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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinterface whereby brain responses can control 

machines has been developed by the Armstrong 
Laboratory. This EEG-based control uses the magnitude 
of the steady-state visual evoked response (SSVER) as a 
control signal. The SSVER is identijkd and monitored 
using non-invasive scalp electrodes and advanced signal 
processing technology. With biofeedback, users learn to 
increase or decrease the magnitude of the SSVER to an 
evoking stimulus. These responses are translated into 
commands that control the operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a physical device 
or computer program. Afer  further development, this 
innovative interface could revolutionize human 
interaction with complex systems. 

Introduction 

With recent advances in signal processing 
technology, it is now possible to reliably track specific 
brain signals only a few microvolts in amplitude and 
recorded with electrodes located on the scalp. 
Electroencephalographic (EEG)-based control is emerging 
as an exciting new channel of communication for human- 
computer interaction. This innovative use of brain 
signals has the long-range potential to revolutionize 
human interaction with complex systems. EEG-based 
control is the only candidate alternative control that does 
not require physical manipulation (of the hands, fingers, 
voice, eyes, andlor head). Additionally, control based on 
brain responses may be less constrained by environmental 
conditions. A direct brain interface which facilitates head- 
up and hands-free system operation may reduce operator 
workload and increase the overall bandwidth of control in 
a wide range of applications. For aviation and 
maintenance operations, EEG-based control allows the 
operator’s hands to remain on critical components. For 
industry, space, rehabilitation, and chemical defense 

scenarios, EEG-based control provides an alternative 
interface when conventional controls are less accessible. 
Although near-term rehabilitation and entertainment 
applications are probable, EEG-based control for complex 
systems will require 5-1 0 years development. 

Research over several decades has established the 
foundation for brain actuated control and provides the 
current basis for examining potential applications. This 
paper reviews the methods used to date, summarizes 
research conducted by the Air Force Armstrong 
Laboratory as part of its evaluation of alternative control 
technologies, and discusses some of the issues and 
implications for the application of EEG-based control. 

Background 

EEG-based control involves harnessing specific 
rhythms and patterns in the brain’s electrical activity that 
represent synchronized activity of large neuron groups. 
Two general approaches have been used in translating the 
EEG into system control inputs: 1) analyzing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan 
operator’s naturally occurring EEG patterns to identify a 
specific response or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  training an operator to exert 
voluntary control over some EEG response feature (e.g., 
amplitude) [ l ]. Each of these approaches is described in 
more detail below. 

Spontaneous EEG Interpretation 

This approach involves the application of pattem 
recognition algorithms to detect characteristics in the EEG 
which are associated with specific body movements, eye 
fixations or voice utterances. No user training is required. 
Rather, effort is devoted towards defining the relevant 
EEG signals and then training the algorithms with 
repetitions of the movement, fixations, or utterances such 
that the system can reliably recognize the defined 
components or patterns in spontaneous EEG. The 
objective of the research to date is to develop algorithms 
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which can predict the control action under investigation. 
With long term development, this approach may evolve 
into a true “thought-based interface.” 

To date, this approach has primarily been pursued by 
Gert PfUrtscheller and his colleagues at the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGsaz 
University of Technology in Austria [2,3]. Neural net- 
works are used to recognize EEG patterns in the 10-12 
and 30-40 Hz bands which precede specific body 
movements. After training with 100-200 repetitions of 
the body movement, movement prediction is possible 
with only one second of EEG data. Thus, the speed of 
the neural network analysis should allow near real-time 
operation and control. Improving recognition accuracy, 
however, remains a technological challenge. 
Pfurtscheller’s off-line system achieved 89% accuracy in 
predicting button pushes with the left or right hand. 
Accuracy dropped to 70% when toe and tongue movement 
predictions were added. Accuracy drops hrther if the 
algorithm is trained on imagined, rather than actual 
movements. 

of an EEG respionse [ I ] .  The magnitude of the steady- 
state visual evoked response (SSVER) serves as the 
control signal. This approach has been used to perfonn 
several different types of tasks (see next section). In each 
of the task paradigms investigated, two types of feedback 
are provided. First, progression through the task steps, as 
a result of the EEG-based control, can be observed. 
Second, near re(al-time feedback on the amplitude of the 
SSVER is provided in a separate display element. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo 
date, only single-axis control has been attempted. This 
involves translating the SSVER amplitude into a binary 
control signal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Armstrong L,aboratory EEG-based Control 

Evaluations 

System Description 
Self-regulation of EEG Responses 

Operant conditioning of numerous aspects of animal 
and human EEG and neural evoked responses has been 
successfully demonstrated in research spanning three 
decades [4,5]. Animal studies have demonstrated specific 
conditioning of brain activity, independent o f  skeletal 
muscle responses or other artifacts [5] .  Biofeedback is 
now commonly accepted as a technique for shaping brain 
electrical behavior and enabling voluntary modification of 
an EEG response. 

Voluntary control of the 8-12 Hz “mu” rhythm is 
under investigation at the Wadsworth Center for 
Laboratories and Research in New York by Jonathan 
Wolpaw and his colleagues [6,7]. Mu is recorded over 
the primary sensorimotor areas of the brain and responds 
in known ways during movement preparation. Their 
system is designed to use the recorded rhythm to control 
the position of a cursor on a computer monitor. Users zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
tasked with moving the cursor to contact targets that 
appear randomly at the top, bottom, or corners of the 
monitor. The cursor provides feedback to the user, as its 
direction and step size are based on the amplitude of the 
mu rhythm. For a single-axis task (targets appear at 
monitor’s top or bottom), users correctly select the target 
on 80-95%0 of the trials, taking 2-6 seconds to move the 
cursor. On a dual-axis control task (targets appear in one 
of monitor’s four corners), mu rhythm signals from both 
cortical hemispheres are used in a more complex 
algorithm. On this more difficult task, users typically are 
able to select 40-70% of the targets. 

The EEG-based control under investigation at the 
Armstrong Laboratory is also based on the self-regulation 

Studies at the Armstrong Laboratory have focused on 
the ability to voluntarily control EEG responses to 
sinusoidally modulated light. This feedback system 
simultaneously controls the frequency of the evoking 
stimulus and provides the user with feedback on the 
strength of the EEG response at that reference frequency. 
The current sy:jtem (Figure 1) uses fluorescent lights 
partially modulated at 13.25 Hz to evoke a steady-state 
response in the visual cortex. The signal used for control 
is the magnitudle of the bipolar SSVER recorded over 
occipital sites 0 1  and 0 2  (left and right visual cortical 
hemispheres, respectively, according to the 10-20 
International System for surface electrode placement). The 
EEG signal from the scalp electrodes is amplified and then 
synchronously processed by a lock-in amplifier system. 
The lock-in amplifier provides a continuous measure of 
the magnitude of the 13.25 Hz SSVER component of the 
EEG signal that is simultaneously provided to the subject 
feedback disphy and the device control algorithm. 
Control logic based on threshold and duration 
requirements is employed to permit stable control of an 
external device despite variability in the user’s SSVER 
control. One implementation produces a control output 
when the SSVER remains above or below experimenter- 
specified threshold for 75% of the samples in a one-half 
second interval These settings require the user to 
produce sustained changes in the SSVER; however, brief 
SSVER fluctuations do not interrupt system control. The 
threshold, duration and percentage parameters are 
adjustable for individual subjects and for specific device 
applications. Various forms of this EEG-based controller 
have been used fior different task paradigms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. Schematic illustrating use of brain interface to control simulator roll position. 

Researchkask Paradigms 

Earlier research in our laboratory focused on factors 
pertinent to implementing EEG-based control: stimulus 
fi-equency; effectiveness of feedback; effectiveness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf 
different feedback modalities (visual, auditory, and 
kinesthetic); relationship between alpha production and 
effective lock-in amplifier loop closure; and factors 
affecting the speed of the visual-cortical response system 
[8-91. Data were also collected to rule out the possibility 
of muscle biopotential contamination of the EEG response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 8 ] .  The lack of electromyographic (EMG) mediation is 
not surprising since this methodology is based on the 
control of very narrow band EEG activity. The results 
fi-om these studies provide convincing evidence that 
people can achieve conscious control of their EEG 
response to stimuli of specific fi-equencies and that this 
ability can be used for device control. The Armstrong 
Laboratory has applied this EEG-based controller to a 
variety of task paradigms. Each of these is briefly 
described below, in the order they were implemented in 
our laboratory. Typical performance with each is also 
summarized. 

Flight simulator roll position. With this task 
paradigm, the EEG-based interface is used to control the 

roll motion of a simple flight simulator [ lo; Figure 11. A 
task display in the simulator provides a random series of 
commands requiring the user to roll right or left to 
specific target angles. As the user increases the SSVER 
magnitude above one threshold, the simulator rolls to the 
right. When the SSVER magnitude is decreased below a 
lower threshold value, the simulator rolls to the left. 

A typical simulator control trial is presented in 
Figure 2. The user modulates the SSVER (as measured 
by the lock-in amplifier) in response to the roll command 
and the simulator moves in accordance with the output of 
the EEG interface. The operation of the control algorithm 
can be observed as simulator motion steps, separated by 
one-half second intervals. Typically, subjects are able to 
respond correctly to over 80% of the commands. 

Muscle stimulator operation. SSVER self- 
regulation is used to operate a fimctional electrical 
stimulator (FES), a rehabilitation device designed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 
exercise paralyzed limbs [ 111. Users are required to hold 
the SSVER magnitude above or below set thresholds f a  
85% of the samples in a one-second interval before a 
command is sent to the FES. Increasing SSVER 
magnitude above the “on” threshold causes the FES to 
activate at the muscle contraction level and begin ramping 
the current upward, gradually recruiting additional 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Flight simulator control. Sampde trial data. 
nated positive, roil left d e ~ ~ ! ~ ~ ~ t e d  negativ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

muscle fibers to cause knee extension. SSVER 
magnitude below the lower “of€” threshold results in the 
reversal of the FES system and subsequent ramp-down zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
the current. 

In a pilot study, each of three trained able-bodied 
subjects participated in 3 to 5 one-hour sessions. Trial 
data were examined to ensure that there was a 
corresponding change in current level with each change In 
knee angle to c o n f m  that the able-bodied subjects 
accomplished knee extension by controlling the brain- 
FES interface. All three subjects were highly successful 
in repositioning the lower limb to match the commanded 
knee angle (95.8% of the targets were acquired) and in 
returning the limb to its resting position. 

Color matching task. This computer-based task 
involves matching the fill color of a square with that of its 
border [12]. The task display provides SSVER 
magnitude feedback and a randomly ordered series of red 
(enhance SSVER) or blue (suppress SSVER) color 
commands shown in the square’s border. Users sustain 
SSVER enhancement or suppression above or below 
thresholds (100% o f  the samples for 2 seconds) to produce 
color steps in the corresponding direction of the 
commanded fill color. Each trial requires at least two 
successive correct color steps to match the command 
color. 

The requirement to sustain the SSVER modulation 
for 100% of the samples in a two second interval is more 

demanding than the control parameters used in other task 
paradigms. These more stringent settings are used to 
facilitate colleciion of scalpwide broad band EEG for a 
parallel investigation of the topographic effects of SSVER 
self-regulation. To assist users in learning this more 
difficult task, iul itial sessions require sustained modulation 
for only 80% of the samples i n  a one second interval to 
produce a color step. As the subject acquires proficiency 
at this level, the threshold, duration and percentage 
requirements are gradually increased concomitant with. 
performance improvements. After completing 
approximately 1 5 one-hour training sessions, subjects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
typically able to match 75% of the commanded colors. 
The percentage of successful color matches would be even 
higher if the control parameters were less demanding. 
Although this control algorithm is not optimized for task 
performance, its use demonstrates that subjects can sustain 
SSVER modifications for more than two seconds. 

Switch sellection. Users self-regulate the SSVER to 
select switch icons displayed on a computer monitor. 
Three “switches” (squares) are aligned next to three target 
fields on the display and the task involves selecting the 
switch next to tine field containing a target (see Figure 3). 
To change whi;h switch is selected, users enhance their 
SSVER above threshold to begin cycling through the 
switches. As soon as the SSVER meets threshold, the 
switch outline turns green. As the SSVER is sustained 
above threshold, the switch square outlined in green is 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Schematic of switches, target field, and target used in switc.. selection tas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
incrementally filled with green. Momentary drops below 
threshold halt, but do not reset, the fill process. Once the 
switch is entirely filled (1.5 second duration is met), the 
switch turns red and the next switch begins to fill. 
Maintenance of the SSVER above threshold continues the 
progression through the switches, moving vertically up 
the column. Once the top switch is filled, the progression 
“wraps around” to the bottom switch. To stop 
progression through the switches, the user must suppress 
the SSVER below threshold. The changes in the border 
and fill color of the switches provide feedback on the 
SSVER magnitude. In some implementations, a 
dynamic vertical bar is displayed between the switches 
and target fields to provide continuous SSVER magnitude 
information, relative to the threshold (shown in Figure 3 
as hash mark between the top two switches). 

Experimentation is underway using this task 
paradigm. Subjects are presented 12 blocks of 18 targets 
in 45 minute sessions. For each target, subjects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
instructed to select the switch next to the field containing 
the target and pull the joystick trigger. Only preliminary 
data are available fiom three subjects; after eighteen 
sessions, the correct switch is typically selected for 70% 
of the targets. 

Some Implementation Issues 

Despite the success demonstrated in these laboratory 
task paradigms, several issues need to be addressed before 
EEG-based control can be used for human interaction with 
complex systems. To date, the control achieved can be 
described as rudimentary. Additional research is required 
to explore strategies for improving the dimensionality, 
accuracy, and bandwidth of control. Possibilities include 
the use of multiple EEG signals or patterns and the use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf 
spatio-temporal patterns arising from the coordinated 
activity of multiple brain locations. Another promising 
approach would combine elements of the spontaneous 

EEG recognition and self-regulation approaches to EEG- 
based control. Here one would begin with an EEG 
response that is naturally associated with the desired 
operator control output. Movement preparation EEG 
patterns are an example. Then one would employ 
biofeedback and closed-loop control techniques to allow 
the operator to improve the reliability and speed of the 
EEG response in order to perform some task. 

If EEG-based control ultimately lacks the resolution 
and reliability afforded by many conventional controls, 
there are still potential applications where its head-up, 
hands-fiee nature offers real advantages. Ideally, EEG- 
based control will be integrated into future complex 
systems as a supplement to conventional control, rather 
than a substitute. In this manner, the combined potential 
of conventional and evolving alternative controls can be 
exploited. 

Application in complex systems will require 
confirmation that EEG-based control is possible under 
real-world workload conditions. Experience to date 
suggests that learning EEG-based control does not require 
any special skills, unique individual characteristics or 
extensive training. However, it’s utility in multitask 
environments and with ongoing distractions has not been 
examined. Its application will also require the 
differentiation between intended and unintended control 
signals changes. EEG is effectively “on” all the time; 
there is not a natural way to engage brain signals as an 
input device, similar to graspingheleasing a mouse. 
Some type of consent response may be required whereby 
the user either activatesideactivates EEG control or signals 
the system to act on the last recorded EEG response. 

Successful application of EEG-based control will 
require system components that are portable, flexible, 
convenient, and relatively unobtrusive. Regardless of 
which EEG-control system is utilized, size, weight and 
cost are not serious constraints. Personal computer 
systems of the 80486 class are sufficient to support zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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required computations, although digital signal processing 
boards are sometimes used. Continued development of 
“dry” EEG electrode recording systems is desirable to 
make application more convenient. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Conclusions 

An adaptive interface which modifies system states zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
a function of the user’s neural state would eliminate much 
peripheral neural and muscle activity from the human- 
system control loop. By monitoring central neural 
signals, the interface adapts in some optimal fashion and 
executes user control intentions. This capability would 
be especially useful in task environments where 
conventional controls are difficult, if not impossible, to 
employ. EEG-based control hardware/sohare 
development shows great promise for adaptive human- 
computer interaction. Rudimentary one- and two- 
dimensional control and simple item selection have been 
demonstrated with current laboratory systems. However, 
improvements in flexibility, precision and reliability of 
EEG-based control are required for application in complex 
systems. Applications with current technologies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
probably limited to assistive devices for the physically 
challenged and input devices for entertainment systems. 
Moreover, human factors research examining EEG-based 
control applications in complex systems remains the key 
challenge and opportunity. 
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