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Abstract

Objective. Recent studies exploit the neural signal recorded via electroencephalography (EEG) to

get a more objective measurement of perceived video quality. Most of these studies capitalize on

the event-related potential component P3. We follow an alternative approach to the measurement

problem investigating steady state visual evoked potentials (SSVEPs) as EEG correlates of

quality changes. Unlike the P3, SSVEPs are directly linked to the sensory processing of the

stimuli and do not require long experimental sessions to get a sufficient signal-to-noise ratio.

Furthermore, we investigate the correlation of the EEG-based measures with the outcome of the

standard behavioral assessment. Approach. As stimulus material, we used six gray-level natural

images in six levels of degradation that were created by coding the images with the HM10.0 test

model of the high efficiency video coding (H.265/MPEG-HEVC) using six different

compression rates. The degraded images were presented in rapid alternation with the original

images. In this setting, the presence of SSVEPs is a neural marker that objectively indicates the

neural processing of the quality changes that are induced by the video coding. We tested two

different machine learning methods to classify such potentials based on the modulation of the

brain rhythm and on time-locked components, respectively. Main results. Results show high

accuracies in classification of the neural signal over the threshold of the perception of the quality

changes. Accuracies significantly correlate with the mean opinion scores given by the

participants in the standardized degradation category rating quality assessment of the same group

of images. Significance. The results show that neural assessment of video quality based on
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SSVEPs is a viable complement of the behavioral one and a significantly fast alternative to

methods based on the P3 component.

Keywords: EEG, SSVEPs, video quality assessment, classification, MOS

(Some figures may appear in colour only in the online journal)

1. Introduction

Perceived quality of a set of images or videos is usually

assessed using some opinion tests, in which participants are

asked to rate the quality of a given visual stimulus on a rating

scale (ITU 2002, 2008). This type of behavioral tests has

some well known limitations: first, they require a large

number of participants to obtain statistical significance and

the results often suffer from large inter-subject variance.

Second, the judgment can be biased by several factors not

depending on the quality of the stimuli, such as the nature of

the task, the rating scale used, the internal state of the parti-

cipant, expectations, emotions. A possible way to quantify

visual distortions more objectively would be modeling some

key features of the visual system (Jayant et al 1993, Sesha-

drinathan and Bovic 2010). Visual perception is a complex

process. The visual stimulus passes through the optical sys-

tem and excites the photoreceptors of the retina. The resulting

signal is transferred to the visual cortex and processed fol-

lowing further elaboration by higher levels of the visual

system. Humans are assumed to have an internal threshold,

which makes them decide at the cognitive level whether they

noticed a distortion, or not. So far, a precise model of sub-

jective perception is not yet available and the process

underlying the judgment itself is not fully understood.

Therefore, in recent years, there has been an increasing

interest to assess perceived image quality through the direct

measurement of brain signals. For this purpose, one tech-

nology that proved to be suitable is electroencephalography

(EEG), which records the ongoing electrical brain activity.

EEG has been widely exploited in visual and audio perception

research (Babiloni et al 2006, Demiralp et al 2007, Busch

et al 2009, Porbadnigk et al 2013) and recently also for

assessing user’s perceived multimedia quality (Hayashi

et al 2000, Porbadnigk et al 2010, 2011, Lindemann

et al 2011, Lindemann and Magnor 2011, Antons et al 2012,

Mustafa et al 2012, Scholler et al 2012, Perez and Dele-

chelle 2013, Porbadnigk et al 2013, Moldovan et al 2013,

Arndt et al 2014, Bosse et al 2014, Kroupi et al 2014). Most

of these studies focus on the measurement of specific EEG

components called event related potentials (ERPs). ERPs are

brain responses arising time locked to the onset of an external

significant stimulus (Donchin 1979, Pfurtscheller and Lopes

da Silva 1999, Picton et al 2000). There are several categories

of ERPs, associated to different steps of the processing of the

stimulus, with different latencies and scalp topographies. In

video quality assessment studies, the most exploited ERP

component has been the P3, which is a positive deflection of

the brain activity arising between 300 and 500 ms after the

stimulus onset in the central-parietal cortex (Smith et al 1990,

Picton 1992, Johnson 1993), largely independent on the

sensory modality. In Scholler et al (2012), a P3-based EEG

measurement is used to directly assess the perception of

quality changes in 8 s video clips, in which distortions are

introduced by a hybrid video codec. They find that quality

changes elicit a P3 component that is positively correlated

with the magnitude of the change, which can be classified on

a single-trial basis. Also they report that a participant shows

brain responses to low distortion stimuli, although the parti-

cipant did not report perceiving them. In another study by

Lindemann and Magnor (2011), the use of EEG as a tool for

evaluating image quality for JPEG-compressed images is

investigated. They show that the presence of JPEG artifacts

elicits ERPs whose amplitudes vary with the compression

ratio. In a follow-up study (Lindemann et al 2011), they

present a first evaluation of artifacts in simple video stimuli to

verify whether they can be assessed using ERP analysis. By

comparing the ERPs elicited by videos with and without two

types of artifacts, they show that artifacts produce measurable

ERPs whose shape depends on the strength of the artifacts.

Another approach for single-trial classification of artifacts in

videos is proposed by Mustafa et al (2012), where the focus is

the classification of artifacts that usually occur in image-based

rendering techniques. They also show that it is possible to

distinguish with a certain degree of accuracy between dif-

ferent types of artifacts. All these works demonstrate that an

EEG-based approach in classifying quality changes or arti-

facts in videos and images is a feasible measurement that,

together with behavioral tests, can lead to a more objective

rating of perceived quality. Notwithstanding, all studies that

capitalize on the P3 component have several limitations. First,

the P3 component is not directly linked to sensory processing,

but reflects higher cognitive processing of the stimulus. It is

elicited by an oddball paradigm, in which the user pays

attention to the occurrences of a target event among more

frequent non-targets. The paradigm usually requires a high

number of trials in order to have a sufficient number of target

events and a good signal-to-noise ratio. Besides, the design of

such experiments needs to be carefully done. For example, the

target events have to be sufficiently distant in time between

each other, in order to produce the ‘surprise effect’ which

would significantly modulate the brain signal (Duncan-

Johnson and Donchin 1977, Sellers et al 2006).

In this study, we investigated an EEG-based approach to

video quality assessment, exploiting steady state visual

evoked potentials (SSVEPs). SSVEPs are oscillatory brain

responses elicited in the visual cortex by a repetitive visual

stimulus (Calhoun and McMillan 1996, Herrmann 2001,
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Vialatte et al 2010). For example, a flickering light would

synchronize the neurons of the visual cortex at the same

frequency of the driving stimulus and higher harmonics

(Regan n.d, year, Rager and Singer 1998). They have been

employed successfully in brain computer interfaces (BCIs)

(Gao et al 2003, Müller-Putz et al 2005, Friman et al 2007,

Allison et al 2008, Parini et al 2009) and in basic research on

the human visual system (Morgan et al 1996, Müller and

Hübner 2002, Keil et al 2003, Pastor et al 2003), proving to

be robust and reliable signals to classify. Previous work on

using SSVEPs has already demonstrated the basic suitability

of the targeted method for video quality measurement (Norcia

et al 2014). Using a SSVEP-based paradigm in which the

flickering effect is caused by changes in video quality (owing

to compression), we show that it is possible to elicit a direct

visual response and to obtain a meaningful quantification by

single-trial classification using machine learning techniques.

A characteristic that makes SSVEPs preferable to P3 in video

quality assessment is that SSVEPs are directly linked to the

sensory processing and can give a more straightforward

indication of the level of perception of the visual stimuli.

Moreover, for the reasons described above, a P3-based

approach requires long inter (target-) stimulus intervals in

order to achieve a suitable signal-to-noise ratio, while a

SSVEP-based approach allows to collect a large number of

trials within a short amount of time. For example, in the study

of Scholler et al (2012), a total of 600 ERPs was collected in

120 min, while more than 10.000 ERPs (single VEPs of the

SSVEPs) can be collected using the proposed SSVEP-based

approach within the same amount of time. Of course, such a

comparison can only give an indication of the potential to

speed up the assessment by using SSVEPs, since comparing

just the number of trials ignores that both studies had different

stimulus material and presumably a different signal-to-noise

ratio in single-trials. Another limitation of previous studies is

that they do not investigate directly the correlation between

the neural assessment and the behavioral ratings. An excep-

tion can be found in the recent study of Arndt et al (2014), in

which they performed a series of experiments assessing video

and audiovisual quality degradation. They show an average

significant correlation between the P3 amplitudes and the

mean opinion scores (MOS) in three out of five experiments.

In this study, we performed the standard behavioral test for

video quality assessment either before or after the EEG

measurement and the MOS for the same groups of textures

was collected. Therefore, we could correlate the classified

SSVEP features not only with the quality changes intrinsic to

the video signals, but also with the judgments of the partici-

pants. We used textures in condition of natural luminance as

stimuli instead of artificially generated stimuli. This makes

the stimuli more realistic and the experimental condition

closer to real world video sequences. Yet, the textures were

simple enough to avoid influences of semantic content, and

chosen to be homogeneous in order to minimize the effects of

eye movements and to avoid that attention was captured by

salient objects not related to the purpose of the experiment.

2. Methods

2.1. Stimuli

Six gray-level texture images (Ojala et al 2002, Kyl-

berg 2011) were chosen as the basis for stimulus generation

(figure 1). The size was 512 × 512 pixels and they all had the

same mean luminance. In order to make the measurement

independent of the image statistics and of the actual gaze

position during the experiment, the texture images were

spatially roughly stationary. The quality of each texture image

was then degraded in six different levels. The distortions were

introduced by coding the textures using the HM10.0 test

model (JCT-VC 2014) of the emerging high efficiency video

coding (H.265/MPEG-HEVC) standard (Sullivan et al 2012).

In this standard, statistical redundancies are exploited by

block-wise temporal and spatial linear prediction. The resi-

dual signal is transformed block-wise, and coefficients are

quantized in the transform domain. The quantization is con-

trolled by the quantization parameter (QP). Coding artifacts,

which are perceived by the human observer as a loss of visual

quality, are introduced by the quantization of the transform

coefficients. In order to investigate how the visual cortex

responds to distortions at the threshold of perception, the first

three distortion levels are chosen to be perceived as high

quality. The QP-values used in the experiment were estimated

in a pilot study in order to meet consistent MOS. All the

texture images in all the different levels of degradation were

displayed as videos, 114 s long. Details about the structure of

the videos are described in section 2.2.3.

2.2. Experimental design

2.2.1. Participants. Sixteen participants (seven females and

nine males, in the age group 21–46) took part in the

experiment. All had normal or corrected-to-normal vision and

none of them had a history of neurological diseases. They

were all native German speakers or at least with a level of

German comprehension of five, on the six level scale of

competence laid down by the Common European Framework

of reference for languages (Little 2007). All of them were

naïve in respect of video quality assessment studies and were

paid for their participation. The study was performed in

accordance with the declaration of Helsinki and all

participants gave written informed consent.

2.2.2. Apparatus. EEG was recorded with sampling

frequency of 1000 Hz using BrainAmp amplifiers and an

ActiCap active electrode system with 64 channels (both by

Brain Products, Munich, Germany). The electrodes used were

Fp1,2, AF3,4,7,8, Fz, F1-10, FCz, FC1-6, FT7,8 Cz, C1-6,

T7, CPz, CP1-6, TP7,8, Pz, P1-10, POz, PO3,4,7,8, Oz, O1,2.

The electrode that in the standard EEG montage is placed at

T8 was placed under the right eye and used to measure eye

movements. All the electrodes were referenced to the left

mastoid, using a forehead ground. For offline analyses,

electrodes were re-referenced to linked mastoids. All

impedances were kept below 10 kOhm. The stimuli were
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Figure 1. Stimuli. Six natural images were chosen as a basis for stimuli generation. The textures in the upper row represent stone, scarf and
oatmeal, in the lower row gray rubber, gray flakes and blanket, all in their undistorted form. They have been degraded in six levels of quality
coded with the HM10.0 test model HEVC standard and grouped together to form videos with a frame rate of 3 Hz.

Figure 2.Video structure. Each video (trial) comprised the six textures presented in all the levels of distortion (D1, ... , D6) in a random order.
Each texture was displayed distorted for 333 ms, followed by the undistorted form for 333 ms (D0) and the same succession was repeated
four times for each level. Such alternation of quality changes produced a flickering effect eliciting SSVEPs when perceived by the participant.
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shown on a 23’ screen (Dell U2311H) with a native resolution

of 1920 × 1080 pixels at a refresh rate of 60 Hz. The screen

was normalized according to the specifications in ITU (2002).

The stimuli resolution was 512 × 512 pixels (128 × 128 mm),

which corresponds to 7.15 visual angle. The size of the

images in the behavioral part of the experiment was the same

as in the videos. The viewing distance was 110 cm, in

compliance with specifications in the ITU-T

Recommendation P.910 (ITU 2008). Subjects sat in front of

the display in a dimly light room.

2.2.3. Procedure. The experiment consisted of an EEG

measurement and a behavioral part. After a general

introduction to the experiment and the preparation of the

EEG cap, half of the participants started with the EEG

recording and half with the behavioral assessment. In the

EEG part, they had to watch a series of 51 videos, divided

into three runs (20 + 15 + 16). Between each run, there was a

break of about 10 min, to give the participants the chance to

relax and stretch. Each video had a length of 114 s , followed

by a pause of 5 s. Each video began with a fixation cross that

was displayed for 3 s at the center. In order to minimize

artifacts, participants were instructed to not move their eyes

during the presentation of the video and to blink as little as

possible. Figure 2 depicts the structure of one video, which

will be addressed as ‘trial’ in the remainder of the paper. Each

trial comprises all six textures and degrees of quality,

presented in random order. The stimulus onset asynchrony

(SOA) was 333 ms, that is, each texture image was displayed

for 333 ms. At the beginning, the texture was presented in its

undistorted form (D0) for 2664 ms (333 ms × 8). Then, the

first quality change occurred and the distorted texture was

displyed for 333 ms, followed by 333 ms of the same texture

in its undistorted version. This cycle ‘distorted-undistorted’

was repeated four times for a total of 2664 ms. Then, the same

texture was displayed with another level of quality change,

for a cycle ‘distorted-undistorted’ of the same length. This

procedure was performed until all the distortion levels were

displayed for that texture (randomized order). After that, the

texture was switched and the new one was displayed at the

beginning in its undistorted version for 2664 ms, before

starting the cycle of quality changes. This presentation elicits

SSVEPs if the changes due to altered quality are processed in

the visual cortex. A SOA of 333 ms results in a flickering

frequency of 3 Hz. Before starting the main EEG recording

we performed some additional measurements, comprising a

relax measurement and an artifact measurement. In the relax

measurement, EEG was acquired during rest alternating with

eyes open and eyes closed (10 s each) in order obtain a

standard measure of the participant’s occipital alpha rhythm.

In the former phase, they had to look at a simple colored

geometrical shape moving in the center of the display. The

cycle ‘eyes closed-eyes open’ was repeated ten times. In the

artifact measurement, five crosses were displayed: one in the

center, the others respectively at the left and right side, upper

and below the central one. The distance of the four external

crosses matched the size of the videos. Participants were

instructed to fixate the central cross and then promptly move

the eyes to one of other four, according to the instructions of a

recorded voice. In the behavioral part of the experiment,

participants had to evaluate the perceived quality of the

textures, following the standardized degradation category

rating quality assessment (ITU 2002) in a presentation mode.

Each texture was presented in the display in pairs for 10 s: on

the right-hand side in its original undistorted version

(reference) and simultaneously on the left-hand side with

changed quality (figure 3). After that, a new window was

displayed, with the nine-grade degradation (distortion) scale,

according to the ITU-T P-910 recommendation (ITU 2008).

The scale was displayed in German language, and in English

can be translated in the following: 1- very annoying; 3-

annoying; 5- slightly annoying; 7- perceptible, but not

annoying; 9- imperceptible. Grade 8 is commonly

Figure 3. Behavioral assessment. Textures were presented in a random order, the distorted form on the left side of the display and the
undistorted on the right (here an example of blanket with degradation level D6). Participants had 10 s to look at them in free viewing
condition before the evaluation of the quality level. Each level of distortion was presented for three times, for each texture.
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interpreted as the perceptibility threshold, that is the distortion

level where the observer is not completely sure to perceive the

distortion. Participants had up to 10 s to decide about the level

of distortion of the previously displayed left image compared

to the reference one on the right, scrolling a bar until the

selected grade and confirming by button press. After that, the

presentation switched to the next pair of textures. If the

person did not make any choice within the 10 s, the

presentation automatically went ahead with the next

comparison. In the behavioral assessment, each texture

image was presented in all the level of distortions

(comprising the comparison reference–reference). For each

level, there were three evaluations. The order of the

evaluations was randomly shuffled. At the beginning of the

assessment, a calibration block was displayed in order to

make the participants confident with the test: each texture was

displayed for just two evaluations, worst quality level versus

reference and reference versus reference, for a total of 12

calibration evaluations. Like in the actual behavioral

assessment, in this short test participants were not aware of

the quality level of the displayed textures. The data of this

calibration block were not considered in the analysis.

2.3. Preprocessing and data analysis

EEG signal was lowpass filtered from 0 to 40 Hz with a

Chebyshev filter of order ten (3 dB of ripple in the passband

and 40 dB of attenuation in the stopband) and down-sampled

to 100 Hz. For the SSVEP visualization, the continuous signal

was divided into epochs ranging from 0 to 2664 ms, relative

to the onset of the first distorted texture for each quality

change. Each epoch comprises all four repetitions of the same

quality level. Epochs referring to the same distortion level

were averaged over all the trials and all the textures. In the

frequency-domain analysis, EEG spectra were calculated

between 1 Hz and 18 Hz for all epochs and then averaged for

each distortion level, over all trials and textures. For single-

trial offline classification, we tested two different methods.

The first one exploited the oscillatory nature of the SSVEPs

and used common spatial pattern (CSP) analysis to enhance

the discrimination of the event-related synchronization (Koles

et al 1990, Ramoser et al 2000, Blankertz et al 2008, Parini

et al 2009). The second one is based on methods used in ERP

analysis and exploits spatio-temporal features (Blankertz

et al 2011).

2.3.1. CSP method. CSP was used to extract spatial filters in

order to enhance the signal of interest in the occipital cortex.

In general, CSP aims at maximizing the variance on the

spatially filtered signals under one condition while

minimizing it for the other condition. In our case, one

condition would be the neural signal associated to the

distorted images and the other condition would be that

corresponding to the undistorted images presented at the

beginning of each block of textures. Since variance of

bandpass filtered signals is equal to band-power, CSP analysis

is applied to band-pass filtered signals in order to obtain an

effective discrimination of mental states between the two

conditions. CSP projects the signal ∈ tx( ) C in the original

sensor space to ∈ x C
CSP , which lives in the surrogate

sensor space, as follows:

=t tx W x( ) ( ). (1)T
CSP

Each column vector ∈ wj
C (j = 1, ... ,C ) of W is a

spatial filter; each column vector ∈ a j
C (j = 1, ... ,C) of a

matrix = ∈
− A W( )T CxC1 is a spatial pattern. While for

classification only the spatial filters are used, only the patterns

allow for a physiological interpretation of the CSP compo-

nents, see Blankertz et al (2008) and Haufe et al (2014). For a

more detailed review on CSP analysis and its application to

EEG signal processing, please refer to Lemm et al (2005),

Lotte et al (2007), Blankertz et al (2008), Sannelli et al

(2011), Samek et al (2012). In our case, the CSP filters were

calculated between the epochs of maximum distortion level,

which will be named class D6, and epochs of the undistorted

level, which will be named class D0. Since the performance

of this spatial filter depends on the operational frequency band

of interest, manually selecting a specific frequency range is

commonly used with the CSP algorithm (Dornhege

et al 2006, Ang et al 2008). In our case, CSP was performed

after filtering the data with a 5th order Butterworth filter

centered at 3 Hz (pass-band 2–4 Hz), 6 Hz (pass-band 5–7 Hz)

and both simultaneously (filter bank). The filter bank

concatenated data filtered at 3 and 6 Hz, which were

subsequently spatially filtered with the respective CSPs. In

this way, features referring to both frequencies could be

exploited simultaneously. In all the three cases, the

continuous EEG signal was divided into epochs of 667 ms

length, time-locked to the onset of the distorted image. For

each texture and level of distortion, the four repetitions of the

cycle ‘distorted-undistorted’ were averaged. For D0, the first

block of epochs at the beginning of each video was discarded,

because it is often affected by artifacts due to subject’s

movements between the videos. For training and testing, the

epochs were split into a subset of epochs with even IDs

(training) and odd IDs (testing), in order to prevent that

longer-term changes in the EEG during the experiment could

bias classification. For the calculation of the CSP filters

(training), the epochs with even IDs were considered. One up

to three CSP filters per class were automatically selected for

each subject and checked visually. The CSP filters that

maximize the variance for class D6 while minimizing the

variance for D0 were used. The selected filters were then

applied to the training epochs comprising D6 and D0 and the

log-variance in three equally spaced intervals of the filtered

data was used as feature matrix for training a classifier based

on linear discriminant analysis (LDA) (Lemm et al 2011).

The CSP filters were then applied to the testing epochs, from

D1 to D6, and classification was made between each level of

distortion and D0. Classification performance was measured

by the area under the curve (AUC) of the receiver operating

characteristic (Hanley and McNeil 1982).

2.3.2. Spatio-temporal features method. In this method, we

classified single-trial visual evoked potentials time-locked to

6
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the onset of the distorted texture, using spatio-temporal

features (Tomioka and Müller 2010, Blankertz et al 2011).

The EEG data was divided into epochs as follows: for the

‘class 1’ events, epochs were time-locked to the onset of the

distorted textures. For the ‘class 2’ events, the starting point

of epochs was shifted 160 ms after the onset. Being the period

of the oscillatory visual response of about 333 ms, a shift of

160 ms would lead to a high discrimination between the two

classes. In both classes, the length of the epochs was 667 ms.

For feature extraction, five temporal windows were selected

individually for each participant by a heuristic (Blankertz

et al 2011), based on the pointwise biserial correlation

coefficient (r-values). More specifically, we used the

− rsign 2 as a measure of separability between the two

classes. The aim of the heuristic is to find time intervals that

have a fairly constant pattern (class 1 minus class 2

difference) and maximal r2 differences. Features were

calculated from 36 channels (FC1,3,z,2,4, C1,3,5,z,2,4,6,

CP1,3,5,z,2,4,6, P1,3,2,4 Pz,7,9,8,10, PO3,7,4,8, O1,z,2) by

averaging voltages within each of the five chosen time

windows resulting in 36 × 5 = 180 dimensional feature

vectors. Classification was performed using ten-fold cross-

validation and LDA with shrinkage of the covariance matrix

(Blankertz et al 2011).

Classification results were correlated with the average

magnitude of the alpha rhythm during the experiment. The

alpha peak was searched within a range of frequencies. In

order to estimate alpha power, the difference between the

value of the alpha power and the linear interpolation between

the flanking frequencies (as baseline) was calculated. For this

estimate, flanking frequencies have been searched within the

intervals 6–10 Hz and 11–13 Hz, and the alpha peak was

determined as maximum of the spectra between the flanking

frequencies. For all participants, alpha peak was detected

between 9 and 12 Hz.

3. Results

3.1. Behavioral data

Figure 4 displays on the left the nine-degradation scale of the

MOS, in which grade 8 corresponds to the perception

threshold of the degradation, that is the level where the

observer is not completely sure anymore to perceive any

degradation. On the right, the mean MOS values over all the

participants, textures and repetitions is plotted as a function of

the distortion level. The error bars represent the standard

deviation as a measure of the variation of the mean MOS

across participants. The plot displays that on the behavioral

level the participants were not able to discriminate the two

most subtle distortion levels (D1 and D2) from the reference

image (D0). For level D3, the mean MOS is lower but still

remains above the value of the perception threshold. From

distortion level D4 to D6, the mean MOS values decrease

linearly with the level of distortion, and the error bars also

display an increase in variability among participants.

3.2. Neurophysiological data

Figure 5 (left) displays representative SSVEP waveforms of

participant VPib recorded at an occipital scalp site (electrode

position Oz). The plots are ordered according to increasing

distortion levels, that is, the top row refers to the reference

texture of highest quality (D0) and the bottom row to the

maximum distortion level (D6). Each plot represents the

average EEG activity over all the trials and textures at that

specific quality level. The time zero is locked to the onset of

the first repetition of the texture of each block. On the x axes,

Dist refers to the onset of the distorted texture, and Ref to the

onset of the reference image (D0). As described in the

methods section, the time interval between the onset of each

Figure 4. Behavioral assessment. Left: table representing the nine level scale of scores that the participants could give to the quality of the
distorted texture compared to the undistorted. Right: mean opinion scores given by participants for each quality level. Error bars refer to the
standard deviation from the mean. Until level D3, mean MOS values remain above or at the level of perception threshold (level 8) and from
D4 they decrease linearly with increasing distortion.
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frame is 333 ms. For the first three levels of distortion (D1–

D3), which are around the perception threshold, the ongoing

EEG activity is not visibly modulated by the quality change.

From D4 onwards, the SSVEPs become clearer and their

amplitude increases with increasing distortion. In all the plots

where the SSVEPs are evident, it can be noticed that the onset

of the reference images (Ref) elicits a more pronounced

negative peak than the onset of the distorted ones, at the same

latency. This result suggests that the transition Dist-Ref has a

stronger impact on the modulation of the visual evoked

potentials than the transition Ref-Dist. The results of the

analysis in the frequency domain analysis of the SSVEPs

(electrode position Oz) of the same participant are displayed

in figure 5 (right). Power spectra were calculated on single

trials before averaging over the trials and textures. The plots

represent the average power for each level of distortion, coded

with different colors. For the first three levels of distortion

(yellow, light green, emerald green) there is no clear increase

of the power in any of the frequencies of interest (3 Hz and

higher harmonics). From D4 to D6 (blue, violet, magenta), the

spectra display two clear peaks at 3 and 6 Hz, whose

amplitudes increase significantly with increasing distortion

level (p < 0.01). At D5 and D6 a small peak at 9 Hz becomes

visible, but this modulation is much smaller compared to the

first two harmonics (therefore not taken into account in fur-

ther analysis).

3.3. Classification

CSP filtering is a gold standard of the processing of EEG

oscillatory signals in BCIs. In the same way, spatio-temporal

features have been successfully used in the analysis of ERPs

(Blankertz et al 2011, Lemm et al 2011). We considered both

processing methods in combination with LDA (with shrink-

age when necessary) in order to exploit both natures of the

SSVEPs.

3.3.1. CSP method. Figure 6 displays the results of the CSP

analysis as color coded scalp topographies (for one

representative participant, VPib). Figure 6 on the left refers

to data filtered around 3 Hz, and in the middle to data filtered

around 6 Hz. The upper plots display the spatial filter

Figure 5. SSVEPs. Left: brain activity of participant VPib averaged over trials and textures at channel Oz is displayed from D0 to D6. Dist
refers to the onset of the distorted texture, Ref to the undistorted. Until level D3 there is no clear modulation of the neural signal by the quality
changes. From level D4 SSVEPs are visible with amplitude increasing with increasing distortion level. Right: spectra of the brain activity of
participant VPib at channel Oz averaged over trials and textures. As in the time domain analysis, no clear modulation is visible until D3.
From D4 to D6 (blue, violet and magenta lines), peaks at 3, 6 and 9 Hz are evident.
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coefficients, that is, the interpolation of the values of the

components of the vector wj, the jth columns of W, at each

electrode position. The bottom rows represent the

corresponding pattern of activation in the brain, that is, the

interpolation of the components of aj, the jth column of

=
−A W( )T1 . For each participant, only those CSP filters were

selected which maximize the variance of D6 while

minimizing the variance of D0, since we are interested in

finding the spatial patterns which discriminate the activity

elicited by the distorted texture versus the reference. (Note

that we use a colormap that has no direct association to signs

because the signs of the vectors are irrelevant in our analysis.)

After the training of the LDA classifier and the application of

the CSP filters to the testing data, the classifier was evaluated

for all the levels of distortions. The results are displayed in the

bar plot in figure 6 (right), for 3, 6 Hz and the filter bank

which considers both frequencies. The error bars indicate the

standard deviation of the single participants with respect to

the mean accuracy. The x axes represent the pair of classes

between which the classification was performed, and the y

axes the classification performances. Independent of the

chosen frequency, the mean classification accuracy for the

first three levels of distortion (D1 to D3) is around chance

level and not affected by the quality change. Between D4 and

D6, the mean classification accuracy increases linearly and

significantly with increasing distortion, reaching at D6 0.68

(SD = 0.13) for 3 Hz, 0.71 (SD = 0.13) for 6 Hz and 0.74

(SD = 0.14) for the filter bank. In the CSP method a slight

increase on average performances is visible when data are

preprocessed with the filter bank, exploiting the features and

filters of both the frequencies of interest. Repeated

measurement of ANOVA8 run on the AUC values with

factors ‘distortion level’ and ‘frequency’ display a statistically

significant difference for the first factor (p < 0.01), but not for

‘frequency’ (F = 0.57, p = 0.56). Even if the results show

higher average accuracy when considering the filter bank of 3

and 6 Hz, the choice of the discriminant frequency does not

affect significantly the classification accuracy.

3.3.2. Spatio-temporal features method. In the second

method of classification based on spatio-temporal features,

epochs of 667 ms length were considered time-locked to the

onset of the distorted images for class 1, and with a lag of

160 ms for class 2. Figure 7 (left) displays the grand average

of evoked potentials over all participants and trials for

distortion level D6. The line colored in magenta displays the

EEG activity referred to class 1, the gray line to class 2.

Considering just the magenta plot, a first negative deflection

is visible between 150 and 210 ms after the onset of the

distorted image, followed by a pronounced positive peak

around 270 ms. As already displayed in figure 5, the onset of

the reference texture at 333 ms elicits a more pronounced

negative visual evoked potential than that elicited by the onset

of the distorted texture. The scalp plots underneath display the

topographies in two time intervals where the class difference

is large (shaded gray in the plot above). They visualize the

distribution of the signed r
2 values as a measure of

discriminability between classes 1 and 2, which is highest

Figure 6. CSP analysis. Left and middle: scalp plots display the CSP filters (upper row) and patterns (lower row) of participant VPib, for
brain activity filtered around 3 Hz (left) and 6 Hz (middle). CSP filters were calculated considering a subgroup of epochs referring to D6 and
D0. The patterns clearly display that the highest variance of the neural signal takes place in the occipital cortex, where the visual information
is processed. Right: average classification accuracies using LDA after CSP filtering, for features at 3 Hz (red), 6 Hz (green) and filter bank
(blue), respectively. Error bars refer to the standard deviation of the participants accuracies from the mean. Classification accuracy increases
significantly from D4 to D6, but no significant difference is found in the choice of the filtering frequency.

8
Data distribution was checked with the one-sample Kolmogorov–Smirnov

test under the null hypothesis that the samples are drawn from a standard

normal distribution. The null hypothesis was not rejected at the 5%

significance level.
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in the occipital cortex with focus around the central channels.

In other words, the visual processing of the stimuli leads to

maximal discrimination between good and distorted quality.

Based on the signed r2 values, features for offline single-trial

classification were determined (ten-fold cross-validation). A

mean accuracy of 0.84 (SD = 0.1) is achieved at the maximal

distortion level D6. At D5 and D4 the mean accuracy drops to

0.75 (SD = 0.12) and 0.61 (SD = 0.1) respectively. The mean

accuracy at D3 down to D0 are around chance level. Figure 7

(right) displays the trend of the classification accuracy for all

participants (colored lines) and the mean (black thick line) as

a function of the distortion level. From distortion D3 upwards,

the mean accuracy increases significantly with the level of

distortion (p < 0.01). Since classification is based on the

spatio-temporal features derived from the evoked potentials,

this trend tightly follows the trend of the modulation of the

visual evoked potentials in the occipital cortex. The SSVEP

plots in figure 5 refer to participant VPib, who reaches the

highest classification accuracy in the spatio-temporal

classification method, that is 0.99, and also in the CSP

method, that is 0.96 (filter bank). Participant VPib shows

clear visual evoked potentials and spectra peaks at both 3

and 6 Hz.

MOS values significantly linearly correlated with classi-

fication accuracy obtained using the spatio-temporal features

for all the participants (p < 0.01). MOS values were also

correlated with the accuracy obtained by the CSP method

with filter bank, which takes into account contemporary both

the frequencies of interest. In this case, we found a significant

linear correlation (p < 0.05) for all but two participants.

3.4. Understanding individual differences

While for the first three levels of distortion there are no

substantial inter-participant differences in classification

results, the variability of the classification accuracy at higher

levels of distortion becomes statistically significant (p < 0.05).

For example, in the classification based on spatio-temporal

features five participants reach a mean classification accuracy

of more than 0.9 for the maximal level of distortion D6, while

five participants never exceed 0.7. The latter even do not pass

chance level in the classification of distortion level D4, thus

seeming less sensitive in general to changes of visual quality.

In order to find neurophysiological correlates of classification

performance, we calculated the average peak magnitudes of

the alpha rhythm during the experiment for each participant

and correlated it with the classification result that the parti-

cipant reached at the maximal level of distortion. The results

are displayed in figure 8 as scatter plots, for the two classi-

fication methods described in the previous section. Each dot

represents a participant. The black line is the result of the

linear regression between the average magnitudes of the alpha

peaks of each participant and their classification accuracies.

The yellow dots represent participants having the 10% largest

Mahalanobis distances to the data center, and therefore con-

sidered as outliers and removed from the analysis (Huber and

Ronchetti 1975). In both classification methods used, we

Figure 7. Classification based on spatio-temporal features. Left: grand average brain activity over all participants at channel Oz, at maximum
distortion level D6. The magenta line represents class 1 and the gray line class 2. Scalp plots underneath refer to the shaded areas in the time

plot and display the magnitude of the − rsign 2 for each channel. The highest discrimination between the two classes takes place in the

occipital cortex. Right: classification accuracies using shrinkage LDA for all participants (colored lines) and mean (black thick line).
Classification remains at chance level for all participants until D3, and then increases significantly with increasing distortion level. Participant
VPib reaches the highest accuracy, 0.99 at D6.
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found a significant linear negative correlation between the

average alpha activity during the experiment and the accuracy

of classification of the quality change. In the CSP analysis,

this is the case for all spectral features we considered (3, 6 Hz,

filter bank). The Pearson correlation coefficients were

r = −0.64 for classification based on spatio-temporal features

(p < 0.02), r = −0.70 for CSP classification at 3 Hz (p < 0.01),

r = −0.60 for the CSP classification at 6 Hz (p < 0.05),

r = −0.69 for CSP classification with the filter bank (p < 0.01).

Accordingly, brain signals of participants with a high level of

alpha activity were less modulated by quality changes. One

reason for an increased level of alpha activity is decreased

attention.

4. Discussion

EEG data can be analyzed from two main points of view, the

one that refers to the modulation of brain rhythms and the one

that takes into account the time-locked components of brain

activity (Lemm et al 2011). In motor imagery-based BCIs a

well established method for signal processing is the CSP

filtering, which finds spatial filters that discriminate the areas

of the motor cortex where the modulation of the oscillatory

idle state is the highest (Blankertz et al 2008). In ERP-based

BCIs instead, since the ERPs are time locked to the target

event to classify, it is crucial to identify the time intervals in

which the discrimination between the targets and non-targets

Figure 8. Correlation amplitude of alpha rhythm-classification accuracy at D6. The upper plots refer to the classification accuracy based on
the CSP method at 3 Hz (left) and 6 Hz (right), the lower plots to CSP with filter bank (left) and to classification based on spatio-temporal
features (right). Each dot represents one participant, the yellow ones refer to participants considered as outliers. Regression lines are also
displayed. For all the methods the amplitude of the average alpha rhythm during the experiment significantly negatively correlated with the
average accuracy at D6. This suggest that the alpha rhythm plays a role in the maximum classification accuracy achieved based on SSVEPs.
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is the highest. The classification of spatio-temporal features

using LDA with a regularization by shrinkage of the covar-

iance matrix was found to be successful (Blankertz et al 2011,

Bartz and Müller 2013). SSVEPs are evoked potentials time-

locked to the attended stimulus, which differ from ERPs by

being in steady state and not transient. In most of the BCIs

studies based on SSVEPs the EEG signal is processed in the

frequency domain because usually the stimuli have different

frequencies in order to differentiate several target events. In

our case, we adopted one frequency for the stimulation, since

our purpose was not to operate a BCI (Cheng et al 2002,

Müller-Putz et al 2005, Allison et al 2008) but to modulate

the EEG activity according to the quality change of the sti-

muli. We can still exploit the oscillatory nature of the signal

with a narrow band-pass filtering around the frequencies in

which the variance of the signal is enhanced compared to the

background state. But also the temporal evolution of the

evoked potential can be investigated, since the SSVEPs are

time locked to the quality changes. The two methods used in

this study for offline analysis take into account both phe-

nomena, and lead to results with comparable trends but dif-

ferent accuracies. Classification results show mean offline

accuracies up to 0.74 and 0.84 for the maximum distortion

level D6, respectively for the CSP method and the spatio-

temporal features method. Both methods show the same trend

in the classification results, that is, the performances do not

exceed chance level significantly for the first three levels of

distortion, while from D4 to D6 they increase significantly

and linearly with the quality change. These results suggest

that the quality changes introduced in the textures by the

compression algorithm modulate the ongoing EEG activity

eliciting SSVEPs which can be classified over the perception

threshold. The accuracies achieved in the proposed design are

in the same range of those exploiting the P3 component as

neural feature for video quality assessment via EEG. Note

that, performances between these two types of studies are

very difficult to compare because of the different design of the

stimuli used in P3-based and SSVEP-based experiments.

Mustafa et al (2012) reach a mean single-trial classification

accuracy up to 85% in classifying the presence of artifacts in

videos versus ground truth, using a wavelet-based classifica-

tion. The most severe artifacts reach a mean detection of 93%.

Lindemann et al (2011) also perform single trial classification

of the artifact in videos vs ground truth, using principal

component analysis (PCA) for dimensionality reduction and

support vector machine (SVM) as classifier. They use only

the trials correctly detected by the participants via button

press, achieving a mean classification accuracy of 76.5% for

the most obvious artifacts and 73.5% for the less obvious.

Scholler et al (2012) report a single-trial classification with

AUC values close to 1 for the highest level of distortion in

most the subjects. This result is obtained after filtering raw

data with a LDA filter, in which the weights are computed

based on the signed squared biserial correlation coefficient

between the trials with the highest quality change and the

trials without quality change. The classification accuracies

reported by Scholler and Lindemann refer only to trials cor-

rectly identified by the participants at the behavioral level.

Scholler et al also report for three participants an average

65% accuracy in classifying the trials in which the quality

change was present but not detected by the subjects, advan-

cing the hypothesis of higher sensitivity of the EEG compared

to the behavioral response. Since our study capitalizes on

SSVEPs elicited in condition of passive viewing, we could

not differentiate between trials potentially ‘detected’ by the

participants and trials in which participants might have had a

lower level of attention. So our accuracies refer to the overall

number trials, without pre-screening or rejections. About the

number of trials, it has to be pointed out that a SSVEP-based

paradigm allows the recording of an amount much higher

compared to P3-based paradigms. In fact, in the latter the

number of epochs containing the actual target event is just a

fraction of the total amount of epochs used in the experiment.

In our design, each epoch is a ‘target’, meaning that all the

trials contain useful information for the quality assessment.

As already mentioned in the introduction, the number of

events (as event referring to the occurrence of evoked

potentials useful for the evaluation) is increased more than ten

times if compared to the P3-based study of Scholler et al

(2012). That is to say that a SSVEP-based assessment can be

more than ten times faster than a P3 one. If we want to

quantify the speed of detection in terms of bit rate (Wolpaw

et al 1998), our system reaches about 27 bits min−1 for clas-

sification of D6 with the spatio-temporal features method.

This performance is achieved using just 13 min of EEG

recording for the training of the classifier.

Another fundamental aspect to consider is the compar-

ison between the neural assessment and the behavioral one.

Studies which foresee participants pressing a button at

detection of artifacts or distortions allow a more straightfor-

ward comparison between the neural and the behavioral

response (Porbadnigk et al 2013). However, in these cases

there is no indication of the actual level of quality perceived

by the participants, that is, how well they could detect the

distortions and how annoying the detected artifact could be.

And this is actually an important detail to take into account in

the implementation of video codecs. Therefore, unlike most

of previous works, we performed the behavioral assessment

in a separate test in which we collected the MOS values that

represent the actual subjective rate normally used in image

quality assessment. We then linked these results to the

accuracies of the classification of the SSVEPs modulated by

the quality changes. This represents a key factor in the design

of the paradigm, since previous studies usually refer the

classification performances to the presence of an artifact or

correlate the results with the absolute value of the quality

change. Also in Mustafa et al (2012) participants performed

the assessment via a MOS scale after each video, but they do

not report the correlation with the classification performances.

As already mentioned in the introduction, Arndt et al (2014)

correlate the P3 amplitudes with the MOS values of the

participants. They found an average significant correlation in

three experiments, in which video quality degradation is

caused by artificial blockiness. Anyway, this correlation is not

reported in the experiment in which the authors investigate a

more realistic scenario, using a real existing codec for
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introducing video distortions. In our case, we could prove a

significant correlation between the neural and the behavioral

assessment using the MOS values. This result is valid for all

participants for the spatial-temporal features classification,

and for all except two for the CSP based classification. The

two participants who show no correlation also have very low

performances in general in CSP classification, both with

maximum accuracy of 0.57 at D6. The spectra of these two

participants also do not display evident peaks at 3 and 6 Hz

until level D5. This result suggests that for those participants

the spectral features might not be very informative and the

spatio-temporal feature classification is preferable (classifi-

cation accuracy at D6 of 0.76 and 0.75, respectively). In both

the methods we used, mean classification remains at chance

level for distortions D1, D2, D3 and increases linearly and

significantly from D4 to D6. In general, the same trend is

visible in most of the participants. Clearly, not all participants

are expected to be sensitive in the same manner to the flicker

of the quality change. For example, considering the classifi-

cation method based on spatio-temporal features it can be

noticed that five participants have a classification accuracy

which stays at chance level at D4, a distortion level which is

supposed to be above perception threshold. Even though also

for these participants accuracy increases significantly with

increasing distortion, at D6 it does not go beyond 75%. For

these participants the SSVEPs are less pronounced in the time

domain, as well as the spectra peaks at the discriminative

frequencies. They seem to be ‘less sensitive’ to the quality

changes in general. There might be different reasons for such

phenomenon, which lie in the nature of perception itself. One

further reason can be found in the results of the analysis of the

occipital alpha rhythm during the experiment. A significant

negative correlation was found between the classification

performances and the mean magnitude of the alpha peak in

the occipital cortex, evaluated at electrode Oz. In literature,

the relationship between the spontaneous oscillatory activity

when the stimulus is presented and the perception of the

stimulus itself has been widely investigated. In particular,

different studies (Brandt and Jansen 1991, Jansen and

Brandt 1991, Ergenoglu et al 2004, Hanslmayr

et al 2005, 2007, Romei et al 2008, Busch et al 2009, Busch

and VanRullen 2010) show that oscillations in the alpha

frequency band interfere with the processing of the visual

information and modulate the gain of the visual system. A

decreased oscillatory activity is thought to reflect a state of

enhanced cortical excitability, and increased activity to reflect

a state of cortical idling or inhibition in which excitability is

reduced. Our results show that the magnitude of the alpha-

power during the experiment significantly correlates nega-

tively with the classification accuracies, that directly reflect

the trend of the SSVEPs. This could justify the attenuated

modulation and poor classification performances of some

participants. The high alpha rhythm during the experiment

could have kept their occipital cortex in an idle state pre-

venting a strong modulation by the flickering of the quality

change. Despite not showing a pronounced neural modulation

at high levels of quality changes (for example D4), these

participants were nevertheless able to perceive the

corresponding quality changes during the behavioral assess-

ment. Clearly, conclusions on these findings have to be made

carefully. First, the procedure of the rating and the EEG

experiment are intrinsically different: the behavioral assess-

ment is based on the comparison between the undistorted and

the distorted image, which are presented simultaneously in the

display, and participants have 10 s to carefully look at them in

a free viewing condition. Participants are then asked to use a

mouse to select the decided score, moving a scroll bar

between one and nine. All these tasks require people to be

active and overtly engaged, and maybe more concentrated in

recognizing a possible distortion in the texture to evaluate.

During the EEG recording, participants were asked to focus

straight in the center of the video, limiting any kind of

movement. This task is quite tiring and a reason why for some

people it could have been much more difficult to concentrate.

The state of excessive relax reflected by the high alpha

rhythm could prevent them to properly pay attention to the

quality changes. In general, it is well known in SSVEP lit-

erature that the amplitude of the modulation is substantially

increased by attention (Müller et al 1998, 2003) and that an

attended flickering stimulus elicits a larger steady-state

response than the same stimulus when unattended (Ding

et al 2006, Müller et al 2006). This is also the main principle

used by SSVEP-based BCIs (Cheng et al 2002, Müller-Putz

et al 2005, Allison et al 2008), in which stimuli are presented

simultaneously in different locations and frequencies. The

user can focus the attention on the target stimulus whose

frequency would modulate the steady-state response accord-

ingly. Another reason for the poorer performances of these

participants could lie in the choice of the stimulus frequency.

For some people not all the harmonics are modulated by

attention in the same way. For example, in the study of Pei

et al (2002) stimuli at 2.4 and 3 Hz were chosen and the

harmonic responses at 4.8 and 6 Hz were modulated by

attention, while the responses at 9.8 and 12 Hz were not. We

had a similar result showing the steady-state response present

mainly at 3 and 6 Hz, while the modulation of higher har-

monics was negligible. The choice of the stimulation fre-

quency was also addressed in the study of Kelly et al (2005).

They developed a SSVEP-based BCI in which stimuli were

presented at a flickering frequency within and outside the

alpha range, respectively. Results show that no advantage is

gained by using one or the other solution when working with

SSVEP features, but the authors suggest that the choice of the

stimulus frequency should be specific to individual subjects.

In our study, the frequency was chosen beforehand and kept

constant for all the subjects. Some of them might have been

less sensitive to that specific frequency, no matters their

engagement in the task or the idle state of their alpha rhythm.

Some research show a percentage of people being not able to

operate an SSVEP-based BCI at all (Allison et al 2008, 2010,

Volosyak et al 2011). This percentage is lower than the

estimation of the ‘BCI-illiterates’ in motor-imaging based

BCIs (between 15–30%, Blankertz et al (2010), Hammer et al

(2012), Suk et al (2014)), but it is an aspect worthwhile to

study in the future.
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4.1. Limitation and future developments

The six levels of distortions were associated to the QP which

were chosen in a pilot study such that the perceived degra-

dation at the behavioral level was the same for all the textures.

In the pilot study we performed a behavioral test like

described in the methods section, and finally we chose the QP

for each texture such that the average MOS values across

subjects was slightly below perception threshold for D2 and

slightly above for D3. In the main study we could not

reproduce the same results for a new pool of subjects. On

average, both D2 and D3 were below the perception threshold

both on the behavioral level and on the EEG level, therefore

not discriminable by the classifier. Future studies could take

into account more levels of the QP, especially increasing the

number of the levels around the perception threshold in order

to investigate the sensitivity of the EEG in relationship with

the behavioral results. In our results we did not find an evi-

dence of higher sensitivity of the EEG compared to the overt

response, suggesting that there were no distortions processed

unconsciously which would not result at the behavioral level.

Previous ERP studies (Porbadnigk et al 2011, Scholler

et al 2012) suggest that some people might show an uncon-

scious neural processing of quality changes. Therefore, it is

crucial to investigate more in depth the relationship between

EEG response and behavioral one at the perception threshold,

in order to prevent the implementation of video coding

methods which would introduce distortions potentially per-

ceived by the most sensitive people. As already mentioned,

the stimuli presentation in the behavioral test and in the EEG

part are intrinsically different. In the EEG part, participants

had to attend to a video in which the textures were presented

in succession with a quality changes at a frequency of 3 Hz

and in the behavioral assessment they had to rate the quality

of the same textures displayed together with the reference

image (following the video quality assessment standard tests

performed according to ITU (2002)). A future study could

consider to present the images to be assessed behaviorally in a

way that would be more consistent with the stimuli pre-

sentation in the EEG part. For example, the reference image

and the distorted one can be presented right after each other

for several seconds before the rating. The behavioral assess-

ment could be made after each video, helping participants to

be more awake and concentrated during the recordings. We

showed the correlation between the perceived quality change

and the size of the neural effect. In this study image degra-

dation was caused by a specific compression algorithm, which

introduces changes in more fundamental image features. The

identification of which specific feature is responsible of the

generation of the SSVEPs was beyond the scope of the paper.

This leads to the conclusion that the applicability of this

method to other image compression algorithms has to be

considered with caution, since other algorithms may control

the image features in a different way.

5. Conclusions

We showed that the quality changes introduced in natural

textures by the HM10.0 test model of the H.265/MPEG-

HEVC standard could be measured by EEG. For that, the

distorted signal modulated the neural signal, eliciting SSVEPs

that could be classified with high accuracies over the per-

ception threshold. The proposed experimental design let us

collect a number of epochs an order of magnitude higher than

previous P3-based designs, in the same period of time. The

results of the neural assessment significantly correlated with

the MOS values of the behavioral assessment. Taking into

account the characteristic of the visual system which sees

people having different sensitivity to the stimuli, this design

could be further improved choosing subject-specific stimula-

tion frequencies, increasing the number of the assessed

quality levels, and monitoring the level of the alpha rhythm

during the experiment. In general, one can conclude that

assessing video quality via the SSVEP-based paradigm is not

only a useful complement to the standard behavioral tests but

also a significantly faster alternative to P3-based paradigms.
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