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Abstract

Over the years a number of machine transla-

tion metrics have been developed in order to

evaluate the accuracy and quality of machine-

generated translations. Metrics such as BLEU

and TER have been used for decades. How-

ever, with the rapid progress of machine trans-

lation systems, the need for better metrics is

growing. This paper proposes an extension of

the edit distance, which achieves better human

correlation, whilst remaining fast, flexible and

easy to understand.

1 Introduction

Machine Translation (MT) has been a popular re-

search topic for the past few years. It deals with

the paradigm of how to automatically translate a

sentence or a set of sentences from a source lan-

guage to a different target language. In statistical

MT, this can be formally described as finding the

translation eI
1
= e1 . . . ei . . . eI with the highest

probability for a given source language sentence

fJ
1
= f1 . . . fj . . . fJ :

êÎ1 = argmax
I,eI

1

{p(eI1 | fJ
1 )} (1)

This approach models the translation task by

defining it as a search for the sentence that best

suits a given criterion. For example through log-

linear models as described by Och and Ney, 2002.

However, all approaches have to be evaluated to

quantify the quality and accuracy of the produced

translations. Naturally, the best method would be

to have human experts rate each produced trans-

lation in order to evaluate the whole MT system.

This is quite a costly process and is not viable for

development of MT systems. For this reason a

number of metrics exist that automate the process

and use different scoring methods to automatically

evaluate the produced translation based on a refer-

ence sentence. Two of the earliest and most pop-

ular metrics are BLEU (Papineni et al., 2002) and

TER (Snover et al., 2006).

This paper introduces a new MT metric: Ex-

tended Edit Distance (EED), based on an extension

of the Levenshtein distance (Levenshtein, 1966).

This metric follows a number of criteria:

• It is bound between zero and one.

• Its definition is kept simple, as it does not

depend on external dictionaries or language

analysis.

• It has competitive human correlation.

• It is fast to compute.

The remainder of this paper is structured as fol-

lows: first, related work is reviewed in Section 2;

Section 3 introduces the concept of edit distance

and the different existing extensions of it; Sec-

tion 4 introduces the EED metric in detail; A com-

parison with other metrics regarding human corre-

lation and speed is performed in Section 5; Finally,

a conclusion is drawn in Section 6.

2 Background

MT metrics compute a score based on the output

of a MT system, here called “candidate”, and a

“reference” sentence, which is provided. The ref-

erence is a valid translation of the original source

sentence to the target language, usually obtained

through a human expert. A metric aims to use

the pair of reference and candidate to give a nu-

merical value to the correctness of the translation.

A naı̈ve approach would be to directly compare

the candidate and reference in order to consider

the translation quality. This, however, cannot be

a good evaluation criterion since human language

has multiple ways of expressing the same idea, and

thus there is seldom one unique translation of a

sentence from one language to another.

Over the years, a number of metrics have been

created based on a variety of ideas and principles.
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Some examples for such principles can be seen in

the count-based metrics (BLEU, CHRF (Popovic,

2015)) or the edit distance based metrics (TER,

CHARACTER (Wang et al., 2016), CDER (Leusch

et al., 2006)).

Count-based metrics compute the n-grams of

both reference and candidate and then compare

them with each other using a scoring function.

One of the most used metrics – BLEU, uses word

level n-grams as input to a modified version of

precision to evaluate the translation accuracy. Fur-

thermore, a brevity penalty is applied if the candi-

date is shorter than the reference. CHRF uses the

F-score to produce a scoring based on character

level n-grams. In most cases, the shift from word

level n-grams to the character level results in bet-

ter human correlation (Popovic, 2015).

Edit distance based metrics utilise the edit dis-

tance to express the difference between the can-

didate and the reference. Since written language

allows for the word order to be changed without

significant change in meaning, the pure edit dis-

tance is too restrictive and is often extended by

additional operations. TER extends it by introduc-

ing “shifts” which allow for words or phrases to

be moved from one position in the candidate to

another with a certain cost.

CDER gives another solution to the problem

by introducing the operation of jumps. These

“jumps” allow for a more flexible alignment. Of

course, as in the n-gram based metrics, it is pos-

sible to apply these methods at both the word and

the character level. CHARACTER uses the edit dis-

tance at the character level while keeping the shift

operations at the word level with suitably adjusted

costs.

3 Edit Distance

Since the metric presented in this paper belongs to

the category of the edit distance based metrics, a

more thorough introduction to the concept of edit

distance is needed. The goal of the Levenshtein

distance is to find the minimum number of opera-

tions required to transform the candidate into the

reference. The Levenshtein distance in its purest

form consists of three basic operations:

• Substitution: the act of switching one symbol

with another

• Deletion: the removal of a symbol

• Insertion: the addition of a symbol

All of the basic operations are defined as having

an uniform cost of one. To not penalise match-

ing symbols with substitutions, substitutions can

be defined via the Kroneker delta: 1 − δ(cn, rm)
with cn and rm standing for the symbol at posi-

tion m ∈ {1, 2 . . . |r|}, n ∈ {1, 2 . . . |c|} for the

candidate c and reference r, respectively. The edit

distance is then computed as the sum of substitu-

tion, insertion and deletion operations made.

The edit distance can be efficiently computed

via the dynamic programming algorithm by Wag-

ner and Fischer, 1974. This allows for a computa-

tion in O(cr).

In MT, the Levenshtein distance is not usually

used in its original definition since it does not pro-

vide the required flexibility. The reason is that

written language allows for multiple ways to ex-

press the same concept or idea. To alleviate this

problem extensions to the edit distance have been

proposed.

The most prominent extension of the edit

distance, implemented by both TER and

CHARACTER, is the introduction of an addi-

tional operation prior to computing the edit

distance on the candidate. Namely, to permute

the words in the candidate to most closely match

the reference. This permutation is termed shift.

Since computing all possible shifts of a given

sentence is quite costly, in practice, the beam

search algorithm is used to reduce the search

space.

Another possible extension of the edit distance

is to define so called jumps. Jumps provide the

opportunity to continue the edit distance computa-

tion from a different point. A more detailed expla-

nation of the jumps is presented in the next section.

To obtain a final score, the edit distance is nor-

malised either over the length of the candidate or

over the length of the reference. Naturally, in the

case where every symbol is wrong and the normal-

ising term is the shorter one of the candidate and

the reference, the resulting score may significantly

exceed 1.0. This in turn results in scores which are

not easily interpretable.

4 Extended Edit Distance

One aspect of each metric is its input which usu-

ally comes in tokenized form. Punctuation marks

are separated from words via a white space and

abbreviation dots are kept next to the word e.g.

“e.g.”. EED additionally adds a white space at
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both beginning and end of each sentence.

EED utilises the idea of jumps as an extension of

the edit distance. EED operates at character level

and is defined as follows:

EED = min

(

(e+ α · j) + ρ · v

|r|+ ρ · v
, 1

)

(2)

where e is the sum of the edit operation with uni-

form cost of 1 for insertions and substitutions and

0.2 for deletions. j denotes the number of jumps

performed with the corresponding control param-

eter α = 2.0. v defines the number of charac-

ters that have been visited multiple times or not

at all and scales over ρ = 0.3. The parame-

ter values have been optimised based on the aver-

age correlation scores (both from and to English)

from WMT17 and WMT18 (Bojar et al., 2017; Ma

et al., 2018). EED is normalised over the length of

the reference |r| and the coverage penalty. To keep

it within the [0,1] boundary, the minimum between

1 and the metric score is taken. This makes the

metric more robust in cases of extreme discrep-

ancy between candidate and reference length.

Jumps are a way to move between characters or

blocks thereof and can be incorporated into the dy-

namic programming algorithm for the Levenshtein

distance (Leusch et al., 2006). This provides an

optimal solution for the matching between can-

didate and reference in reasonable computation

time. In EED jumps may only be performed when

a blank in the reference is reached, allowing the

metric to take word boundaries into account and

restricting the inter-word jumps. Figure 1 illus-

trates the way jumps work. Here Die Fans from

the reference are aligned with die Fans from

the candidate via a jump, after which normal edit

distance operations are performed. When the s is

reached, another jump is made to the blank before

n, in order to align nicht to Nicht. Finally an-

other jump is performed to align the period and

white spaces. In total, this results in two edit oper-

ation errors (from the difference in capitalisation)

and three jumps.

To further refine the metric a coverage penalty is

introduced that aims to penalise characters which

are aligned to more than once or not at all in the

candidate. This allows the metric to penalise rep-

etition of words in the reference with more than

just the jump costs. The sum v of visits for all

characters visited more than once is computed and

is added, after multiplication with a scaling factor

ρ to the total cost. To keep the situations where 1
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Figure 1: EED alignment lattice. Identity operations

are marked with solid points, jumps with dashed lines,

edit operations with full lines and blanks with .

is chosen by the minimum in Equation (2) as few

as possible, the coverage penalty is also used in

the denominator.

Using only the length of the reference as part

of the normalisation factor does not guarantee that

the metric score is in the range [0,1]. This is unde-

sirable since scores above one are not interpretable

as an error measure. For this reason a number of

strategies were considered to enforce this bound:

• Taking the maximum length between candi-

date and reference;

• Taking the average length between candidate

and reference;

• Using just the candidate or just the reference;

• Cutting the score to 1.0 if it is above 1.0;

• Mapping the score to accuracy via the func-

tion 1/(1− EED) (Zhang et al., 2011).

Out of all of these methods, the simplest and most

efficient method is to use the reference as normal-

isation and to cut the score if it is above one. In

our experiments taking the maximum or average

between candidate and reference leads to a decline

in correlation. The use of accuracy mapping yields

different results depending on the parameter set-

ting of the metric and the test set used. For this

reason EED uses the cut method for normalisation.

Although EED utilises the same movement tech-

nique as CDER, there are a few notable differ-

ences:
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• Edit distance is performed on the character

level;

• Jumps are performed only upon reaching a

blank in the reference;

• An additional penalty for multiple matching

of the same symbol (coverage cost) is applied

5 Results

EED is implemented in C++ and imported in

python via a wrapper. This implementation re-

tains the ease of use of python while getting the

speed from a C++ implementation.

EED was evaluated via the scripts provided by

Ma et al., 2018 as part of WMT18. The evalu-

ation is done both on segment and system level.

The data consists of about 3000 sentences per lan-

guage pair as part of the newstest2018 test set

and provides one reference per translation. In total

there are 14 language pairs. For the system level

evaluation, direct assessment (DA) (Graham et al.,

2017) was used to obtain human scores and Pear-

son’s r is used as the correlation coefficient. The

segment level uses the relative ranking (RR) which

is pooled from system level DA scores. This re-

sults in DARR. The correlation coefficient used for

the segment level is the Kendall’s τ like formula-

tion defined by Graham et al., 2015.

Figure 2: Human correlation variation as a function of

deletion cost on WMT18 to English � and from En-

glish on segment-level.

To obtain the best possible human correlation,

a parameter search was performed over ρ, α and

the edit operation costs. For substitution and in-

sertions there is no relevant correlation improve-

ment. However, changes to the deletion cost pa-

rameter resulted in human correlation improve-

ment. Using the WMT18 segment level test set, a

parameter search was performed. Since searching

over the whole search space is infeasible, the pa-

rameter search was done in a sequential manner.

The results of the search are shown in Figure 2.

From these results, combined with the findings on

WMT16 and WMT17 (Bojar et al., 2016, 2017),

the deletion cost is set to 0.2.

Figure 3: Human correlation variation as a function of

jump cost on WMT18 to English � and from English

on segment-level.

The error distribution of EED was skewed quite

heavily towards performing jumps even after re-

stricting jump operation only to blanks on the ref-

erence side. For this reason it was restricted fur-

ther by increasing the jump costs. In order to de-

termine the optimal jump penalty α, a parame-

ter search was performed, which is presented Fig-

ure 3. It is evident that the optimal jump cost lie

close to 2.0 for the to English direction. For the

from English direction the optimum is clear, thus

α is set to 2.0.

Similar to the deletion cost and the jump

penalty, a parameter search was carried out for the

coverage cost in order to increase human corre-

lation. The results of the search are presented in

Figure 4. The resulting optimum is ρ = 0.3.

After the parameter tuning, the performance

of EED was measured by the human correlation

achieved on the WMT18 test set. The results

of this measurement obtained at the segment and

system level and also in the directions to En-

glish and from English are presented in Tables 1

to 4. At the segment level, EED offers competi-

tive results compared with the top-ranking metrics

BEER, RUSE and CHRF +. On system level EED

performs best for the out of English direction, fol-
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cs-en de-en et-en fi-en ru-en zh-en Average

# Sentences 5110 77811 56721 15648 10404 33357 33181

EED 0.297 0.486 0.335 0.227 0.284 0.225 0.309

BEER
1 0.295 0.481 0.341 0.232 0.288 0.214 0.309

CHARACTER 0.256 0.450 0.286 0.185 0.244 0.202 0.271

CHRF + 0.288 0.479 0.332 0.234 0.279 0.207 0.303

ITER
2 0.198 0.396 0.235 0.128 0.139 0.144 0.206

RUSE3 0.347 0.498 0.368 0.273 0.311 0.218 0.336

sentBLEU 0.233 0.415 0.285 0.154 0.228 0.178 0.248

Table 1: Segment-level human correlation measured through DARR to English on newstest18 as part of
WMT18 via absolute Kendall’s τ .
1 Stanojevic and Sima’an, 2014
2 Panja and Naskar, 2018
3 Shimanaka et al., 2018

en-cs en-de en-et en-fi en-ru en-zh Average

# Sentences 5413 19711 32202 9809 22181 28602 19820

EED 0.508 0.674 0.572 0.503 0.405 0.350 0.502

BEER 0.518 0.686 0.558 0.511 0.403 0.302 0.496

CHARACTER 0.414 0.604 0.464 0.403 0.352 0.313 0.425

CHRF + 0.513 0.680 0.573 0.525 0.392 0.328 0.502

ITER 0.333 0.610 0.392 0.311 0.291 − 0.387

sentBLEU 0.389 0.620 0.414 0.355 0.330 0.311 0.403

Table 2: Segment-level human correlation measured through DARR from English on newstest18 as part of

WMT18 via absolute Kendall’s τ .

Figure 4: Human correlation variation as a function of

coverage cost on WMT18 to English � and from En-

glish on segment-level.

lowed by CHARACTER and CDER. For the to En-

glish direction, EED is the second best after RUSE.

Apart from human correlation, EED was com-

pared to the performance of the most common

metrics. This measurement was performed by let-

ting each metric evaluate 1M (106) sentence pairs

and tracking the time and memory needed to com-

plete the task. The following metrics have been

tested: BEER, BLEU, CHARACTER, CHRF, EED.

The results of the resource usage test are sum-

marised in Table 5. The fastest is BLEU followed

by EED. Concerning memory usage all metrics

have similar memory needs, except for the shift

based metrics which needed considerably more.

Since CHARACTER needs more memory, candi-

date sentences above 200 words were restricted to

200 words for this test.

6 Conclusion

A number of different metrics have been devel-

oped over the years to help evaluate MT. Metrics

such as BLEU and TER have been used for some

time, but are surpassed by others both in terms of

speed and human correlation.

EED as a metric provides a fast and reliable way

to measure human correlation. It achieves compet-

itive human correlation in comparison to the best

metrics – BEER and CHRF and surpasses the most

used metrics – BLEU and TER. Due to its sim-

plicity and low resource usage it can be used to
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cs-en de-en et-en fi-en ru-en zh-en Average

# Systems 5 16 14 9 8 14 11

BEER 0.958 0.994 0.985 0.991 0.982 0.976 0.981

BLEU 0.970 0.971 0.986 0.973 0.979 0.978 0.976

CDER 0.972 0.980 0.990 0.984 0.980 0.982 0.981

CHARACTER 0.970 0.993 0.979 0.989 0.991 0.950 0.979

CHRF + 0.966 0.993 0.981 0.989 0.990 0.964 0.981

EED 0.970 0.994 0.984 0.991 0.993 0.974 0.984

ITER 0.975 0.990 0.975 0.996 0.937 0.980 0.976

NIST1 0.954 0.984 0.983 0.975 0.973 0.968 0.973

RUSE 0.981 0.997 0.990 0.991 0.988 0.981 0.988

TER 0.950 0.970 0.990 0.968 0.970 0.975 0.971

Table 3: System-level human correlation as DA to English on newstest18 as part of WMT18 via absolute
Pearson’s r.
1 Doddington, 2002

en-cs en-de en-et en-fi en-ru en-zh Average

# Systems 5 16 14 12 9 14 12

BEER 0.992 0.991 0.980 0.961 0.988 0.928 0.973

BLEU 0.995 0.981 0.975 0.962 0.983 0.947 0.973

CDER 0.997 0.986 0.984 0.964 0.984 0.961 0.979

CHARACTER 0.993 0.989 0.956 0.974 0.983 0.983 0.980

CHRF + 0.990 0.989 0.982 0.970 0.989 0.943 0.977

EED 0.988 0.990 0.983 0.977 0.990 0.955 0.981

ITER 0.915 0.984 0.981 0.973 0.975 − 0.966

NIST 0.999 0.986 0.983 0.949 0.990 0.950 0.976

TER 0.997 0.988 0.981 0.942 0.987 0.963 0.976

Table 4: System-level human correlation as DA from English on newstest18 as part of WMT18 via absolute

Pearson’s r.

Metric EED BEER CHRF ++ CHARACTER BLEU TER

Sentences/s 969.9 621.5 261.7 9.5 6410.2 316.6

Memory 1.3G 1.1G 0.3G 48.4G 0.3G 8.4G

Table 5: Speed and memory comparison between metrics, as sentences per second and memory in gigabyte.

Measured on 1M sentences.

quickly evaluate a MT system’s output during de-

velopment.

Since there are a number of metrics based on

some extensions of the Levenshtein distance, a

more in-depth analysis of the field is required.

Furthermore, the relationship between shifts and

jumps will be investigated in the future.
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