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EEG-Based Auditory Attention Detection via
Frequency and Channel Neural Attention
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Abstract—Humans have the ability to pay attention to one of the
sound sources in a multispeaker acoustic environment. Auditory
attention detection (AAD) seeks to detect the attended speaker
from one’s brain signals that will enable many innovative human–
machine systems. However, effective representation learning of
electroencephalography (EEG) signals remains a challenge. In this
article, we propose a neural attention mechanism that dynamically
assigns differentiated weights to the subbands and the channels
of EEG signals to derive discriminative representations for AAD.
In the nutshell, we would like to build a computational attention
mechanism, i.e., neural attention, to model the auditory attention in
human brain. We incorporate the proposed neural attention into an
AAD system, and validate the neural attention mechanism through
comprehensive experiments on two publicly available datasets.
The experimental results demonstrate that the proposed system
significantly outperforms the state-of-the-art reference baselines.

Index Terms—Auditory attention, brain–computer interface
(BCI), channel attention, electroencephalography (EEG),
frequency attention.

I. INTRODUCTION

HUMANS have the ability to focus their auditory attention
on one speaker, and ignore other sound sources in a
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multispeaker acoustic environment [1], which is described as
cocktail party effect [2]. Benefiting from the research progress
in related areas, such as psychoacoustic, biophysiological, and
neuroscience, regarding the brain activity of auditory attention,
we are inspired to develop a computational model to detect the
attention activities manifested in brain signals.

Recent studies have demonstrated that auditory attention can
be decoded from the recordings of brain activity, such as elec-
trocorticography (ECoG) [1], magnetoencephalography [3], [4],
and electroencephalography (EEG) [5]–[12] in a multispeaker
scenario. Auditory attention detection (AAD) opens up many
possibilities for human–machine systems, such as the cognitive
control of hearing aids, i.e., neurosteered hearing aids [13], [14],
and rehabilitation medicine through neural feedback. As EEG
provides a noninvasive means of investigating cortical activity
with high temporal resolution for brain–computer interface ap-
plications [15], we are particularly interested in decoding the
auditory attention from EEG signals in this article.

In general, the algorithms for AAD can be grouped into linear
and nonlinear decoders [16]. The design of linear decoders
follows the idea of stimulus reconstruction that the cortical
responses to an attended speaker, as encoded in EEG signals,
correlate with the auditory stimulus. To this end, it first predicts
the cortical responses by reconstructing the stimulus from EEG
signals, then detects the correlation between the reconstructed
stimulus and the attended speech envelopes [7]–[11], [17], [18].
This process can be seen as a regression approach toward the
AAD problem. However, the stimulus reconstruction algorithms
are not directly optimized for attention detection accuracy. They
seek to transform multichannel EEG signals into one single
envelope, which potentially results in loss of detailed channel
specific information useful for attention detection. The canonical
correlation analysis (CCA) method [10] is one of the success-
ful linear models that achieves reliable AAD with a decision
window of around 10 s. However, its performance degrades
rapidly as the decision window narrows [16], [19]. We note that
a 10-s decision window means a much higher latency than what
humans require, i.e., around 1 s [20], to switch attention from one
speaker to another. Nonetheless, the important finding that there
exists a correlation between EEG responses and the envelope of
the attended stimulus [7]–[11] inspires many subsequent studies.

Studies in neuroscience have revealed that cortical responses
have a nonlinear relationship with the acoustic stimuli [21]–[23].
De Taillez et al. [24] first studied a nonlinear neural network
to map EEG signals to speech envelopes in a cocktail party
scenario that outperforms the linear model baseline. Along the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3282-9246
https://orcid.org/0000-0001-6761-9420
https://orcid.org/0000-0002-5137-1413
https://orcid.org/0000-0001-9158-9401
mailto:2447379329@qq.com
mailto:enzesu@hotmail.com
mailto:melhxie@scut.edu.can
mailto:haizhou.li@nus.edu.sg
https://doi.org/10.1109/THMS.2021.3125283


CAI et al.: EEG-BASED AUDITORY ATTENTION DETECTION VIA FREQUENCY AND CHANNEL NEURAL ATTENTION 257

same idea, convolutional neural network (CNN) [12], [25], [26]
was studied by directly relating both the raw EEG signals and
the speech stimulus to the attention detection decision, without
reconstructing the auditory stimulus. Let us call this an end-
to-end classification approach. In this article, we would like to
further the idea of nonlinear CNN decoder [26] and end-to-end
solution in several aspects, with a focus on effective EEG rep-
resentation learning and low latency implementation.

First, numerous different and often spatially distant neuronal
populations interact quickly and dynamically when processing
the speech stimulus [27]. Previous studies revealed that linear
decoders work the best for low-frequency EEG because envelope
frequencies between 1 and 8 Hz are linearly relatable to their
corresponding EEG signals [28], whereas nonlinear decoders
can profit from a wider EEG frequency range (1–32 Hz) [24].
However, different EEG frequency bands are likely to differ
both in their physiological genesis and their role in selective
auditory attention [5], [28], [29]. They all reflect the attention
decision process in human brain. It makes sense to devise an
AAD mechanism that learns the differentiated contributions of
EEG rhythms.

Second, the positions of electrodes relate the EEG signals to
the activities of the related brain areas. In addition, some EEG
channels are more informative than others in terms of informing
the decision making process in the brain [30]. Furthermore, such
differentiated property may vary from subject to subject [8]. We
are motivated to study a channel neural attention mechanism
that assigns weights dynamically to the EEG channels across
different spatial locations over the cortex.

Third, representation learning is one of the successful machine
learning techniques that extracts salient information from raw
data and greatly improves pattern classification [31]. We note
that most of the linear [7], [9], [11] and nonlinear [24]–[26]
AAD decoders of multichannel EEG signals have not benefited
from representation learning. Among the few feature extrac-
tion explorations, Horton et al. [6] first hand-crafted features
from the neural measurements, others studied common spatial
pattern method for EEG enhancement, which improves AAD
accuracy [12], [32]. While the aforementioned feature extrac-
tion techniques usually see performance gains, their benefits
are limited due to the fact that they do not participate in the
optimization of the attention classifiers. There is another school
of thought that is to select a subset of channels [8], [30] or
frequency subbands [5], [28], [33] for attention detection. They
generally seek to reduce the dimensionality of raw data, instead
of improving the accuracy.

The implementation of representation learning in this article
is also motivated by the idea of feature extraction and selection,
where we discover the benefits of weighting the contributions
of different EEG channels [8], [30] and frequency subbands [5],
[28], [29], [32], [33]. The end-to-end approach in the previous
nonlinear AAD models can be seen as a way of learning the
weights in a data-driven manner. Typically, such weights are
pretrained as part of the model parameters and fixed at run-time,
independently of the input EEG signals [12], [24]–[26]. How-
ever, neuroscience studies have provided convincing evidence
that human auditory attention is a dynamic temporal process [5],

[27]. For example, the EEG signals for auditory attention vary
with the temporal content of speech stimulus [34]–[36]. In other
words, the contributions of EEG channels and frequency sub-
bands to AAD performance may vary over time. This prompts
us to study a nonlinear, dynamic weighting mechanism that
is known as the neural attention mechanism in deep neural
networks. The dynamic weighting mechanism is a departure
from the pretrained weighting mechanism in the sense that
the former learns to assign weights dynamically according to
input signals. As the weights are of continuous values, the
dynamic weighting mechanism is also different from the tradi-
tional feature selection techniques that simply select a subset of
features.

Not to confuse between neural attention and auditory attention
in this article, neural attention refers to a network implementa-
tion, whereas AAD is the task we would like to perform. We
make three main contributions to EEG-based AAD, which are
as follows.

1) We motivate and propose a frequency and channel neural
attention mechanism for EEG representation learning.

2) We validate the hypothesis of differentiated frequency and
channel contributions of EEG signals through data visu-
alization and comprehensive experiments on two publicly
available EEG datasets.

3) We formulate an end-to-end nonlinear decoder with the
frequency-channel neural attention mechanism for low-
latency attention detection.

To the best of our knowledge, this is the first study of a
frequency-channel neural attention mechanism that learns to
dynamically assign differentiated weights to incoming EEG
signals.

The rest of this article is organized as follows. In Section II, we
formulate a novel EEG-based AAD model with neural attention.
In Section III, we present the experimental setup. In Section IV,
we report the experiment results. In Section V, we perform
an analytical study on the proposed neural attention. Finally,
Section VI concludes this article.

II. NEURAL ATTENTION FOR AAD

A window of EEG signal can be considered as a three-
dimensional (3-D) feature, which has the frequency bands, the
EEG channels, and the time indices of data samples as its three
dimensions. A 3-D EEG feature is illustrated in Fig. 1(C1) as the
input to an AAD system. Let us formulate EEG-based AAD as
a binary classification problem for a two-speaker scenario [24]–
[26].

We propose a neural attention mechanism that performs fre-
quency and channel attention on the 3-D EEG features, and can
be easily incorporated into existing CNN architecture [26]. We
also propose to arrange the frequency and channel attention
in sequence, which involves less computation and parameters
overhead than a full 3-D attention solution. The sequential ar-
rangement with two separable modules also allows us to produce
a modularized output feature of the same size as the input
feature, which facilitates the subsequent ablation study. There
are two possible sequential permutations between the frequency
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Fig. 1. Schematic diagram of the proposed CNN classifier of five components with frequency and channel neural attention (CNN-FC): (A) input multichannel
EEG signals and speech envelopes as the auditory stimulus references; (B) filter bank for EEG signals; (C1) 3-D feature extraction of multichannel EEG signals,
(C2) frequency attention module, and (C3) channel attention module; (D) envelope extraction for speech streams; and (E) a CCN. The CNN-FC model is trained
to detect the attended speaker, either speaker I or II, from the EEG signals. Note: speech streams of speakers I and II are denoted in red and green, respectively,
whereas the EEG signals of the listener are denoted in blue.

and channel attention modules. For brevity, we only discuss the
frequency-channel attention sequence in detail, as illustrated in
Fig. 1. The channel-frequency architecture can be formulated in
a similar way.

The proposed AAD system consists of a signal processing
front-end and a back-end classifier. The AAD system with a
frequency-channel neural attention is referred to as CNN-FC,
whereas its channel-frequency counterpart is referred to as
CNN-CF hereafter. We illustrate the frequency-channel atten-
tion module for EEG representation learning in Fig. 1(C), which
aims to automatically discover the representations needed for
attention detection from raw EEG data.

The neural attention is implemented through a masking mech-
anism, where a feedforward network is employed to predict a
mask of differentiated weights [37], [38] for EEG frequency
bands and channels, respectively. In frequency attention, the
mask represents the selective auditory attention on EEG fre-
quency bands, whereas in channel attention, the mask represents
the differentiated contributions of individual EEG channels. The
neural attention module is expected to improve the separation
between EEG signals of opposite attention, therefore, reduce
the required decision window size. Finally, a CCN serves as a
binary back-end classifier for decision making. Meanwhile, we
apply the power-law subbands method [9] to improve the speech
envelope extraction process.

A. Frequency Attention

Humans have the ability to pay selective attention in many
everyday situations. Auditory attention in the cocktail party
is a typical example [1], [2], which can be described as the
modulation between a bottom-up sensory-driven stimulus and
a top-down attention task. The modulation is achieved rapidly
in a cognitive process [39], [40]. It results in a receptive field
in response to the input stimulus, which is the attended voice in
this case. Simply speaking, a receptive field works like a mask

that only lets the attended voice pass. Similar to the attentional
modulation in the physiological studies, the attentional modula-
tion in deep neural networks has been implemented in different
ways [37], [38], [41]–[43]. The idea is to model the top-down and
bottom-up modulation by dynamically assigning differentiated
weights to the composition of the input stimulus at run-time.
The differentiated weights form a receptive field, which is also
called an attention mask. As the attention mask is dynamically
generated by a neural attention mechanism, it is not a set of
pretrained weights. The neural attention mechanism is capable
of biasing the allocation of available resources toward the most
informative components of a signal.

Moreover, previous studies suggest that different EEG fre-
quency bands have different functional roles in speech process-
ing [5], [28], [29], [44]. We consider that the frequency bands
of EEG signals manifest the brain activities as far as auditory
attention is concerned. It makes sense that we develop a neural
attention mechanism over the different frequency bands, also
referred to as frequency attention, as shown in Fig. 1(C2). We
would like to use the predefined frequency bands in neuroscience
study, i.e., δ, θ,α, β, and low-γ, due to two considerations. First,
the data-driven frequency analysis is very much data dependent.
The resulting subbands are not as interpretable as those in
neuroscience study [5], [27]–[29], [32], [33] in terms of spectral
coverage. Second, an independent frequency analysis front-end,
as shown in Fig. 1(B), allows us to study a dynamic weighting
mechanism explicitly.

The frequency attention is implemented in following three
steps.

1) We filter the original EEG into subband EEG signals, as
shown in Fig. 1(B).

2) We predict an attention mask with a frequency attention
mechanism, as shown in Fig. 1(C),

3) We modulate the EEG signals with the attention mask.
In the first step, we decompose the EEG signal from each

channel into five classic frequency bands, namely δ (1–4 Hz),
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θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), and low-γ (30–50 Hz)
bands [45]. They have been extensively studied for their differ-
ential effects in auditory attention in cocktail party scenarios [1],
[3], [5], [28], [33], [44], [46].

By applying a sliding window to an EEG signal, we obtain
a sequence of decision windows. Each window frame is char-
acterized by a 3-D feature. The 3-D EEG feature is denoted as
F ∈ RB×C×T , where B denotes the number of the frequency
bands,C is the number of the EEG channels, andT is the number
of EEG samples in a decision window.

In the second step, a frequency attention mechanism learns
to predict an attention mask for the EEG frequency bands. We
first aggregate spectral information of F by using a convolution
layer as follow:

RF = Max(ELU(Conv(F ))) (1)

where Conv(·) denotes a convolution operation with the size
of the convolution kernel being 1× C × T . Exponential linear
unit (ELU(·)) is the activation function in the convolution op-
erations [47]. Max(·) represents a max pooling layer, which is
employed to reduce the number of parameters and to further
explore the temporal information of the EEG signals. After this,
we obtain a spectral context descriptor to represent each EEG
frequency band, i.e., RF ∈ RB .

Then, a gating mechanism, which focuses on enhancing the
representational power of the network by modeling the rela-
tionships among different EEG frequency bands in a compu-
tationally efficient manner, was adopted [37]. To reduce model
complexity and improve generalization, two fully connected (fc)
layers around the nonlinearity were employed to parameterize
the gating mechanism of frequency attention as follows:

MFA = tanh(w2 · tanh(RF ·w1 + b1) + b2) (2)

where w1 and w2 denote the parameters of the first and second
fc layers, respectively. b1 and b2 denote the first and second
biases, respectively. tanh activation function is applied after each
fc layer. And MFA represents the attention mask generated by
the frequency attention module.

Finally, the frequency attention mechanism modulates the in-
put EEG signals by applying the frequency attention mask F ′ =
M ′

FA

⊗
F , where

⊗
denotes a pointwise multiplication. M ′

FA
is obtained by broadcasting the frequency attention MFA along
the channel and temporal dimension, i.e., M ′

FA ∈ RB×C×T .

B. Channel Attention

In ECoG signal analysis, it is shown that the strength of at-
tentive effect, manifested in various regions of auditory cortices
in response to a speech stimulus, varies significantly [28], [46].
For high-density EEG, which is a global measure of cortical
activity, the responses of individual EEG channels to auditory
stimuli are different. Some channels are more informative than
others in terms of decoding the auditory attention in the brain [7].
The channel selection strategy [8], [30], [48] is motivated by this
finding. It reduces the number of channels by turning some of
them completely OFF. Unlike the traditional channel selection,
we propose a soft channel attention mechanism, which seeks

to capture the interchannel relationship of EEG signals and
adaptively assign differentiated weights to individual channels
according to the EEG signals and the speech envelopes. As
shown in Fig. 1(C3), the channel attention mechanism consists
of three steps, which is similar to those in frequency attention.

First, we adopt a convolution layer to aggregate channel
information of F ′ as follows:

RF ′ = Ave(ELU(Conv(F ′))) (3)

where Conv(·) denotes the convolution operation with the size
of the convolution kernel being B × 1× T . Ave(·) denotes an
average pooling layer.

Second, the gating mechanism of channel attention can be
expressed as follows:

MCA = tanh(w4 · tanh(RF ′ ·w3 + b3) + b4) (4)

wherew3 andw4 denote the parameters of the first and second fc
layers, respectively.b3 andb4 denote the first and second biases,
respectively. And MCA represents the attention mask generated
by the channel attention mechanism.

Finally, the channel attention mechanism modulates the in-
put EEG feature F ′ by applying the channel attention mask
F ′′ = M ′

CA

⊗
F ′, where

⊗
denotes a pointwise multiplication.

Similarly, the attention value (M ′
CA ∈ RB×C×T ) is obtained by

broadcastingMCA along the frequency and temporal dimension.

C. Aligning Speech Envelopes With EEG Features

The frequency-channel neural attention mechanism produces
F ′′ as part of the input to a back-end classifier. As will be
described in detail in Section III, in the KUL and DTU datasets,
two concurrent speech streams are presented simultaneously to
the listeners, each of which is associated with one of the two
binary outputs. We align the envelopes of two speech streams
with the EEG features F ′′ to form a 3-D feature map, which
allows the classifier to examine the correlation between EEG
features and speech envelopes.

The studies show that CNN clearly outperforms linear models
in detecting such correlation, especially excel in low latency
settings [12], [16], [26]. In practice, CNN models detect the
correlation between EEG features and speech envelopes without
explicitly reconstructing speech envelopes from EEG features,
but rather learn to discover the correlation through a network
architecture, followed by a binary classifier.

D. Back-End Classifier

The CNN back-end classifier takes the feature map as input
and makes a binary decision, as illustrated in Fig. 1(E). Inspired
by Vandecappelle et al. [26], the CNN architecture consists of
a convolution layer with a 5× 66× 9 kernel, i.e., 5 frequency
bands by 64 EEG plus 2 speech channels, and by 9 samples width
for the 3-D feature map, a max pooling. Rectifying linear unit ac-
tivation function is adopted in convolution layers. Finally, two fc
layers with the sigmoid activation function are added for binary
decision. We employ the weighted cross-entropy loss function as
the cost function. During training, the stochastic gradient descent
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technique is implemented for network updating, with a learning
rate of 0.1 and a self-adaptive learning rate reduction strategy.

III. EXPERIMENT SETUP

A. AAD Dataset

In this article, experiments are carried out on two publicly
available AAD datasets. The first dataset was recorded at KU
Leuven, which is referred to as KUL dataset [49]. The second
dataset is referred to as DTU dataset [50].

1) KUL Dataset: In this dataset, EEG data were collected
from eight male and eight female normal-hearing subjects, who
were instructed to attend to one particular speaker and ignore the
other in the presence of two simultaneous speakers. The EEG
data were split into eight trials of 6-min duration each. In total,
EEG data from 16 normal-hearing subjects were collected and
there was 8 × 6 min = 48 min of data for each subject. The
EEG data were recorded at a sampling rate of 8192 Hz using a
BioSemi ActiveTwo system, in which 64 electrodes were placed
on the head according to international 10–20 standards. Four
Dutch short stories, narrated by different male speakers, were
used as the auditory stimuli. All silences longer than 500 ms in
the audio files were truncated to 500 ms. The auditory stimuli
were low-pass filtered with a cutoff frequency of 4 kHz and
presented at 60 dB through a pair of insert earphones (Etymotic
ER3).

2) DTU Dataset: This dataset consists of 18 normal-hearing
subjects who selectively attended to one of the two simultaneous
speakers. Stimuli were excerpts taken from Danish audiobooks
that were narrated by a male and a female speaker. Each subject
listened to 60 trials in which they were presented 50 s of the
speech mixtures. 64-channel EEG was recorded using a BioSemi
ActiveTwo system at a sampling rate of 512 Hz. More details
could be found in [50].

B. Data Preparation

The recorded EEG signals are first high-pass filtered with
cutoff frequency at 0.5 Hz to remove the dc component and
electrode drift. Then, EEG signals are rereferenced to a common
average reference and resampled to 128 Hz [51]. We prepare the
EEG data for two sets of experiments. The EEG data were first
bandpass-filtered between 1 and 50 Hz, which is referred to as
broadband EEG hereafter. They are then decomposed into five
frequency bands, as stated in Section II-A, which is referred to
as multiband EEG hereafter.

To extract the envelopes from the speech stimuli, we adopt
an auditory filterbank with power law compression, denoted
as Env in box (D) in Fig. 1. This method resembles the
nonlinear transformation process of the speech streams in hu-
man auditory system. It has been proven effective in previous
AAD research work [9]. In practice, the speech stream is first
fed to a gammatone filterbank ranging from 150 to 8000 Hz.
Then, the absolute value of each subband is processed with a
power-law compression with an exponent of 0.6. The subbands
are bandpass-filtered between 1 to 50 Hz, and finally they are

combined with equal weights, and downsampled to 128 Hz to
match the EEG data [11], [26].

C. Training and Evaluation

The data of each subject are randomly split into a training
set (60%) and a validation set (20%), and a test set (20%) for
cross-validation.1 For each partition, we apply a sliding window
on the data by shifting half a window size along the time axis.
Each segment is used as a decision window. All the repeated
segments are discarded to keep the training, validation, and
test sets mutually exclusive. To avoid data bias, we perform
the experiments with ten random splits of data for each sub-
ject and report the average results. In addition, dropout with
a probability of 0.5 is used in all fc layers. We also use early
stopping to avoid overfitting. The training stops as soon as
no loss reduction is found for tenconsecutive training epochs.
Following the protocol in the previous studies [12], [24]–[26],
we train subject-dependent systems and report both subject
average accuracy and overall average accuracy in this study.

As near real-time responses are required in real-world applica-
tions, we are interested in the attention detection accuracy with
short decision windows. Specifically, experiments are carried
out with 1- and 2-s decision windows that are approximately the
human time lags when switching attention [20].

IV. EXPERIMENT RESULTS

We first design two reference baselines for broadband EEG
data on KUL dataset, i.e., CNN with and without channel atten-
tion, denoted as CNN(s)-C and CNN(s). In this study, we would
like to search for an effective configuration for channel attention.
We adopt the same CNN architecture [26] for the two baseline
models, where the CNN includes a convolution layer with a
66× 9 kernel, i.e., 64 EEG plus 2 speech channels by 9 samples
width, a max pooling, and two fc layers (Input:10, hidden:10,
output:2), with sigmoid activation function and weighted cross-
entropy as the loss function. Both models take the [C, T ] matrix,
i.e., C channels by T samples of the broadband EEG data, and
the envelopes of two speech streams as inputs.

We then conduct extensive ablation experiments on KUL
dataset with multiband EEG, where we would like to observe the
contributions of the frequency and channel neural attention. The
experiments involve four models, namely CNN [26], CNN with
frequency attention (CNN-F), CNN-FC, and CNN-CF. They
share the same CNN architecture as depicted in Fig. 1(E), except
that CNN model takes F as the EEG features, CNN-F only
involves frequency attention, CNN-FC and CNN-CF involve
both frequency and channel attention modules in a different
order. We summarize the model configuration in Table I and
describe them in detail next.

Finally, we perform experiments on DTU dataset to explore
the generalization ability of our model.

1The code for our model and experiments can be found in https://github.com/
SCUT-IEL/CNN-FC.

https://github.com/SCUT-IEL/CNN-FC
https://github.com/SCUT-IEL/CNN-FC
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TABLE I
SUMMARY OF MODEL CONFIGURATION WITH CNN AS THE BACK-END

CLASSIFIER IN THE EEG-BASED ATTENTION DETECTION EXPERIMENTS

Fig. 2. AAD accuracy (%) for 1- and 2-s decision windows reported in
broadband EEG evaluation on KUL dataset. Statistically significant differences:
∗p <0.05, ∗∗p <0.01.

TABLE II
AAD ACCURACY (%) IN A COMPARATIVE STUDY OF DIFFERENT MODELS ON

KUL DATASET

Note: a1 , a2 , and a3 denote the significant drops of detection accuracy over the
CNN(s)-C model with P <0.05, P <0.01, and P <0.001, respectively. b2 and b3

denote the significant drop of detection accuracy over the CNN-FC model with P
<0.01 and P <0.001, respectively.

A. Channel Attention With Broadband EEG

We report the detection accuracy of CNN(s) and CNN(s)-
C models for 1- and 2-s decision windows with broadband
EEG data, as shown in Fig. 2 and Table II. With 1-s decision
window, CNN(s)-C model outperforms CNN(s) model with an
average improvement of 2.2% (mean: 81.1% versus 78.9%, SD:
11.87 versus 11.56). With 2-s decision window, CNN(s) model
obtains an average accuracy of 80.4% (SD: 11.67). CNN(s)-C
model achieves better performance, with an average accuracy

Fig. 3. AAD accuracy (%) 1- and 2-s decision windows reported in multiband
EEG evaluation on KUL dataset. ∗∗∗ represents statistically significant difference
at p <0.001 level.

of 82.1% (SD: 11.96). Statistical analyses are performed using
IBM SPSS statistics software (ver. 24.0, IBM Corporation,
Armonk, NY, USA) and a level of significance of 0.05 is se-
lected. The descriptive statistics are used for means and standard
deviations. The Kolmogorov–Smirnov test is used to confirm the
normality of the distribution of the data, prior to the selection
of appropriate statistical tests. Paired t-tests are employed to
compare AAD performance of different models to identify
which model gains a significant improvement. CNN(s)-C model
significantly outperforms CNN model for both 1-s decision
window (p = 0.007) and 2-s decision window (p = 0.019).

These results clearly validate the effectiveness of the proposed
channel attention mechanism and the resulting representations.

B. Frequency Attention With Multiband EEG

To evaluate the effect of frequency attention, we move on
to the multiband EEG data. We compare CNN and CNN-F
models for 1- and 2-s decision windows, as shown in Fig. 3 and
Table II. With 1-s decision window, CNN-F model outperforms
CNN model with an average improvement of 3.3% (mean:
81.7% versus 78.4%, SD: 10.28 versus 10.14). With 2-s decision
window, CNN model obtains an average accuracy of 79.6% (SD:
11.67) and CNN-F model gains an improvement of 4.1% (mean:
83.7%, SD: 8.29). The CNN-F model significantly outperforms
the CNN model for both 1-s decision window (p <0.001) and
2-s decision window (p <0.001).

In addition, we perform t-test to examine the detection ac-
curacy between two CNN experiments with broadband and
multiband EEG data, i.e., CNN(s) and CNN models in Table I.
We find no statistically significant differences between these two
models for either 1-s decision window (p= 0.41) or 2-s decision
window (p = 0.28). The CNN-F model with multiband EEG
significantly outperforms the CNN model in both broadband
and multiband EEG evaluations. These results clearly validate
the effectiveness of the proposed frequency attention mechanism
and the resulting representations.
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Fig. 4. AAD accuracy (%) of different models for 2-s decision window
reported in multiband EEG evaluation on KUL dataset. The subjects are ordered
according to the accuracy of CNN-FC model. The horizontal dotted line is a
reference at 90% of detection accuracy. ∗∗∗ represents statistically significant
difference at p <0.001 level.

C. Frequency-Channel Attention With Multiband EEG

In Fig. 4, we observe that the CNN-FC model, which employs
both frequency and channel neural attention, attains the best
performance with an average accuracy of 86.9% (SD: 8.83) in
multiband EEG evaluation for 2-s decision window. 6.25% (1
of 16), 25.0% (4 of 16), and 56.25% (9 of 16) of subjects are
reported with over 90% detection accuracy for CNN, CNN-F,
and CNN-FC models, respectively. Furthermore, the detection
accuracy of CNN-FC is significantly higher than CNN model (p
<0.001) and CNN-F model (p <0.001).

We further compare the three multiband EEG models, as sum-
marized in Table II. Either with 1- or 2-s decision window, the
CNN-FC model significantly outperforms the CNN-F and CNN
models, at 83.6% accuracy for 1-s decision window, which is on
par with the CNN-F model at 83.7% accuracy for 2-s decision
window. It is noted that the size of the decision window repre-
sents the minimum response latency of an attention detection
system. A 1-s decision window is not far from the expectation
by real-world applications in terms of response latency, such as
neurosteered hearing prostheses [13], [14].

We also compare the results of CNN-FC and CNN-CF models
in Table II. The experiments show that the CNN-CF model
slightly outperforms CNN-FC. However, we find no statistically
significant differences for either 1-s decision window (p =
0.49) or 2-s decision window (p = 0.43) between CNN-FC and
CNN-CF. Both CNN-FC and CNN-CF significantly outperform
the linear models [7], [17], [18] and the nonlinear models [25],
[26], as well as the CNN models with only the channel or
frequency attention module.

To summarize, the proposed AAD system benefits from both
the frequency and channel neural attention, and exhibits a high
level of performance. We have shown a successful first attempt
to exploit frequency-channel EEG representations for AAD.

D. Speech Envelopes as References

In linear AAD models, such as stimulus reconstruction
method [7]–[11], [17], [18], the speech envelopes play a role
as they are used to compare with the reconstructed stimulus for
attention detection. However, in the proposed CNN-FC network
architecture, the speech envelopes are taken as the input together
with other EEG features for decision making. The question

TABLE III
AAD ACCURACY (%) OF DIFFERENT MODELS ON DTU DATASET

Note: b3 denotes the significant drop of detection accuracy over the CNN-FC model
with P <0.001.

arises as to whether or how much the speech envelopes actually
contribute to the decision making.

We further perform an ablation experiment on KUL dataset
where we remove the speech envelopes, as illustrated in
Fig. 1(D), from the input. The model is referred to as CNN-FC
(no-se) hereafter. Since the speakers and directions are labeled
separately, the KUL dataset allows us to perform two tasks, i.e.,
the detection of attended speakers regardless of directions, and
the detection of attended directions regardless of speakers. The
former task is performed with the CNN-FC model having both
speech envelopes and EEG signals as the input, the latter is
performed only with EEG signals with the CNN-FC (no-se)
model. In the absence of speech envelopes input, the CNN-FC
(no-se) model practically decodes the attended direction based
on the differences of the EEG activity between both directions
as in [34] and [52].

Our results show that the attended speaker detection with
CNN-FC model only marginally outperforms CNN-FC (no-se)
model by 2.3% (mean: 83.6% versus 81.3%, SD: 10.33 versus
11.45), and 2.1% (mean: 86.9% versus 84.8%, SD: 8.83 versus
9.18) for 1- and 2-s decision window, respectively. In other
words, the detection results for attended direction and attended
speaker are comparable. Our finding is consistent with the previ-
ous studies [26], [32], which suggests that it is possible to decode
the spatial focus of auditory attention from the EEG signals
alone, without the need of speech envelopes as references.

E. Experiments on DTU Dataset

Finally, we report the experiments on DTU dataset in Table III.
As there are no significant differences between CNN-FC and
CNN-CF, we only compare CNN-FC with the baselines. For 1-s
decision window, it is observed that the CNN-FC model achieves
an average AAD accuracy of 79.3% (SD: 8.17) that significantly
outperforms 70.7% (SD: 8.64) of the CNN model (p <0.001);
for 2-s decision window, the CNN-FC model outperforms the
CNN model by 10.5%. We are encouraged by the results on the
DTU dataset that corroborate the findings on the KUL dataset.

V. EMPIRICAL ANALYSIS OF NEURAL ATTENTION

We hypothesize that the frequency and channel neural at-
tention provides a more effective representation than raw EEG
data. To validate our hypotheses, next we compare the proposed
CNN-FC model with other competing models in the literature,
and understand the neural attention masks from the perspective
of neuroscience.
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A. Comparative Study

Due to different experimental setup, it is not straightforward
to compare our AAD results directly with those in the previous
studies. We reimplemented the reported systems on KUL dataset
as the reference baselines.

For broadband EEG evaluation, we reimplemented the stimu-
lus reconstruction [7], deep CCA [17], and match-mismatch [18]
models as the linear decoder baselines. We also reimplemented
the DNN model [25] and state-of-the-art CNN model [26] as the
nonlinear decoder baselines. In Table II, we report the overall
average detection accuracy across all subjects. The CNN(s)-C
model outperforms the stimulus reconstruction model by a large
margin of 23.0% and 20.8% for 1- and 2-s decision windows, re-
spectively. It also shows a consistent and significant performance
gain over deep CCA [17] and match-mismatch [18] models. The
difference between CNN(s)-C and linear models is significant
for both 1-s (p <0.001) and 2-s (p <0.001) decision windows.
As expected, the nonlinear models show a clear advantage
over linear models especially in low latency settings [12], [16],
[24]–[26]. In comparison with DNN model [25], the CNN(s)-C
model gains an increase of 9.8% and 6.9% for 1- and 2-s decision
windows in terms of AAD accuracy. It also outperforms the
CNN(s) model [26] with consistent improvements of 2.2% and
1.7% for 1- and 2-s decision windows. The difference between
CNN(s)-C and CNN(s) is that CNN(s)-C employs a channel
neural attention with dynamic weighting to the 3-D feature
map, whereas CNN(s) employs pretrained fixed weights. The
improvement of CNN(s)-C over CNN(s) model clearly validates
the effectiveness of the dynamic weighting scheme.

For multiband EEG evaluation, we reimplemented the CNN
model [26] as the state-of-the-art baseline. We observe the fol-
lowing from Table II: First, the CNN model for multiband EEG
does not show any improvement over the CNN(s) for broadband
EEG, whereas CNN-F for multiband EEG clearly outperforms
CNN(s). The results suggest that subband decomposition does
not contribute by itself, it takes effect only with the frequency
neural attention. Second, the fact that CNN-FC model signifi-
cantly outperforms the CNN(s)-C and CNN-F models suggests
that channel neural attention is more effective in combination
with frequency neural attention.

We are not aware of other models that have the capability
to perform the same level of detection accuracy as CNN-FC
with such low latency settings. These results support that the
hypothesis that CNN-FC model can learn what and where to
attend through the frequency and channel neural attention, and
the resulting representation is highly effective.

B. Analysis of Channel Attention Mask

To gain a better insight into the underlying reasoning pro-
cesses that CNN-FC learns to perform, we would like to study
the attention mask that is predicted by the neural attention.
The attention mask is a set of differentiated weights assigned
dynamically to the channels that is expected to reflect the actual
neural activities in brain signals.

To analyze the distributions of the differentiated masking
weights MCA for individual channels, we plot the attention

weights, which are greater than 0.5, channel by channel for all
subjects in Fig. 5. It is observed that the average weights assigned
by the channel attention mechanism vary with the channels,
which supports the theory that EEG signals across the channels
are not equally informative as far as AAD is concerned [8], [30],
[48]. It is expected that the locations indicative of neural activity
contributing to speech processing have higher weights.

While the attention weights generally reflect the functional
organization in human brain, we note from the channelwise
boxplot (see Fig. 5) that the attention weights of individual EEG
channels vary across subjects within a small range, which can
be interpreted as the subject variability of the brain signals [33],
[53]. These results support our hypothesis that EEG-based AAD
tasks will benefit from the differentiated weights over individual
channels that vary from subject to subject. The proposed neural
attention mechanism is designed to find such weights dynami-
cally during run-time inference.

Generally, the channel attention mechanism is shown to de-
rive differentiated weights dynamically across different spatial
locations over the cortex, which effectively improves detection
accuracy. The visualization of attention mask corroborates the
findings in neuroscience.

C. Visualization of Frequency Attention Mask

To relate our neural attention model with different EEG
frequency bands, we visualize the attention distributions pro-
duced by the frequency attention for multiband EEG. Fig. 6
depicts the subject average attention mask MFA for the EEG
frequency bands, where we aggregate the subject-dependent
masking weights for 2-s decision windows. We also aggregate
the masking weights MFA for 2-s decision windows across all
16 subjects.

As expected, the assigned weights vary across these five
EEG frequency bands. In general, the average weights of lower
EEG frequencies, i.e., 1–8 Hz at δ and θ bands, are obviously
greater than those of other frequency bands that conform to
the previous studies [3], [7], [28], [35], [44], [54], [55]. It was
found that selective attention would act via a gain increase
on the low-frequency EEG signals (<8 Hz) for the attended
speech. The strength of the δ and θ bands may be a reflection
of the neural computations in human brain that takes advantage
of the high power and signal-to-noise ratio in speech at slow
envelope frequencies [3], [7], [29]. Another possible explanation
could be that improving the representation of the temporal
modulations is important for speech intelligibility, in which
the modulations below 8 Hz are perhaps the most essential
[44], [55].

In particular, we found that the average weight of θ-band EEG
is the greatest, which aligns well with the findings of previous
studies [5], [27]. One explanation could be that θ-band EEG is
strongly represented in the speech envelope and important for
speech comprehension [29], [56].

After θ and δ bands, β-band EEG is also assigned with greater
weights than other EEG frequency bands. Given the established
role of β-band EEG in top-down predictive mechanisms [56],
[57] and selective attention in a top-down state, higher weights
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Fig. 5. EEG channelwise attention weights for all 16 subjects of KUL dataset in 2-s decision window experiments. The electrodes are placed according to the
international 10–20 system. From left to right, Fp1 to FO3 are electrodes on the left hemisphere, whereas F4 to P4 are those on the right.

Fig. 6. Average masking weights MFA for different EEG frequency bands
for each subject (S1–S16) of KUL dataset and the weights averaged over all
16 subjects (mean). The subjects are ordered according to the pattern of their
frequency attention masks. S1–S4 has the largest weights forδ-band EEG; S5–S9
has the largest weights for θ-band EEG. S10 has the largest weight for α-band
EEG. S11 and S12 have the largest weights for β-band EEG. S13 and S14 have
the largest weights for low-γ band. S15 and S16 have the largest weights for θ
and β bands. The color of the cells denotes the weights, with red as 1 and blue
as 0.

of β band can be interpreted by its top-down predictive function.
It is also worth noting that the average weight of low-γ band is
even higher than α band. Likewise, Kerlin et al. [5] also ob-
served that low-γ band is helpful in distinguishing the attended
utterance in a cocktail party scenario. Additionally, previous
studies suggest that low-γ band plays an important role in the
underlying physiologic computations and stimulus competition
[28], [58], [59]. These findings indicate that low-γ band also
carries useful information regarding attention, which is reflected
in the frequency attention mask.

Unexpectedly, α-band EEG is assigned with relatively lower
weights, which seems to conflict with the findings by Wost-
mann et al. [34], [52]. We note that studies in [34] and [52]
were focused on the lateralization (i.e., left-right hemispherical
asymmetry) of the α power instead of the overall α-band EEG.
Furthermore, they studied the case where both the attended and
unattended speech streams have the same temporal structure.
Unlike previous auditory spatial attention work [36], [51], we
are not interested in the spatial selective attention, but rather
the attention to the difference of the temporal structure of the
attended and unattended speech streams. In practice, we seek to
detect whether the EEG signals are associated with the speech
envelopes of attended speaker. Viswanathan et al. [33] have

also reported that the α-band EEG is less informative about
attentional focus than δ, θ, β, and low-γ bands.

In summary, EEG frequency bands show different functional
roles in auditory attention. Studies in neuroscience describe
the qualitative contributions of attention signals carried by the
frequency bands, which motivates the study in this article. The
proposed frequency neural attention mechanism provides a way
to assign differentiated weights dynamically to the frequency
bands in a quantitative manner. In this way, we do not make
a hard selection of frequency bands, but rather embrace all in-
formation available across the frequency bands. The successful
implementation of frequency neural attention is attributed not
only to the weights that reflect the contributions of the frequency
bands, but also to the dynamic combination of the weights that
are adapted for individual subjects.

VI. CONCLUSION

This study is motivated by the findings in neuroscience that
auditory attention is manifested in EEG signals in a differen-
tiated manner across the spatial locations over the cortex and
the frequency bands. We propose a novel frequency-channel
attention mechanism as a neural approach to AAD, and show that
the proposed framework consistently outperforms all state-of-
the-art competing models on both KUL and DTU datasets. The
proposed frequency-channel representation can be generalized
to other EEG-based decoding tasks. In the empirical analysis, we
confirm that the channel and frequency masks corroborate the
findings in neuroscience. This study marks an important step
toward real-time attention detection for neurosteered hearing
aids. As future work, we would like to study the AAD in
real-world acoustic environments, where the auditory stimuli
are corrupted by noises [13], [14], and from more than two
competing speakers.
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