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Observational studies have reported that the severity of COVID-19 depends not only

on physical conditions but also on socioeconomic status, including educational level.

Because educational attainment (EA), which measures the number of years of schooling,

is moderately heritable, we investigated the causal association of EA on the risk of

COVID-19 severity using the Mendelian randomization (MR) approach. A two-sample MR

analysis was performed using publicly available summary-level data sets of genome-wide

association studies (GWASs). A total of 235 single-nucleotide polymorphisms (SNPs)

were extracted as instrumental variables for the exposure of EA from the Social Science

Genetic Association Consortium GWAS summary data of 766,345 participants of

European ancestry. The effect of each SNP on the outcome of COVID-19 severity risk

was obtained from the GWAS summary data of 1,059,456 participants of European

ancestry gathered from the COVID-19 Host Genetics Initiative. Using inverse variance

weighted method, our MR study shows that EA was significantly associated with a

lower risk of COVID-19 severity (odds ratio per one standard deviation increase in years

of schooling, 0.540; 95% confidence interval, 0.376–0.777, P = 0.0009). A series of

sensitivity analyses showed little evidence of bias. In conclusion, we show for the first

time using a two-sample MR approach the associations between higher EA and the

lower risk of COVID-19 severity in the European population. However, the genetic or

epidemiological mechanisms underlying the association between EA and the risk of

COVID-19 severity remain unknown, and further studies are warranted to validate the

MR findings and investigate underlying mechanisms.

Keywords: Mendelian randomization, COVID-19, SARS-CoV-2, educational attainment, years of schooling

INTRODUCTION

The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2), was originally reported as an outbreak of atypical
pneumonia cases in Wuhan in the Hubei Province of China in December 2019. As of March
2021, the COVID-19 death toll has topped 2.8 million worldwide according to the World Health
Organization (1). Serious COVID-19 patients have pneumonia with hypoxia and may be critical
with acute respiratory distress syndrome, pulmonary fibrosis, and other organ failures (2).
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Observational studies report that the severity of COVID-
19 depends not only on physical conditions such as age,
cardiovascular disease, and obesity (3–8) but also on
socioeconomic status (SES) indicators such as lower incomes
and lower educational level among various populations
(9–12). In the European population, lower education level was
associated with a higher risk of severe COVID-19 cases that were
confirmed either at emergency departments or as inpatients and,
therefore, likely reflect severe illness as well as a higher risk of
asymptomatic COVID-19 cases in a prospective cohort study
using UK Biobank data (9). However, traditional observational
studies lacking randomization designs are generally prone to
bias by various factors, including confounders and reverse
causations (13).

Mendelian randomization (MR) is an epidemiological method
that mimics the design of randomized controlled studies
using single-nucleotide polymorphisms (SNPs) as instrumental
variables (IVs) and examines the causal effects of a risk factor
on an outcome of interest. Because genetic variants, such
as SNPs, are randomly assigned at conception according to
Mendel’s law, MR studies are not influenced by confounders or
reverse causations and can overcome limitations of observational
studies (13). Educational attainment (EA) is highly affected by
environmental and social factors but is also moderately heritable
as shown by genome-wide association studies (GWASs) (14, 15).
Therefore, we were motivated to investigate in this study whether
EA had a causal effect on the risk of COVID-19 severity using the
MR approach.

METHODS AND MATERIALS

Study Design and Data Sources
We conducted a two-sample MR study using publicly available
summary statistics from two GWASs to investigate whether EA
was associated with risk of COVID-19 severity. In MR analysis,
SNPs from the exposure data set are used as IVs. IVs must
satisfy the following three assumptions: The IVs are associated
with the exposure (IV assumption 1), the IVs affect the outcome
only via the exposure (IV assumption 2), and the IVs are
not associated with measured or unmeasured confounders (IV
assumption 3) (16). For the exposure data set of EA, which
measured the number of years of schooling that individuals
had completed, the SNPs were obtained from the Social Science
Genetic Association Consortium’s GWAS summary data of
766,345 participants of European ancestry (13), which was a
meta-analysis of 70 discovery cohorts (excluding 23andMe) as
shown in Supplementary Table 1. This data set was publicly
available from theMRC IEUOpenGWAS database (17) andMR-
Base (18) given as GWAS-ID of “ieu-a-1239.” For the outcome
data set of the risk of COVID-19 severity, the SNPs were obtained
from summary-level GWAS data of COVID-19-hg GWAS meta-
analyses (round 5) including 14 studies, but excluding the UK
Biobank, with a total of 1,059,456 participants (4,792 very severe
respiratory confirmed COVID-19 cases and 1,054,664 controls)
of European ancestry by the COVID-19 Host Genetics Initiative
(19) (Supplementary Table 1), which was released on January 18,
2021, and was also publicly available (20). Very severe respiratory

confirmed COVID-19 cases were defined as hospitalization
for laboratory confirmed SARS-CoV-2 infection with death or
respiratory support (20).

Selection of Instrumental Variables
The SNPs were selected from the exposure GWAS summary
data as IVs by clumping together all SNPs that were associated
with EA at a genome-wide significance threshold (P < 5.0 ×

10−8) and were not in linkage disequilibrium (r2 < 0.01 and
distance > 10,000 kb) with the other SNPs. Palindromic SNPs
with minor allele frequency > 0.42 were excluded from the
analyses (16, 21). As a sensitivity analysis, we also excluded all
palindromic SNPs regardless of minor allele frequencies (22). We
studied only SNPs that were present in both the exposure and
outcome GWAS data sets and did not include proxy SNPs in
the analysis (22, 23). To evaluate the strength of the IVs, we
calculated the F-statistic of each SNP using the following formula:
F-statistic= R²× (N−2)/(1−R²), where R2 is the variance of the
phenotype explained by each genetic variant in exposure, and N
is the sample size. R2 was calculated using the following formula:
R² = 2 × (Beta)2 × EAF × (1−EAF)/[2 × (Beta)2 × EAF ×

(1−EAF) + 2 × (SE)2 × N × EAF × (1−EAF)], where Beta
is the per allele effect size of the association between each SNP
and phenotype, EAF is the effect allele frequency, and SE is the
standard error of Beta (24). IVs with an F-statistic <10 were
regarded as weak instruments (25).

Two-Sample Mendelian Randomization
The Wald ratio, which estimates causal effect for each IV, was
calculated as the ratio of Beta for the corresponding SNP in
the outcome data set divided by Beta for the same SNP in the
exposure data set (26). Our main approach was to conduct a
meta-analysis of each Wald ratio by inverse variance weighted
(IVW) method using multiplicative random-effects model to
estimate overall causal effect of the exposure on the outcome.
The causal effects were calculated as the odds ratio (OR) for
the risk of COVID-19 severity per one standard deviation
(SD) increase in years of schooling (one SD is equivalent
to 4.2 years) (15, 27). In addition, we conducted sensitivity
analyses by MR-Egger regression, weighted median method,
MR-PRESSO (Mendelian Randomization Pleiotropy RESidual
Sum and Outlier) global test, and leave-one-out sensitivity
analysis. The MR-Egger regression method is used to assess
horizontal pleiotropy of IVs. When IV assumption 2 is violated,
horizontal pleiotropy occurs, and MR-Egger regression intercept
significantly differs from zero (28, 29). The weighted median
method provides a valid causal estimate when more than half of
the instrumental SNPs satisfy the IV assumptions (24). The MR-
PRESSO global test investigates whether there are outlier SNPs
whose variant-specific causal estimates differ substantially from
those of other SNPs (30, 31). Leave-one-out sensitivity analysis
was conducted to assess the reliability of the IVW method
by removing each SNP from the analysis and reestimating the
causal effect (31). Moreover, among SNPs associated with EA,
we searched for SNPs associated with P < 5.0 × 10−8 with
pleiotropic effects on bodymass index (BMI), smoking, and other
SES using the web tool PhenoScanner (version 2) (32, 33). The
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heterogeneity was also measured between the causal estimates
across all SNPs in the IVW method calculating Cochran’s
Q statistic and I2 statistic (34). Low heterogeneity provides
more reliability for a causal effect (35). We conducted
all the two-sample MR analyses using “TwoSampleMR”
package (version 0.5.5) in R (version 4.0.3) (36). A P-value

TABLE 1 | MR results of the causal effect of EA on the risk of COVID-19 severity.

IVW method Weighted

median

method

MR-Egger

regression method

Heterogeneity

(IVW)

MR-

PRESSO

global test

OR (95% CI) OR (95% CI) OR (95% CI) Intercept Cochran’s Q

P-value P-value P-value P-value P-value P-value

0.540

(0.376–0.777)

0.484

(0.283–0.826)

0.353

(0.084–1.483)

0.006 261.9

P = 0.0009 P = 0.008 P = 0.156 P = 0.548 P = 0.102 P = 0.115

MR, Mendelian randomization; COVID-19, coronavirus disease 2019; EA, educational

attainment; IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval.

below 0.05 was considered statistically significant in all
statistical analyses.

RESULTS

In total, 235 instrumental SNPs were identified for both EA
and the risk of COVID-19 severity GWAS data sets. The
characteristics of all the SNPs included in our analysis are shown
in Supplementary Table 2. The F-statistic of every instrument
was>29, thus suggesting that weak instrument bias was unlikely.

The IVWmethod showed that EA was significantly associated
with a lower risk of COVID-19 severity [OR per 1-SD increase
in years of schooling, 0.540; 95% confidence interval (CI),
0.376–0.777; P = 0.0009] in the European population (Table 1,
Figure 1, and Supplementary Figure 1). Cochran’s Q statistic
and I2 statistic for the IVW method were 261.9 (P = 0.102)
and 0.110, indicating low heterogeneity and more reliability
for the causal effect. Other MR methods also showed overall
consistent protective effects for EA on the risk of COVID-19
severity although the MR-Egger regression estimate did not have
statistical significance (Table 1 and Figure 1). However, when

FIGURE 1 | Scatter plots. Each black point representing an SNP is plotted in relation to the effect size of the SNP on years of schooling (x-axis) and on the risk of

COVID-19 severity (y-axis) with corresponding standard error bars. The slope of each line corresponds to the causal estimate using inverse variance weighted (light

blue), weighted median (green), and MR-Egger regression (blue) method.
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I2 statistics are much <1, no measurement error assumption
is violated and MR-Egger regression tends to underestimate
the causal effect (34). In fact, Cochran’s Q statistic and I2

statistic for our MR-Egger regression were 261.5 (P = 0.097)
and 0.113 (much <1), respectively. The MR-Egger intercept
was 0.006 (P = 0.548), indicating little evidence of horizontal
pleiotropy. The weighted median method indicated that more
than half of the instrumental SNPs in our analysis satisfied the
IV assumptions. The funnel plot showed general symmetry,
suggesting little evidence of heterogeneity or horizontal
pleiotropy (Supplementary Figure 2). MR-PRESSO global test
(P = 0.115) and leave-one-out sensitivity analysis suggested the
lack of an outlier SNP whose variant-specific causal estimate
differed substantially from those of other SNPs (Table 1 and
Supplementary Figure 3). We excluded all palindromic SNPs
regardless of minor allele frequencies from the IVW method,
and then we obtained a comparable result to that of the
original IVW method (OR, 0.540; 95% CI, 0.366–0.796, P =

0.0019; number of instrumental SNPs; 209). Our search using
PhenoScanner identified 17 SNPs that were associated with BMI
(rs10073890, rs11123818, rs13090388, rs1334297, rs1566085,
rs1618725, rs1689510, rs1964927, rs2725370, rs2820314,
rs4787457, rs56391344, rs62444881, rs66568921, rs67890737,
rs9372625, rs9384679), three SNPs that were associated with
smoking traits (rs10240905 with pack years adult smoking as
proportion of life span exposed to smoking, rs2179152 with
pack years of smoking, and rs66568921 with ever smoked), and
six SNPs that were associated with other SES traits (rs1008078
with Townsend deprivation index at recruitment, rs13090388,
rs34316, and rs9372625 with job involving heavy manual or
physical work, rs1391438 and rs2971970 with job involving
mainly walking or standing), respectively. We excluded the 17
SNPs that were associated with BMI from the IVW method,
and then we obtained a comparable result to that of the original
IVW method (OR, 0.550; 95% CI, 0.373–0.810, P = 0.0025;
number of instrumental SNPs; 218) (see section Discussion).
When we excluded the three SNPs that were associated with
smoking traits from the IVWmethod, we obtained a comparable
result to that of the original IVW method (OR, 0.557; 95%
CI, 0.386–0.803, P = 0.0018; number of instrumental SNPs;
232). Similarly, we excluded the six SNPs that were associated
with other SES traits from the IVW method, and then we
obtained a comparable result to that of the original IVW
method (OR, 0.536; 95% CI, 0.372–0.773, P = 0.0009; number
of instrumental SNPs; 229). Moreover, when we excluded
all 23 SNPs that were associated with BMI, smoking traits,
and other SES traits (three SNPs overlapped), we obtained a
comparable result to that of the original IVW method (OR,
0.565; 95% CI, 0.382–0.835, P = 0.0042; number of instrumental
SNPs; 212).

We noticed some possible overlap between the exposure
GWAS participants and the outcome GWAS participants
as shown in Supplementary Table 1. This might have
led to bias in the causal estimate of EA on the risk
of COVID-19 severity, but the bias was unlikely to be
substantial because the possible overlap was small as
discussed below.

DISCUSSION

To our knowledge, this is the first MR study to investigate the
association between EA and the risk of COVID-19 severity.
Observational studies report that a lower level of education
influences the severity of COVID-19 among various populations
(9–12). In the European population, those who had no
qualification (equivalent to seven years of education) (37) had a
higher risk of severe COVID-19 (i.e., a positive test for SARS-
CoV-2 in a hospital setting either at emergency departments or
as inpatients) than those who had college or university degree
(equivalent to 20 years of education) (37) in fully adjusted
model [risk ratio (RR), 1.58; 95% CI, 1.25–1.99; p < 0.001] in
a prospective cohort study using UK Biobank data (9). Our two-
sample MR approach supported, with little evidence of bias, the
causal effect of higher EA on the risk of COVID-19 severity
(OR, 0.540; 95% CI, 0.376–0.777; P = 0.0009) in the European
population, which was consistent with the cohort study. In other
populations, a risk-adjusted model of a large cohort, including
62,298 COVID-19 deaths, showed that lower education levels
were strongly associated with the level of COVID-19 fatalities per
100,000 persons (rate ratio, 1.08; 95% CI, 1.05–1.11; P < 0.0001)
in severely distressed counties in the United States (10). Another
study in the United States showed that education level with a
bachelor’s degree was associated with a lower rate ofmortality due
to COVID-19 (estimate,−0.246; 95% CI,−0.388 to−0.103; P =

0.0008) across various ethnicities in the sevenmost affected states
(11). In São Paulo, Brazil, among patients under 60 years of age
and living in areas with the lowest percentage (below 8.61%) of
the population with a university degree, COVID-19mortality was
four times higher than that among those living in areas with the
highest percentage (over 34.80%) of population with a university
degree (rate ratio, 4.02; 95% CI, 3.42–4.72) (12). However, our
MR analysis was based on populations of European ancestry, and
the findings are unlikely to be generalized to other populations
and ethnicities.

In our MR analysis, underlying genetic or epidemiological
mechanisms of how EA lowered the risk of COVID-19 severity
remain unknown. Therefore, although a range of sensitivity
analyses indicated the robustness of our MR findings, we
must pay careful attention to the possibility of unmeasured
horizontal pleiotropy of genetic IVs for EA. Observational
studies showed that higher EA was associated with decreased
prevalence of smoking, physical inactivity, obesity, hypertension,
and hypercholesterolemia (38). We infer that other risk factors,
including BMI and lifetime smoking, were related to the causal
effect of EA on the risk of COVID-19 severity in our analysis
for the following reasons. First, MR studies have shown that
EA has causal effects on decrease of BMI (39, 40). Second, MR
studies have shown that BMI has a causal effect on the risk
of COVID-19 severity (29, 41, 42). Consistent with the MR
results showing the effect of BMI on the risk of COVID-19
severity, the risk-adjusted model showed that, in addition to
the two socioeconomic factors of low level of education and
a proportionally larger Black population, obesity was the only
physical risk factor in the U.S. cohort (10). Other observational
studies also have reported that BMI is a risk factor for hospital
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admission, disease severity, and in-hospital mortality due to
COVID-19 (5–8). Consistently, our search using PhenoScanner
identified 17 SNPs that were associated with both EA and BMI
with P < 5.0 × 10−8. Similarly, MR studies have shown that EA
has causal effects on increased lifetime smoking (39) and that
lifetime smoking has a causal effect on the risk of COVID-19
severity (41) although the associations between smoking and the
risk of COVID-19 remain controversial in observational studies
(41). Therefore, the causal effect of EA on the risk of COVID-19
severity may be at least partly mediated through increases of BMI
and lifetime smoking. Even if that is the case, EA would remain
an intervention target for COVID-19 severity (43). In fact, when
we excluded the 17 SNPs that were associated with BMI and the
three SNPs that were associated with smoking traits, we obtained
comparable results to the result of the original IVW method
as described above. This supports the idea that EA remains an
intervention target for COVID-19 severity because EA lowered
the risk of COVID-19 severity to some extent independently of
the effects of BMI and smoking.

Epidemiologically, the protective effect of EA on the risk
of COVID-19 severity may be related to the social benefit of
education. Observational studies showed that lower EA as well
as other SES was associated with disparities in medical care
(44). For example, counties in the United States with a higher
percentage of people below the poverty level had a significantly
lower percentage of the population with higher education as well
as a lower percentage of people insured (11), and counties in
the United States with higher income and education, a lower
rate of disability, and a higher rate of the insured population
were at a lower risk of COVID-19 mortality (11). However, we
must pay attention to interpret the causal association between
lower EA and the risk of COVID-19 severity because it remains
unclear epidemiologically whether less educated people are more
likely to develop severe COVID-19 symptoms. In other words,
there is possibility that less educated people are more likely to be
socioeconomically disadvantaged and to have an increased risk of
SARS-CoV-2 transmission due to poor housing, overcrowding,
and low-paid essential jobs that make social distancing more
challenging (45). As a result of higher COVID-19 incidence, they
may have a higher risk of COVID-19 severity. Ascertainment
bias could also arise due to differential healthcare seeking,
differential testing, and differential prognosis (9). We could
not conduct an MR analysis investigating a causal effect of
EA on the risk of COVID-19 incidence as described below.
However, the prospective cohort study using UK Biobank data
showed that both lower education and area-level socioeconomic
deprivation by the Townsend index were associated with having
a positive test including asymptomatic COVID-19 [RR 1.46
for no qualifications vs. degree (95% CI 1.19–1.79), and RR
1.39 for most deprived quartile vs. least (95% CI 1.12–1.71)]
as well as a higher risk of testing positive in hospital (i.e.,
severe COVID-19 cases) [RR 1.58 for no qualifications vs. degree
(95% CI 1.25–1.99), and RR 1.54 for most deprived quartile
vs. least (95% CI 1.21–1.97)] in the fully adjusted model (9).
The authors discussed that there remained the possibility that
some socioeconomic groups had a poorer prognosis and were,
therefore, more likely to be admitted to hospital and, therefore,
to be tested (9).

The present study includes the following strengths. First,
the samples used were gathered across populations with the
same European ancestries, reducing substantial bias in our
study. Among different genetic ancestries, effect sizes and allele
frequencies can differ and lead to substantial bias (24). Second,
we used the publicly available GWAS data sets with the largest
sample sizes hitherto for both the exposure and outcome data
sets. F-statistics were also large enough for weak instrument bias
to be unlikely. Third, a range of sensitivity analyses relaxed the IV
assumptions and supported the robustness of our MR findings.

However, we must pay attention to several major limitations.
First, in the Geisinger Health System study, the participants in
the exposure GWAS may have overlapped with the participants
in the outcome GWAS as shown in Supplementary Table 1. This
might have led to bias in the causal estimate of EA on the risk
of COVID-19 severity (46). It was difficult for us to exclude
the Geisinger Health System study because we used summary-
level data for the exposure and outcome data sets. However, the
participants in the Geisinger Health System study represented
only 1.9% (14,562 out of 766,344) of those in the exposure GWAS
data set. Moreover, the participants in the Geisinger Health
System_EUR study represented only 1.2% (53 out of 4,392) of
the severe COVID-19 cases, and most of them (10.7%, 112,862
out of 1,054,664) were controls in the outcome GWAS data set. If
the data sets are of different sizes, the percentage overlap should
be taken with respect to the larger data set (46). Therefore, vast
majority of the participant overlap in the outcome GWAS data
set occurred, if at all, among the controls. In that situation, the
bias is unlikely to be substantial, and unbiased causal estimates
are expectedly obtained in two-sample MR studies (41, 46).
On the other hand, we could not conduct an MR analysis
investigating a causal effect of EA on the risk of COVID-19
incidence because the summary-level GWAS data of COVID-
19 incidence (i.e., 32,494 SARS-CoV-2 infection cases and
1,316,207 controls in the European population) by the COVID-
19 Host Genetics Initiative (19, 20) had possible participant
overlap [at most, 16.2% (5,270 out of 32,494) of the SARS-CoV-
2 infection cases in the deCODE_EUR, the Geisinger Health
System_EUR, and the Netherlands Twin Register_EUR studies]
with the EA GWAS data set that could cause substantial bias (46)
(Supplementary Table 1). Second, our MR findings might be
affected by unmeasured horizontal pleiotropy as described above.
As is the often the case with many MR studies, strictly satisfying
all the IV assumptions can be challenging (47). Third, our MR
analysis was based on populations of European ancestry, and
the findings are unlikely to be generalized to other populations
and ethnicities. Fourth, we could not conclude that the risk of
COVID-19 severity could decrease simply by increasing years
of schooling because the underlying genetic or epidemiological
mechanisms remain unknown.

In conclusion, we have shown for the first time using a two-
sample MR approach the associations between higher EA and
the lower risk of COVID-19 severity in the European population
that observational studies have reported. However, genetic or
epidemiological mechanisms underlying the association between
EA and the risk of COVID-19 severity remain unknown, and
further studies are warranted to validate our MR findings and
investigate underlying mechanisms.
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Supplementary Figure 1 | Forrest plots. Each black point represents the causal

estimate of each SNP on the risk of COVID-19 severity per increase in years of

schooling, and red points show the combined causal estimates using IVW and

MR-Egger regression methods with horizontal lines denoting 95%

confidence intervals.

Supplementary Figure 2 | Funnel plots. Each black point representing an SNP is

plotted in relation to the estimate of years of schooling on the risk of COVID-19

severity (x-axis) and the inverse of standard error (y-axis). Vertical lines show the

combined causal estimates using IVW (light blue) and MR-Egger regression

(blue) methods.

Supplementary Figure 3 | Leave-one-out sensitivity analysis. Each black point

represents the combined causal estimates on the risk of COVID-19 severity per

increase in years of schooling using IVW methods with horizontal lines denoting

95% confidence intervals after removing the corresponding SNP from the analysis.

Supplementary Table 1 | Contributing studies of the exposure GWAS data and

the outcome GWAS data.

Supplementary Table 2 | The characteristics of all the SNPs included in

our analysis.
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