation between height and years of 

education. Height is highly heritable (Yang et al. 2010) and somewhat correlated with 

education8, but we do not expect it to evince any strong rG with educational attainment, or 

changes therein across birth cohorts.

7Our measure of cognition is a modified version of the Peabody Picture Vocabulary Test (Dunn and Dunn 2007). The test was 
administered when respondents were ages 12–20 during the first in-home follow-up survey. In this test, an interviewer reads a word 
aloud, and a respondent selects the illustration that best fits the word’s meaning. Eighty-seven items were included on this computer-
adapted test, and scores were age-standardized.
8Among men in the HRS, the correlation between years of education and height is 0.134 (p<0.001). For women, the correlation is 
0.133 (p<0.001). For Add Health men, r = 0.108 (p<0.001) and for women, r = 0.112 (p<0.001).

Wedow et al. Page 11

Am Sociol Rev. Author manuscript; available in PMC 2019 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS

Temporal trends in phenotypes

Descriptive statistics for the HRS and Add Health samples are provided in Table 2. Birth 

years range from 1920 through 1959 among HRS respondents (mean = 1938). Add Health 

respondents were born between 1974 and 1983 (mean = 1979). The HRS sample has a 

slightly larger female population (57%) compared to the Add Health sample (54%). Note 

that HRS respondents supplied saliva samples (and phenotypic information) at much older 

ages (mean age = 68) than did Add Health respondents (mean age = 28).

Average educational attainment is higher among Add Health participants (14.66 years; see 

Table 2) than those in the HRS (13.49 years). This is consistent with historical trends (US 

Census Bureau, 1947–2015; Ryan and Bauman 2016, Figure 2). Incidence of having ever 

smoked regularly is slightly lower among Add Health respondents (53%) than HRS 

respondents (57%). And, the correlation between years of education and having ever smoked 

regularly increased substantially between HRS (−0.108, SE = 0.014) and Add Health 

(−0.368, SE = 0.017). Note also that all phenotypes are estimated to be heritable in these 

samples.9

LDSC: Change in genetic correlation over time

The estimated genetic correlation between education and smoking is negative in both data 

sources. The sign of the rG estimate indicates that genotypes that are positively associated 

with years of education attained tend to be negatively associated with smoking. As 

hypothesized, the rG estimates are greater in magnitude among Add Health respondents than 

among those in the HRS (Table 3, Figure 2). Specifically, the estimated rG is −0.357 in the 

HRS (SE = 0.180, p =0.047) and −0.729 in Add Health (SE = 0.281, p = 0.010).

While both estimates are significantly different from 0, the estimates are not statistically 

significantly different from each other10 (p = 0.265). We interpret this in light of two 

additional findings. First, the point estimates are comparable to those reported in a 

supplemental analysis of twins (see Online Supplement). Second, we consider the genetic 

correlation between education and height as a negative control test (Table 3, Figure 2). 

Consistent with prior work (Bulik-Sullivan et al. 2015), the genetic correlations between 

education and height are very near zero in both data sets (HRS: 0.054, SE = 0.168; Add 

Health: 0.031, SE = 0.298). This lends credence to our main finding of increased pleiotropy 

between education and smoking over time since we neither expect nor find changes in 

pleiotropy for our negative control phenotypes.

9LDSC estimates narrow-sense heritability, which is the proportion of variance in a phenotype that can be explained by additive 
genetic effects. Such estimates are likely biased downward in comparison to broad-sense heritability estimates from twin studies, 
which include additive as well as non-linear genetic effects (see Online Supplement for twin-based estimates in comparable data sets). 
Despite this, LDSC estimates of genetic correlation remain unbiased (Bulik-Sullivan 2015; see also “Heritability and Genetic 
Correlation wiki here: https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation). The heritability of height, computed 
via LDSC, is roughly identical among HRS and Add Health respondents (Table 3), while the heritability of both education and 
smoking is higher among those born in later years. This is in line with previous research finding increases in the heritability of 
education (Heath et al. 1985; Branigan et al. 2013) and smoking (Domingue et al. 2016) over time.
10We note that, while we are well powered to distinguish genetic correlation from 0 in each data set, we are not well powered to 
distinguish correlations from each other. Future research should revisit the question of statistical significance when larger samples are 
available.
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Polygenic score analyses: Substantive implications of changes in rG

We report the marginal effects on smoking of the educational attainment polygenic score 

(PGS) for three different cohorts: an early HRS cohort (birth years 1920–1938), a late HRS 

cohort (birth years 1939–1959), and the Add Health cohort (birth years 1974–1983) (Table 

4, Panel A). A one-standard deviation (SD) increase in the educational attainment PGS 

predicts a much larger reduction in the probability of smoking amongst the later-born. 

Among the earliest HRS birth cohort, a one-SD increase in the PGS reduces the probability 

of having ever smoked regularly by 3.3 percentage points; by 4.3 percentage points among 

the later HRS birth cohort; and by 7.6 percentage points among Add Health respondents. 

These results are consistent with the findings we report from our LDSC analysis above.

As a point of comparison we also constructed PGSs for smoking using GWAS results made 

available through the Tobacco and Genetics Consortium (2010). We then used these scores 

to predict respondents’ likelihood of having ever smoked regularly. Results are presented in 

Table 4, Panel B. Note that the marginal effects of a SD increase in the smoking PGS on the 

probability of having smoked are similar to the marginal effects estimated for a SD increase 

in the PGS for education. In other words, genes that predict educational attainment are 

nearly as useful for predicting whether someone has ever smoked as are the genes that have 

been found to predict smoking itself. Also, the degree to which the education PGS predicts 

smoking has grown more across cohorts than that of the smoking PGS.

Analysis of mechanisms

Our above analyses using LDSC and polygenic scores suggest that there has been an 

increase in pleiotropy between education and smoking over time. However, as we outlined 

above, we are also interested in possible mechanisms that might explain these increases 

across time. We explore these below.

Verbal cognition—It might be the case that over time, natural intelligence is increasingly 

associated with both the genes for education and the genes for smoking. Accordingly, we 

investigate the possibility that verbal cognition mediates the relationship between the PGS 

for education and smoking among Add Health respondents. (We were not able to assess this 

for HRS respondents as no suitable measure of cognition was available.) As shown in Table 

5, we find very weak evidence that verbal cognition partially mediates the relationship 

between the PGS for education and regular smoking. In fact, the marginal effect of the PGS 

declines by only 10.71% between models. These results suggest that cognition does not 

explain the genetic correlation between education and smoking even in the cohort with the 

highest observed genetic correlation between these two traits. We take this as evidence that 

changes in the social environment over time, rather than shifting effects of individual 

characteristics and selective processes outside of individuals’ control, are far more plausible 

explanations for the pleiotropic increases we observe.

Environmental selection—Next, we consider the degree to which the observed 

pleiotropy is mediational in nature. Specifically, in Equation 5 we control for educational 

attainment. The degree to which the observed effect of the educational attainment PGS is 

mediated through observed attainment increases from 16.46% in the early HRS cohort to 
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48.28% in the late HRS cohort to 85.20% in the Add Health cohort (Table 6; Figure 3). At 

the same time, the coefficient estimated for education increases across cohorts, while that 

estimated for the education PGS remains about the same or even declines. The increase 

observed across cohorts in the effect of the PGS for education on smoking appears to be 

largely explained by an increasing relationship between smoking and actual education 

attained. These results are consistent with the idea that in later birth cohorts, the genes 

associated with educational attainment are associated with selection into environments that 

are increasingly not conducive to smoking.

Exploring spatial variation in genetic correlation—While we find large cohort 

effects in increasing rG over time, such analyses are not conducive to identification of 

specific mechanisms that might drive these changes. To further investigate these moderating 

mechanisms at work in our (rG)xE models, we extend our analysis of temporal variation to 

another source of environmental variation that, like birth cohort, also reflects smoking-

related knowledge and norms: contextual embeddedness. In Add Health (unlike in HRS), we 

have good measures of school SES context. Thus we divide the Add Health sample into 

tertiles (low, medium, and high) based on the average educational attainment of mothers in a 

respondent’s school. We consider average maternal education in a school, which reflects the 

school’s socioeconomic composition, to be a very rough proxy for collective health lifestyles 

(Frohlich et al. 2001). We then repeat our mediation analyses for each tertile, first regressing 

smoking on the PGS for education alone, and then controlling for educational attainment.

In Table 7, we present the results from this analysis. Educational attainment mediates the 

relationship between the PGS for education and regular smoking more for students from 

schools with high levels of maternal education, those in which smoking-related norms are 

most restrictive (akin to later birth cohorts). The percent mediated moves from 55.71% for 

respondents in schools with low maternal education to 60.94% for those schools with 

medium maternal education to 67.69% in schools with high maternal education. This 1.22-

fold increase in mediation across schools is substantially lower than the 5.18-fold increase 

found across birth cohorts (Table 6 and Figure 3)11. Though the explanatory power of actual 

education attained therefore seems to vary more across temporal, socio-historical 

environments than across social contexts within the same time period, these results add an 

additional piece to the puzzle. Inside of historical era, which captures the large-scale cultural 

norms governing selection into smoking, social contexts defined across space, which are 

easier to measure, act as more proximal mechanisms through which variation in rG occur 

and operate.

Robustness analyses

Alternative methods for measuring genetic correlation—Besides LDSC, there are 

two additional methods for measuring genetic correlation. The standard method before the 

11This is unsurprising in light of outside data showing more drastic changes in these phenotypes over time than across places. For 
instance, in 1940 just 25% of Americans ages 25 and above had a high school degree. By 2000, this percentage had increased to 80%. 
Comparatively, in 2000, the percentage of Americans who had attained a high school degree ranged only modestly across states, from 
73% to 89% (U.S. Census Bureau, Decennial Census of Census of Population, 1940 to 2000). Thus, our findings regarding temporal 
mediation vs. spatial mediation seem to be in line with larger demographic trends.
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availability of molecular data was the bivariate twin model. In our Online Supplement, we 

present a full analysis using this method with the Add Health and with a twin sample from 

the Midlife in the United States (MIDUS) study. Importantly, the results are very similar to 

those using LDSC: the genetic correlation between education and smoking appears to have 

increased over time. Second, Genome-wide Complex Trait Analysis (GCTA) can be used 

with individual-level genetic data. Though we are underpowered to perform this method 

with our small samples (relative to LDSC), we perform these analyses with the HRS and 

Add Health data and find similar trends with increasing pleiotropy over time. These results 

are available from the authors upon request. Taken together, the results provide consistent 

evidence across methods for the conclusion that rG with respect to education and smoking 

has increased in magnitude across U.S. birth cohorts in the United States.

DISCUSSION

In this paper, we have shown that genes implicated in educational attainment have 

increasingly overlapped with genes associated with smoking behaviors across U.S. birth 

cohorts: the genetic correlation between the two traits has grown in magnitude. Using 

polygenic scores, we also demonstrated that disparities in smoking due to genes that are 

associated with educational attainment have grown across birth cohorts.

Why might this be? What mechanisms might drive the changes we observe over historical 

time? Results from our mediation analyses suggest that the growth of a particular type of 

pleiotropic effect is responsible for much of this change. We turned first to a common but 

problematic explanation regarding socioeconomically-stratified health behaviors: 

intelligence (Herrnstein and Murray 1994). One of the most important findings of this paper 

is that our results do not support the idea that verbal cognition plays a role in explaining the 

increased genetic correlation between education and smoking.

Instead, it appears that education itself and/or the status associated with it is now, more so 

than in the past, likely to encourage non-smoking. Specifically, we find that years of attained 

education has explained a larger portion of the relationship between the genes that predict 

education and smoking behavior over time. Thus, the social selection we explore appears to 

operate in such a way that genes related to education are associated with selection into 

environments that are increasingly not conducive to smoking. We believe this to be driven by 

historic macro changes regarding educationally-conditioned smoking norms over time. 

While we cannot make strong general causal claims based on these analyses, these exercises 

lend support for the role of genes implicated in educational attainment which is then an 

increasingly important causal mechanism for smoking.

While historical time is a powerful context, it is also incredibly broad with multiple sources 

of potential influence. To narrow the range of potential influences and to sharpen the scope 

of our inquiry, we focused on a more proximate social context (school socioeconomic status) 

to isolate one potential mechanism. Here the mediating effect of education on smoking was 

strongest in the environment characterized by the highest school-level SES (as proxied by 

maternal education), or in the environment with more restrictive anti-smoking norms and 

requisite resources to enforce anti-smoking behaviors. Thus we show evidence of salient 
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mechanisms in exactly the social contexts in which we expect developmental norms around 

smoking behavior and the effects of education on smoking to differ substantially: the school 

environment. We note that if we are pinpointing a culprit for the increases we observe in rG 

over time, the adolescent processes in school environments are likely important places to 

look.

Accordingly, this concept of (rG)xE, the environmental moderation of genetic correlation, 

has broad and innovative relevance to sociology. The sociological perspective, with its 

comprehensive vision of the environment and its attention to overarching social structures, 

fits squarely within mainstream gene-by-environment interaction (GxE) research, which has 

already demonstrated that genetic effects on single phenotypes are environmentally 

contingent (Boardman et al. 2013). We push the sociological perspective further by 

illustrating that the social environment also has the power to transform the relationship 

between complex human behaviors at the genetic level. The (rG)xE model is therefore a 

logical step forward in conceptualizing gene-environment interplay for social scientists, 

since it has long been understood that there are multiple competing and interacting 

influences that shape outcomes. Our results suggest that genes are becoming increasingly 

important for understanding the link between education and smoking but that this process 

has been a fundamentally social one. This, we believe, is among the most important 

contributions of our paper.

The (rG)xE perspective for the first time embeds the genetic antecedents of more than one 

phenotype within a single conceptual model. Consequently, it highlights that the extent to 

which outcomes in distinct domains develop as a bundled set based on genes may differ 

across environmental conditions. Thus, this perspective can be used to identify whether there 

are genetic bases for other observed correlations and to explore how this genetic overlap 

differs across environments. In particular, examining variations in the genetic correlation 

between health conditions and either education or other measures of socioeconomic status, 

sheds light on the mechanisms producing disparities in health (e.g., Boardman, Domingue, 

and Daw 2015). Indeed, prior work shows that genes partially explain the overlap between 

low education and high blood pressure, low cholesterol, or high waist circumference 

(Vermeiren et al. 2013). Future research could examine how this overlap varies across time 

or across specific institutional and policy regimes. It may also assess whether declines in the 

genetic correlation between two traits correspond to similar shifts in the observed 

correlation, which indicate variation in socioeconomic disparities in health. By extension, 

assessing (rG)xE reveals something novel about the nature of inequality and how societal 

conditions either ameliorate or intensify it.

Stratification is not the only research area in which the (rG)xE perspective may be 

illuminating. In the same way that an intersectional perspective permeates much of the 

sociological literature (Collins 2015), one might imagine moderating effects of not just time, 

but of gender or social class, for example, on the genetic correlation between any number of 

traits (e.g., fertility and education, risk taking behavior and peer association networks, 

subjective wellbeing and occupational prestige). The novelty of the (rG)xE perspective is 

that we can better gauge whether outcomes in distinct domains of life become more strongly 

bundled in some environmental conditions than others.

Wedow et al. Page 16

Am Sociol Rev. Author manuscript; available in PMC 2019 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite the significance of our results, it is important to consider some weaknesses of the 

current study. First, while our results are consistent with the idea that mediated pleiotropy 

has grown across birth cohorts (such that the causal effect of educational attainment on 

smoking has increased), we are unable to fully disentangle this from different forms of 

pleiotropy. It is still possible that other forms of pleiotropy play a role in generating the 

genetic correlation between education and smoking, especially given the changing patterns 

in assortative mating and child-rearing strategies that have been observed over birth cohorts 

(Domingue et al. 2014). Next, we cannot empirically discern whether the causal effect of 

education on smoking has grown across birth cohorts or whether the reverse is true (i.e., that 

the effect of smoking on education has grown). While we can make no certain claims about 

the absence of reverse causation, prior work suggests that our causal ordering is likely to 

play a larger role (Pampel et al.2010). There is also new pleiotropic evidence suggesting that 

often the biological mechanisms uncovered for education are the same as those already 

uncovered in similar studies for smoking (Karlsson and Linner 2017). The social and 

behavioral pathways that led to this form of pleiotropy remains unknown; we believe that the 

sociological perspective provides critical insights into this form of correlation.

CONCLUSION

We write this article at a time of controversy in the subfield of social science genetics. 

Though researchers have increasingly called for the incorporation of biological insights into 

social science inquiry (Freese, Li, and Wade 2003; Freese and Shostak 2009; Boardman, 

Daw, and Freese 2013; Shostak and Beckfield 2015), there is also concern that the field has 

begun to head away from understanding the social origins upon which our subfield was 

founded. In particular, some worry that in speculating beyond their empirical findings, 

sociogenomicists may reach for controversial conclusions that hint at biological 

determinism, claims that are dangerous for broader sociology and the social world.

In this paper, we wish to return the social science of genetics to its roots — roots which 

begin at the heart of sociological inquiry – while also extending it to the study of 

relationships between complex human outcomes. We assert that many genetic associations 

are fundamentally sociological in nature. Given this, genes are far from causal or 

deterministic. Rather, a deeper understanding of how genes operate in the population tells us 

far more about the social environment and about social structure than about the effects of 

any one individual’s genotype or genetic propensity.

We highlight that the study of human genetics that is divorced from an understanding of 

social forces is likely to produce misleading conclusions. Using this particular study as an 

example, consider a researcher carrying out a genome wide study of smoking in 1950. That 

researcher may have uncovered genetic variants relevant to the biology of smoking — such 

as those involved in the metabolism of nicotine — variants that could in fact have been good 

candidates for pharmaceutical interventions (Boardman et al. 2010). However, given the 

social forces at work and the evidence found in this study, if a similar study of smoking was 

carried out in a younger set of individuals today, a researcher would be more likely to 

identify variants that are in fact predicting educational attainment. The associations with 

smoking would be spurious. Individuals who get more schooling are selected into 
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environments where smoking is no longer acceptable. And thus we arrive at the larger 

sociological contribution of this study: without a deeper understanding of the environment 

and broad social forces, genetic research may produce unsound conclusions.

As sociologists, we have long been fascinated with understanding and explaining the causes 

of non-random variation within a population. Our field is well-equipped with a vibrant and 

rich history that highlights how this non-random variation is in fact driven by the 

fundamental social forces which define human interactions and behavior. Here we use the 

tools of population genetics as a way to gain insight into how the social environment might 

structure genetic correlation over time. In doing so we show not only that there is valuable 

insight to be gained by incorporating genetic concepts into sociological research, but also 

how much sociology has to contribute to the field of population genetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

APPENDIX

Quality control of genetic data

Quality control of the genetic data in this study involved three separate quality control 

processes.

Imputation quality control

We imputed the HRS and Add Health data to the Haplotype Reference Consortium (HRC) 

reference panel (McCarthy et al. 2016) using the Michigan Imputation Server (Das et al. 

2016). Before imputation, we applied quality control filters to both data sets using PLINK, 

Version 1.9 (Chang et al. 2015). We determined genetic ancestry, and removed all non-

European individualsxii. We also removed individuals who were ancestral outliers, who had 

excessive levels of heterozygosity, and who were missing more than 5% of their genetic data 

(per chromosome). Next, we dropped all non-autosomal SNPs, all SNPs with missing call 

rates exceeding 0.02, all SNPs with Hardy-Weinberg equilibrium (HWE) exact test p-value 

below 10−4, and all SNPs with a minor allele frequency (MAF) below 0.01.

GWAS quality control

Before performing genome-wide association studies, we applied another set of standard QC 

filters on the imputed genetic data in both the HRS and Add Health. In the HRS, we began 

with 12,454 individuals and 20,994,118 imputed variants. We removed 3,802 non-European 

individuals; 3 individuals who were missing more than 5% of their genetic data; and 283 

randomly selected individuals who were in pair with genetic relatedness greater than 0.025. 

We further removed 2,286,958 SNPs with missing call rates exceeding 0.02; 3,632 SNPs 

with Hardy-Weinberg equilibrium exact test p-values below 10−4; and 12,336,437 SNPs 

xiiNon-Europeans were removed before imputation in Add Health, but after imputation in the HRS.
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with a minor allele frequency below 0.01. In total then, 8,366 individuals and 6,367,091 

SNPs were eligible to be included in our HRS association studies.

In Add Health, we began with 5,191 individuals and 38,909,200 imputed variants. We 

removed 785 individuals who were missing more than 5% of genetic data; and 0 individuals 

who, for a given pair, had an observed genetic relatedness greater than 0.025. We further 

remove 0 SNPs with missing call rates exceeding 0.02; 8,802 SNPs with Hardy-Weinberg 

equilibrium exact test p-values below 10−4; and 31,333,710 SNPs with a minor allele 

frequency below 0.01. In total for Add Health, 4,406 individuals and 7,566,688 SNPs were 

eligible to be included in our association studies.

LDpred quality control

Our LDpred polygenic scores in the HRS and Add Health were composed only of unrelated 

European-ancestry individuals. For the HRS, there were 12,094,964 SNPs in the meta-

analysis of educational attainment. Of these, 1,535,195 SNPs were genotyped in HRS with a 

call rate above 98% and have a HWE test p-value greater than 10−4. 48,878 strand-

ambiguous SNPs, 128,822 SNPs with minor allele frequencies less than 1%, and 47 SNPs 

with a high minor allele frequency discrepancy between the meta-analysis and the HRS 

prediction cohort were excluded, leaving 1,357,448 SNPs that were used to construct the 

scores. For Add Health, of the 12,094,964 SNPs in the meta-analysis, 704,105 were 

genotyped in Add Health with a call rate above 98% and had a HWE test p-value greater 

than 10−4. Zero strand-ambiguous SNPs, 300 SNPs with minor allele frequency less than 

1%, and 10 SNPs with a substantial discrepancy in minor allele frequency between the meta-

analysis and Add Health prediction cohort were excluded, leaving 703,795 SNPs that were 

used to construct the Add Health scores.

LDSC additional methods

In addition to the results from GWAS, LDSC requires as an input a reference data set 

detailing the structure of LD in a population of similar ancestry. The reference data set 

specifies an LD score for each SNP, which measures the extent to which the SNP is in LD 

with other genetic markers. We use a reference panel constructed by Finucane et al. (2015) 

using data from Europeans involved in the 1,000 Genomes Project. After merging the SNPs 

from our data sets with this reference panel, we were able to use about 1,105,000 SNPs from 

the HRS and roughly 1,163,000 SNPs from Add Health with LDSC.

LDSC uses the following moment formula to generate estimates of heritability and genetic 

covariance:

E z1 jz2 j = Intercept +
N1N2
M Covg𝓁 j, [Equation S1]

where zkj is the effect of genotype at SNP j on phenotype k (k = 1, 2) estimated via GWAS 

and expressed as a z-score, Intercept is the regression intercept, Nk is the number of 

respondents in the GWAS of phenotype k, M is the number of SNPs included in the GWAS, 
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Covg is the genetic covariance between phenotypes 1 and 2, and 𝓁 j is the LD score of SNP j, 

which is a measure of the extent to which SNP j is in LD with other SNPs. By simple 

algebraic rules, one can estimate the genetic covariance between phenotypes 1 and 2 with 

the coefficient generated through from a regression of z1jz2j on N1N2𝓁j, multiplied by M. 

Heritability can be thought of as a special case of genetic covariance: it is the genetic 

covariance of a phenotype with itself. Thus, estimating the heritability of phenotypes 1 (h1
2) 

and 2 (h2
2) with LDSC involves regressing z1jz1j on N1𝓁j and z2jz2j on N2𝓁j, respectively.

LDSC estimates the genetic correlation, rg, between two phenotypes as the estimated 

genetic covariance between the phenotypes of interest scaled by their estimated 

heritabilities:

r g =
Covg

h1
2h2

2 [Equation S2]

Standard errors for both heritabilities and genetic correlation are estimated by using a block 

jackknife over all SNPs.
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Figure 1. 
Education, smoking, and types of pleiotropy
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Figure 2. 
LDSC genetic correlations between education and height and between education and 

smoking in the HRS and Add Health, with 95% confidence intervals
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Figure 3. 
Estimated marginal effects of the polygenic score for educational attainment on probability 

of having ever smoked regularly, with and without educational attainment as a control, for 

the early HRS cohort (birth years 1920–1938), the late HRS cohort (1939–1959), and the 

Add Health cohort (1974–1983)
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Table 1.

Coding of educational attainment in the HRS and Add Health

HRS

Label Code N %

8 years or fewer, w/o HS diploma, GED, or college experience 8 306 3.74

9+ years, w/o HS diploma, GED, or college experience 10 717 8.76

HS diploma or GED, w/o college experience 12 3142 38.41

13 years (with a HS diploma/GED and college experience) 13 660 8.07

14 years (with a HS diploma/GED and college experience) 14 886 10.83

15+ years, w/o BA (with a HS diploma/GED and college experience) 15 433 5.29

BA (<=16 years) 16 938 11.47

BA (17+ years) 17 276 3.37

MA/MBA 19 632 7.73

PhD/Law/MD 20 191 2.33

Total 8,181 100

Add Health

Label Code N %

8th grade or less 8 15 0.35

Some high school 10 292 6.72

High school graduate 12 689 15.85

Some vocational/technical training (post-HS) 13 147 3.38

Completed vocational/technical school (post-HS) 14 280 6.44

Some college 15 1476 33.95

BA 16 919 21.14

Some graduate or professional school 17 194 4.46

MA 19 257 5.91

PhD or professional school 20 78 1.79

Total 4,347 100

Notes: HS: High school; GED: General Education Diploma; BA: Bachelor’s degree; MA: Master’s degree; MBA: Master of Business 
Administration; PhD: Doctoral degree; MD: Medical degree. HRS: Health and Retirement Study (RAND 2016); Add Health: National 
Longitudinal Study of Adolescent to Adult Health (Harris et al. 2009).
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Table 2.

Descriptive statistics from the HRS and Add Health

HRS

Mean SD Min Max

Years of education 13.49 2.77 8 20

Ever smoked regularly 0.57 0.49 0 1

Height in centimeters (n = 8,180) 169.93 9.84 127 211

Female 0.57 0.49 0 1

Year of birth 1938.38 9.32 1920 1959

Age when DNA sample taken 68.07 9.36 46 88

N = 8,181

Add Health

Mean SD Min Max

Years of education 14.66 2.27 8 20

Ever smoked regularly 0.53 0.5 0 1

Height in centimeters (n = 4,336) 171.33 9.92 123 204

Female 0.54 0.50 0 1

Year of birth 1978.98 1.74 1974 1983

Age when DNA sample taken 28.42 1.77 24 34

N = 4,347

Notes: HRS: Health and Retirement Study (RAND 2016); Add Health: National Longitudinal Study of Adolescent to Adult Health (Harris et al. 
2009).
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Table 5.

Mediation model: Marginal effects from probit models of ever regular smoking, controlling for respondent’s 

verbal cognition score

Add Health (1974–1983)

Cognition control

No Yes

PGS for education −0.076*** −0.068***

(0.007) (0.001)

Verbal cognition score — −0.003***

— (0.001)

% Mediated 10.708%

N 4,163

***
p<0.001,

**
p<0.01,

*
p<0.05; Robust standard errors in parentheses; PGS: Polygenic score

Models control for genetic sex, year of birth, and their interaction. All variables are held at their means to estimate marginal effects.
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