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The anticipatory recognition of braking is essential to prevent traffic accidents. For

instance, driving assistance systems can be useful to properly respond to emergency

braking situations. Moreover, the response time to emergency braking situations can

be affected and even increased by different driver’s cognitive states caused by stress,

fatigue, and extra workload. This work investigates the detection of emergency braking

from driver’s electroencephalographic (EEG) signals that precede the brake pedal

actuation. Bioelectrical signals were recorded while participants were driving in a

car simulator while avoiding potential collisions by performing emergency braking. In

addition, participants were subjected to stress, workload, and fatigue. EEG signals

were classified using support vector machines (SVM) and convolutional neural networks

(CNN) in order to discriminate between braking intention and normal driving. Results

showed significant recognition of emergency braking intention which was on average

71.1% for SVM and 71.8% CNN. In addition, the classification accuracy for the best

participant was 80.1 and 88.1% for SVM and CNN, respectively. These results show the

feasibility of incorporating recognizable driver’s bioelectrical responses into advanced

driver-assistance systems to carry out early detection of emergency braking situations

which could be useful to reduce car accidents.

Keywords: driving, braking, intention, electroencephalogram, detection, stress, workload, fatigue

1. INTRODUCTION

According to the World Health Organization (WHO), every year traffic accidents cause the death
of 1.3 million people around the world, additionally, about 50million people suffer from a disability
caused by accidents related to cars (WHO, 2011). By 2020, it is estimated that traffic accidents
will be the fifth leading cause of death in the world, reaching 2.4 million deaths per year (WHO,
2013). Among the principal causes of the high car-related accidents andmortality are human errors
(Subramanian, 2007) which are largely correlated to distractions, tiredness, or the simultaneous
realization of other activities during driving (Allnutt, 1987; Horowitz and Dingus, 1992; Summala
and Mikkola, 1994; Petridou and Moustaki, 2000). To mitigate this problem, driving assistance
systems appeared as in-car technologies that aim to help and complement the human-based car-
control in order to prevent potential accidents (National Highway Traffic Safety Administration,
2005). These systems employ internal sensors, like for example speedometers, accelerometers,
and pedals level; and external sensors such as lidar, sonar, and video-cameras to obtain and to
analyze information from the vehicle (e.g., orientation and twists) and from its surroundings (e.g.,
the presence of other cars or pedestrians, the road and whether conditions) that is used to help

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00029
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00029&domain=pdf&date_stamp=2018-05-29
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mauricio.antelis@itesm.mx
https://doi.org/10.3389/fninf.2018.00029
https://www.frontiersin.org/articles/10.3389/fninf.2018.00029/full
http://loop.frontiersin.org/people/482735/overview
http://loop.frontiersin.org/people/342070/overview
http://loop.frontiersin.org/people/205360/overview
http://loop.frontiersin.org/people/482738/overview


Hernández et al. EEG-Based Detection of Braking Intention

drivers to recognize and to react to potentially dangerous
situations (Shaout et al., 2011; Smirnov and Lashkov, 2015). For
instance, driving assistance systems can be useful to properly
respond to emergency braking situations as those required by the
sudden and unforeseen appearance of cars, bicycles, or persons.
In these situations, if the external sensors recognize a potential
upcoming crash and the internal sensors detect an abrupt and
rapid activation of the brake pedal, then safety actions such as to
speed-up the braking along with a proper maneuvering might be
carried out. This procedure may generate a faster and controlled
braking response than the one made by the driver alone, thus
possibly preventing a potential accident.

Current driving assistance systems do not use driver’s
information such as eye or head movements, hand sweating, or
hand pressure on the steering wheel, although this information
might be correlated to fatigue or drowsiness (Liu et al., 2009; Li
et al., 2017b), and thus can critically affect driving performance.
In consequence, these systems might not respond adequately to
dangerous situations caused by the driver’s behavior (Janssen,
2001). To address those problems, recent works have proposed
to employ information obtained from the driver (Paul et al.,
2016). For example, driver’s face images has been used to
recognize distractions (Sigari et al., 2013; Fernández et al.,
2016) or drowsiness (Liu and Salvucci, 2001) while physiological
activity has been employed to detect fatigue (Li et al., 2017a)
or drowsiness (Sahayadhas et al., 2012; lan Chen et al., 2015).
The final aim in these approaches is to detect potential
danger situations originated by human errors while driving
(Janssen, 2001). In the case of emergency braking situations, the
mechanical activation of the brake pedal is the final outcome
in a series of cognitive and peripheral processes that include
visual perception, mental assessment, motor planning, motor
execution, and proprioceptive feedback (Sherk and Fowler, 2001;
Saffarian et al., 2015). Hence, the brake pedal deflection, as any
other human action, is preceded by cognitive processes that are,
to some extent, observable in the central nervous system through
the ongoing brain activity. Therefore, it seems feasible to study
the driver’s brain activity that precedes the moment at which the
brake pedal is activated, in order to perform an early detection
of emergency braking situations. This can help to reduce the
braking reaction time and to prevent potential accidents. For
instance, driving assistance systems can be useful to properly
respond faster to emergency braking situations required by the
sudden appearance of other agents on the road.

Recent research have addressed the detection of braking
intention using non-invasive electroencephalographic (EEG)
signals. The pioneer work of Haufe et al. (2011) showed
that event-related potentials (ERP) recorded in a simulated
driving environment can be used to distinguish emergency
braking intention from non-braking driving. This study was
then replicated in a real driving environment and their results
confirmed the recognition of emergency braking prior to
the mechanical activation of the brake pedal (Haufe et al.,
2014). Subsequently, Kim et al. (2015) studied the brain
electrical activity in diverse braking situations (soft, abrupt, and
emergency) during simulated driving and their results showed
neuronal correlations, in particular movement-related potentials

(MRP) and event-related desynchronization (ERD), that can be
used to distinguish between different types of braking intentions.
The works of Chavarriaga et al. (2013) and Teng and Bi (2017)
also studied and analyzed EEG signals for the early detection
of various emergency braking situations. However, the previous
works were carried out in fully controlled settings for the
participants where they did not experience cognitive factors
such as stress, workload, and fatigue that may affect or delay
the execution of braking (da Silva, 2014; Paxion et al., 2014;
Zhang and Kumada, 2017). This is critical because during real
driving, drivers are commonly exposed to a combination of
different factors that may interfere attention and decisionmaking
(Bouchner et al., 2009; Schweizer et al., 2013). Indeed, scientific
evidence has shown that the attention level during the driving
task is influenced by stress, workload, and fatigue, and thus they
tend to increase the braking reaction time (Baulk et al., 2001;
Lal and Craig, 2002; Wester et al., 2008; Borghini et al., 2014).
Consequently, it is important to study the driver’s brain activity
during emergency braking when the level of attention is affected
by the aforementioned cognitive factors.

This work proposes the detection of emergency braking
intention using driver’s electroencephalographic (EEG) brain
signals recorded in a simulated driving environment that
includes absence and presence of stress, workload, and fatigue.
The rationale is to include these cognitive factors that may
affect and delay the emergency braking response. In the
experimental task, participants had to naturally drive a vehicle
and to perform unexpected emergency braking to avoid crashing
with another vehicle. This task was repeated under different
cognitive situations including combinations of stress, workload,
and fatigue. EEG signals from the driver were recorded in
order to evaluate the recognition between braking intention
and normal driving through a conventional classifier as support
vector machines (SVM) and a novel classifiers model as
convolutional neural networks (CNN). In recent studies, CNN
models was used to classify mental tasks from EEG signals in a
controlled experiment with successful results (Ren andWu, 2014;
Schirrmeister et al., 2017; Tabar and Halici, 2017). Therefore,
these works are a a starting point for exploring the performance
of a CNN model for classifying mental tasks in more complex
environments, such as car driving. Our results show a significant
detection rate of 71.1 and 71.8% for SVM and CNN, respectively,
while the classification accuracy for the best participant was 80.1
and 88.1%. These results shows the feasibility of incorporating
the driver’s bio-electrical signals into driving assistance systems
for the early detection of potential situations that might require
emergency braking in order to reduce the accident and mortality
associated with vehicular traffic. The rest of the paper is organized
as follows. Section 2 describes the experimental set-up and the
data analysis methodology; section 3 presents and discusses the
experimental results and section 4 presents the conclusions.

2. MATERIALS AND METHODS

2.1. Participants
Seven right-handed male students (age range 20–26 years old)
from our faculty voluntarily participated in this study. All
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participants approved the following inclusion criteria: (i) to know
how to drive a vehicle either with manual or automatic clutch;
(ii) to have a valid driver’s license; (iii) to have no medical history
of neurological and/or psychiatric diseases; (iv) to have normal
or corrected-to-normal vision. The protocol was approved by
the Comité de Ética en Investigación de la Escuela de Medicina
del Instituto Tecnológico y de Estudios Superiores de Monterrey
and the Comité de Investigación de la Escuela de Medicina del
Instituto Tecnológico y de Estudios Superiores de Monterrey. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki and they were duly informed about the
goals of the research.

2.2. Driving System and Environment
The driving system consisted of a set of gas, brake and clutch
pedals, a steering wheel and a gear lever (G27 Logitech Racing
Wheel) assembled in a car simulator rack, a 19 inches flat-screen
to visualize the driving environment and a personal computer
to manage and control the execution of the experiment and the
acquisition of signals (see Figure 1A). The driving environment
was developed using the open source software The Open Racing
Car Simulator (TORCS) (Wymann et al., 2014) and consisted of
a two-lane oval track of 3700 m, the participant’s vehicle and a
guide vehicle. This environment also contain other computer-
controlled vehicles that did not interfere with the participant’s
and guide vehicles. The participant’s vehicle is displayed in a first
person perspective (see Figure 1B), has an automatic clutch and
is completely controlled by the steering wheel and the pedals (the

gear lever has not effect in the vehicle). The guide vehicle is a
computer-controlled car that is displayed at the lane ahead of the
participant’s vehicle. Two vehicular signals were recorded from
the driving system and environment: (i) the state of the guide
vehicle rear brake lights or simply “LIGHT” (digital signal where
a low level corresponds to lights off and a high level corresponds
to lights on); (ii) the brake pedal level of the participant’s vehicle
or simply “BRAKE” (signal in the range of 0 to 1 with a resolution
of 0.01, where 0 corresponds to no deflection while 1 corresponds
to fully deflection of the pedal). These vehicular signals were
recorded at a sampling frequency of 50 Hz.

2.3. Bio-Electrical Signals
Electroencephalographic (EEG) and electromyographic (EMG)
activity was recorded during the execution of the experiment.
These bio-electrical signals were acquired, amplified, and
digitalized using the 8-channels wearable device for recording
of human physiological signals BIORADIO PG (Great Lakes
NeuroTech, USA). Seven EEG signals were recorded from the
frontal, central, and parietal lobe (F3, F4, C3, C4, Cz, P3, P4)
in accordance to the 10/10 international system (see Figure 1C).
The ground and the reference electrodes were placed above the
mastoid process in the right and left part of the head, respectively.
Gold cup electrodes were used and conductive gel was applied
to ensure impedance less than 5 K�. An EMG signal was
recorded from the anterior tibial muscle from the right leg using
a monopolar montage. The ground and reference were the same
as for the EEG signals. A surface disposable electrode was used

FIGURE 1 | (A) Illustration of the driving system and environment. The driving system consisted of a commercial set of pedals, steering wheel and gear lever for driving

simulators, a 19 inches flat-screen and a computer to control the execution of the experiment. The driving environment consisted of an oval track and contained the

participant’s vehicle and a guide vehicle. (B) Image of driving environment in a first person perspective as seen by the participants. (C) EEG electrode locations used in

this experiment. (D) Snapshot of the experiment with a participant wearing the EEG electrodes (the participant gave written informed consent to publish this picture).
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and the impedance was kept below 20 K�. EEG and EMG signals
were recorded at a sampling frequency of 500 Hz and no filtering
was applied.

2.4. Description of the Experiment
Participants were seated in the car seat in front of the
pedals, steering wheel, gear lever, and the computer screen (see
Figure 1D). The experimental task was to drive the participant’s
vehicle while following the guide vehicle at a constant and
fixed distance of ∼10 m. To illustrate this distance to the
participants, at the beginning of each experimental session the
vehicles were stopped and separated by 10m. The guide vehicle
drives autonomously at a constant speed of 100 km/h and
performs unexpected and sudden breaks up to reach a speed
of 60 km/h. These braking actions are accompanied by the
switching-on of the rear brake lights providing a visual stimulus
to the participants that indicates to perform a response to avoid
collision, i.e., to press the brake pedal. After 3 s, the guide vehicle
accelerates gradually until reaching again 100 km/h and the
participant must drive his vehicle while maintaining a distance
of ∼10 m. In case of collision, participants were instructed to
interpret it as a normal circumstance with no effect on their
driving performance or on the recorded data. Also, after a
collision the experimental session is restarted normally. This
emergency braking situation is repeatedly performed at variable
occurrence intervals as follows: After performing an emergency
braking situation, the guide vehicle was programmed to produce
a new emergency braking situation in a pseudo-random time
between [5 − 20] s after reaching again the speed of 100 km/h.
That time interval was contemplated so that emergency braking
is carried out between the speeds mentioned in the description of
experiment (from 100 to 60 km/h) and that participants do not
anticipate and generate an early braking response.

During the execution of the experiments, participants were
exposed to different combinations with absence or presence
of stress, workload, and fatigue. Stress was induced with an
ambulance siren sound at an intensity of 90 dB which is within
the range of discomfort for the human hearing (70–100 dB)
(Chepesiuk, 2005). This external, repetitive and high annoying
sound generates perturbation and anxiety to drivers leading to
stress episodes (Wester et al., 2008). Workload was induced with
a simultaneous attention task (SAT) that had to be performed
while driving (Borghini et al., 2012; Maglione et al., 2014). The
SAT consisted in touching the gear lever with the right hand
(which has no effect in the driving of the vehicle) as a response
to the presentation of an image with the symbol “X.” This
image was randomly presented in a secondary 7 inches screen
located in front of the participant without obstructing the field
of view toward the main screen. Finally, fatigue was induced
by considering the natural physical and mental exhaustion
associated with the performance of daily life activities during
the course of the day. Therefore, experiments were carried out
during a day in the morning (between 09:00 and 12:00, where it
is assumed that the participant is relaxed and rested because of
the recent night’s sleep) and in the afternoon (between 16:00 and
19:00, where it is assumed that the participant is tired because
of the daily activities) (Baulk et al., 2001; Horne and Baulk,

2004; Komada et al., 2013). In order to keep natural physical and
mental exhaustion, the participants were asked to sleep at least
7 h of restful sleep the night before the experiment, they were
asked not to sleep during the day of the experiment, not drink
coffee or other energy drinks and they were told not to smoke
during the duration of all the experiments. Furthermore, the
participants were questioned about their levels of fatigue before
and after the execution of the experiment through the NASA
Task Load Index (NASA-TLX) (Hart and Staveland, 1988). All
eight possible combinations with absence or presence of stress,
workload and fatigue were considered during the execution of
emergency braking during the experiments. These experimental
combinations are presented in Table 1.

The experiment was carried out in four sessions (two in the
morning and two in the afternoon) of ∼30 min each where
the participant had to drive continuously. In each session,
120 emergency braking situations were presented, therefore,
480 emergency braking situations were recorded in total per
participant. The rest period between sessions was∼10 min. Each
session was composed of eight blocks and each block contained
15 emergency braking situations from the same experimental
combination. Each block had a duration of ∼3 min while the
separation between blocks was ∼1 min. To avoid habituation,
the order of blocks in each session was pseudo-random. Figure 2
illustrates the temporal sequence of one morning session and
one afternoon session. The two morning sessions contain
blocks with emergency braking situations that correspond to
experimental combinations Co, Cs, Cw, and Cs+w while the two
afternoon sessions contain blocks with emergency braking that
correspond to experimental combinations Cf , Cs+f , Cw+f , and
Cs+w+f .

2.5. Preprocessing
LIGHT and BRAKE signals were upsampled while EEG and
EMG signals were downsampled, in both cases to a sampling rate

TABLE 1 | Description of the eight experimental combinations with absence (–) or

presence (X) of stress, workload and fatigue that were considered during the

realization of emergency braking.

Experimental Stress Workload Fatigue

combination

Co – – –

Cs X – –

Cw – X –

Cf – – X

Cs+w X X –

Cs+f X – X

Cw+f – X X

Cs+w+f X X X

Combination Co does not include any factor. Combinations Cs, Cw, and Cf only include
stress, workload, and fatigue, respectively. Combinations Cs+w, Cs+f , Cw+f , and Cs+w+f

include two or three factors.
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FIGURE 2 | Illustration of the temporal sequence of a morning session (Top) and an afternoon session (Bottom). Each session consisted of eight blocks. Each block

contained 15 emergency braking of the same experimental combination. The experiment was carried out in four sessions (two in the morning and two in the

afternoon). In total, 120 emergency braking situations were presented in each session yielding to a total of 480 emergency braking situations per participant.

of 250 Hz. EEG signals were lowpass filtered at a cutoff frequency
of 45 Hz using a 2nd-order zero-phase shift Chebychev-type
filter and then common average referenced (CAR). EMG signal
was bandpass-filtered from 1 to 90 Hz using a 2nd-order
Chebychev-type filter and stop-band filtered at 60 Hz to reduce
power line interference. The shift from 0 to 1 of the LIGHT
signal was used as reference to identify the time instant of
each stimulus (i.e., the time where the rear brake lights of
the guide vehicle turned on) while the first post-stimulus time
for which BRAKE ≥ 0.01 was used as reference to identify
time instant of each response (i.e., the time of the first notable
deflection of the brake pedal after a stimulus had occurred).
The time instants of all stimuli were used as reference to trim
the signals into consecutive data segments that span up to 2
s after the stimulus (see Figure 3). Thus, each data segment
contains an emergency braking and includes the response (this
was verified in the data analysis which showed responses lower
than 2 s). Each data segment underwent visual inspection and
those with incongruent vehicular signals (without post-stimulus
activation of the brake pedal), incongruent EMG signals (without
post-stimulus amplitude increasing), and noisy EEG signals
(contaminated with muscle or eye artifacts) were discharged and
not used in the rest of the study. As a result, the number of
data segments across all participants was on average 428 ± 56
(minimum 300 and maximum 474).

For each data segment, three epochs of 1.5 s were extracted
(Figure 3): (i) non-braking epochs or normal driving: signals of
1.5 s that are more than 3 s apart from any stimulus and/or
response. These epochs do not include braking situations at all
and do not overlap with post-stimulus or pre-response epochs.
(ii) pre-response epochs: signals in the time interval [−1.5, 0]
s where the reference t = 0 corresponds to the response.
These epochs contain information that exclusively precede the
deflection of the brake pedal; (iii) post-stimulus epochs: signals in

the time interval [0, 1.5] s where the reference t = 0 corresponds
to the stimulus. These epochs contain information immediately
subsequent to the switching-on of the rear brake lights; This
procedure resulted in three different datasets. The dataset of post-
stimulus epochs were employed to study the emergency braking
situations while the datasets of pre-response and normal driving
epochs were used to distinguish emergency braking intention
from normal driving using brain signals.

2.6. Data Analysis
To study the emergency braking situations, the dataset of post-
stimulus epochs was employed to assess:

1. Braking reaction time (BRT): This analysis measures the time
required to press the brake pedal once the guide vehicle’s rear
brake lights turned on (see Figure 3). BRT was computed
for each emergency braking situation simply as the difference
between the response time and the stimulus time.

2. EMG-based Leg movement (LEG): This analysis shows the
right leg movement (at the muscular level) that is performed
by the driver to press the brake pedal. LEG was computed
as follows: (i) the EMG signal was high-pass filtered at
of 10 Hz using a 2nd-order Chebyshev-type filter; (ii) the
absolute value of the filtered signal was then computed; (iii)
the Hilbert transform (Myers et al., 2003) was computed; (iv)
the magnitude of the Hilbert transformed signal was used as
the muscle-based leg movement.

2.7. Detection of Emergency Braking
Intention
The recognition of emergency braking intention from normal
driving was assessed using time-domain features of the EEG
signals and two different classification algorithms, Support
Vector Machine (SVM) and Convolutional Neural Network
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FIGURE 3 | Graphical illustration of the data segments and the three types of epochs extracted from each of them: (i) Non-braking epochs: signals of 1.5 s that are

more than 3 s apart from any stimulus and/or response (data without emergency braking); (ii) pre-response epochs: signals in the time interval [−1.5, 0] s where the

reference t = 0 corresponds to the response (the first notable deflection of the participant’s vehicle brake pedal); (iii) post-stimulus epochs: signals in the time interval

[0, 1.5] s where the reference t = 0 corresponds to the stimulus (the guide vehicle switching-on of the rear brake lights).

(CNN). For this, pre-response and normal driving epochs were
used.

2.7.1. Feature Extraction
Time-domain features of the EEG signals were computed to
recognize emergency braking intention fromnormal driving. The
EEG signal of each electrode (duration of 1.5 s) was divided in
10 consecutive intervals of 150 ms with no overlapping and the
arithmetic average was computed for each interval. The values of
all electrodes were used to construct a matrix of features (i.e., a
2D map) X ∈ R

M×N , or equivalently, they were concatenated
to construct the feature vector x ∈ R

(M·N)×1, where M =
7 is the number of electrodes and N = 10 is number of
time intervals. Features extracted from normal driving and pre-
response epochs were labeled as normal driving instances or −1
and braking intention instances or+1, correspondingly. The total
number of instances averaged across-all-participants was 890 ±
48. Note that the resulting datasets were balanced due to features
were extracted from two different epochs of the data segments
(i.e., Pre-response and Non-braking epochs).

2.7.2. Classifiers
A Convolutional Neural Network (CNN) was employed
to discriminate between emergency braking intention from
normal driving. A CNN is a special type of supervised
deep learning based classification algorithm (LeCun et al.,
1989b, 2015; Goodfellow et al., 2016) that have demonstrated
remarkable success in the classification of multidimensional
images (Krizhevsky et al., 2012; Farabet et al., 2013; Szegedy et al.,
2015) and it was used to some EEG studies with successful results
(Ren and Wu, 2014; Schirrmeister et al., 2017; Tabar and Halici,
2017).

The architecture of a CNN is based on a stack of hidden layers
named convolution and pooling, and a feed forward Artificial
Neural Network (ANN), which together gradually transform an
input map up to obtain class probabilities. The equation that

describes the convolutional operation is:

S(i, j) = (I × K)(i, j) =
∑

m

∑

n

I(i+m, j+ n) · K(m, n)+ b (1)

Where a kernel K of size m × n is convoluted (slided over the
input map spatially) with input map of size I(i, j) and sum to
bias b to construct output feature map S(i, j). Convolution and
pooling layers are typically connected one by one with the aim
of transforming an input map into many feature maps, thus,
their effect is to perform an automatic feature extraction (LeCun
et al., 1989a; LeCun and Bengio, 1998). In a CNN, the number
of convolution layers, the number of kernels, the kernel’s size,
number of pooling layers, the pooling size, and the structure
of the feed forward ANN are tunable parameters (also known
hyperparameters), while the weights and bias in the kernels and
in the feed forward ANN are parameters that are learned from a
training set.

The architecture of the CNN employed in this work is
illustrated in Figure 4. It consists of two pairs of convolution
and pooling layers followed by a feed forward ANN with a
hidden layer (We tested several CNN architectures to find the
one that would give us the best ratio of higher performance to
lower compute time. For this, we tuned the hyperparameters: the
number of CNN layers, the number of kernels, the number of
epochs, and the size batch of training data). The input map size
is M = 7 × N = 10, that is, 10 time domain features for each of
the 7 electrodes. The first convolution-pooling pair consisted of
K = 50 kernels of size 4× 4, the rectified linear unit as activation
function, maximumpooling with non-overlapping regions of size
2 × 2 and dropout technique was applied with 15% retention
rate yielding to 720 estimated parameters corresponding 680
convolutional kernel weights, 50 convolutional kernel biases.
The output map of this layer resulted in 50 feature maps of
size 4 × 5 The second convolution-pooling pair consisted of
K = 100 kernels of size 4 × 4 with the rectified linear unit as
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FIGURE 4 | Illustration of the CNN algorithm implemented to discriminate between emergency braking intention from normal driving. The CNN consists of two pairs of

convolution and pooling layers followed by a feed forward ANN.

a activation function while the subsequent pooling also consisted
of a maximum poling with non-overlapping regions of size 2× 2
dropout technique was also applied with same retention rate
yielding to 68100 parameters corresponding 68000 convolutional
kernel weights, 100 convolutional kernel biases. The output
map of this layer resulted in 100 feature maps of size 2 × 3.
The feed forward ANN consisted of 100 input neurons and 2
neurons in the output layer. The activation function in the hidden
layer is the sigmoid while in the output layer is the soft-max.
Dropout was applied with with 85% retention rate. In total,
ANN’s layers yielding to 51187 parameters corresponding 51085
nodes weights, 102 biases. To sum up, this CNN architecture
contains 120.017 learnable parameters.

In addition, we used a Support Vector Machine (SVM) for the
classification since this algorithm has showed good performance
in applications with EEG signals (Lotte et al., 2007; Vega et al.,
2017). A support vector machine takes as input a set of n feature
vectors Exi together with their labels yi ∈ {1,−1}. The idea behind
SVMs is to find the hyperplane that maximizes the distance
between the examples of the two classes {1,−1}. This is done by
finding a solution to the optimization problem

min
Ew,b,ξ

C

n
∑

i=1

ξi +
1

2
‖Ew‖2, (2)

subject to the condition

yi

(

EwTφ( Exi)+ b
)

≥ 1− ξi, (3)

where Ew is the normal to the hyperplane, and ξi ≥ 0 are
slack variables that measure the error in the misclassification
of Exi.

2.7.3. Training
The implementation and training of both classification
algorithms relied on the TensorFlow software library (Abadi
et al., 2015). Given a training set, the algorithms were trained
in 200 training steps following next instructions: (i) to initialize
estimated parameters randomly (only for the training step 1);
(ii) a batch data is sampled from training data (batch size is 20%
of training data); (iii) classification model is fed with the batch
data; (iv) obtaining the prediction outputs of the classification
model; (v) comparison of the predicted outputs with the actual

labels (to find the error trough a cost function); (vi) cost function
optimizing; (vii) updating estimated parameters; and (viii)
the rest of the training set was used to evaluate the model
performance for each training step (validation test). The learning
rate was set to 0.005 and the cross entropy was used as the cost
function.

2.7.4. Evaluation
The total recorded data was splitted in two mutually exclusive
sets. The training set consisted of 75% of the data, and the
evaluation set consisted of 25% of the data. The classifiers are
trained using the training set and final classification is performed
on the evaluation set. Performance metric was classification
accuracy which was computed as:

accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is the true positive rate, TN is the true negative
rate, FP is the false positive rate, and FN is the false negative
rate. This procedure is repeated 100 times, and mean ± std
of the performance metrics were computed. Here we only
reported results obtained in the final classification. However,
validation and evaluation results during training are provided as
Supplementary Material section.

The significant classification accuracy chance level was
calculated with the binomial distribution (Combrisson and
Jerbi, 2015) using the number of classes Nclases = 2, the
minimum number of samples across all participants Nsamples =
600 and a confidence level of α = 0.05. Consequently, the
significant classification accuracy chance level is accuracychance =
53.6%. To examine significant differences between a distribution
of accuracy and accuracychance the Wilcoxon signed-rank test
was applied, while to examine significant differences between
two distributions of accuracy the Wilcoxon rank-sum test was
applied.

We estimated the receiver operating characteristic (ROC)
graphs and area under ROC curve (AUC). ROC curve provides
an optimal visualization of a classifier performance and allows
to compare the performances between different classifiers. ROC
curve is useful to show skewed class distribution and unequal
classification error costs (Fawcett, 2006). ROC graphs are two-
dimensional graphs in which true positive rate is plotted on
the y-axis and false positive rate is plotted on the x-axis. A
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method to compare classifiers is to calculate the area under the
ROC curve. AUC reduces ROC performance to a single scalar
value representing expected performance. AUC is a value be
between 0 and 1.0 due to it represents a portion of the area
of the unit square. In addition, we reported the precision-recall
graphs as other way to measure of success of prediction of the
classifiers. These results are provided as Supplementary Material
section.

3. RESULTS

We first show an analysis of the braking reaction time under
different cognitive states. Then we present results on the
detection of braking intention under these different cognitive
states which include stress, fatigue and workload.

3.1. Braking Reaction Time Analysis
This section analyses the braking reaction time (BRT) under
different cognitive states in order to assess how the reaction time
is affected by stress, fatigue, and workload.

The BRT averaged across-all-participants was 718 ± 162 ms
(minimum 452 and maximum 1192 ms). This is congruent
with previous studies that have reported BRT in the range
of 720 and 1250 ms (Broen and Chiang, 1996; Green, 2000;
Wasserman et al., 2017). In addition, Figure 5A shows the
across all participants distributions of BRT independently for
each experimental combination and this results are summarized
in Table 2. When comparing these distributions all together,
at least one is significantly different (p < 0.05, Kruskal-Wallis
test), which indicates different BRT across the experimental
combinations. To better explore the effect of stress, workload and
fatigue on the BRT, the distribution of BRT in combination Co

(which does not include any factor) was individually compared
with the other distributions (which include one, two, or three
factors).

For the case of BRT with absence and presence of stress (Co

and Cs), the median of BRT is slightly greater in presence of

stress (664 ms) than in absence of it (660 ms), however, no
significant differences are found between the two distributions
(p > 0.05, Wilcoxon rank-sum test). This shows that although
BRT is marginally higher in emergency braking situations with
stress, these differences are not significant. This shows that the
influence of stress increased BRT in 2%, however, this increment
was not significant. For the case of BRT with absence and
presence of fatigue (Co and Cf ), the distributions present no
significant differences (p > 0.05, Wilcoxon rank-sum test)
and the medians are similar (660 and 656 ms for absence and
presence of fatigue, respectively). Those results indicate that
the presence of fatigue did not presented BRT significantly
different than in the absence of it. The reason of why stress and
fatigue did not resulted in different BRT may be due to the fact
that participants did not perceive the high-intensity ambulance
sound or the afternoon session as annoying, dangerous, and/or
exhausting situations since the experiment was performed in a
fully-controlled environment. This is consistent with the results
obtained with the NASA-TLX index, where all participants
expressed similar levels of mental, physical demand, effort, and
frustration in the experiments carried out during in the afternoon
and the experiments executed in the morning.

Nonetheless, for the case of BRT with absence and presence of
workload (Co and Cw), the distributions are significant different
(p < 0.05, Wilcoxon rank-sum test) and the median of BRT is
greater in presence of workload (708 ms) than in absence of it
(660 ms), which shows that the workload significantly increases
the BRT. In this case, the BRT was 7% higher for emergency
braking in the presence of workload than in the absent of it. This
shows that the execution of a secondary task (as the workload
was induced in our experiments) during emergency braking
situations increases the time needed to press the brake pedal. The
processing of additional cognitive and peripheral tasks required
by the additional workload may explain this delayed response.

In addition, distributions of BRT that include two or
three factors present significant differences (p < 0.05,
Wilcoxon rank-sum test) and greater median than Co solely

FIGURE 5 | (A) Distributions of BRT across all participants for each experimental combination. At least one of the distributions is significantly different which indicates

different BRT across the experimental combinations. (B) Time-resolved LEG signal averaged across all participants for all experimental combination. The distribution

of BRT across all participants and experimental combination is also shown. The reference time t = 0 correspond to the stimulus. The LEG signal begins to increase at

∼600 ms (i.e., prior to the median BRT) and peaks at ∼850 ms.
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TABLE 2 | Summary of BRT (units of ms) for the eight experimental combinations.

Combination Mean ± std Max Min

Co 687 ± 138 1176 472

Cs 689 ± 136 1192 452

Cw 733 ± 154 1190 464

Cf 676 ± 125 1176 454

Cs+w 747 ± 151 1180 484

Cs+f 681 ± 125 1192 460

Cw+f 715 ± 145 1180 458

Cs+w+f 724 ± 151 1180 484

The average BRT is above 700 ms in experimental combinations that include workload.

when they include workload (i.e., Cs+w, Cw+f , and Cs+w+f ).
Interestingly, the BRT of experimental combinations that
include simultaneously stress, workload, and/or fatigue was also
significantly different and higher only in combinations with
presence of workload. This confirms the increased BRT due
to the execution of a simultaneous task. To sum up, these
analyses show that, in our experimental setting, the BRT does
not increase in emergency braking situations that include stress
and/or fatigue, however the BRT is significantly different and
higher in emergency braking situations with workload.

The time-resolved LEG signal averaged across all participants
is presented in Figure 5B. Note that the distribution of BRT
across all participants and experimental combination is also
displayed. The LEG signal is minimum and roughly constant
during and a few milliseconds after the stimulus. Then, it starts
to increase and at ∼600 ms has increased by 10% with respect
to its roughly contact value around the stimulus. The signal
then peaks at ∼850 ms. Finally, the signal gradually decreases
up to its minimum and constant level. Note that the increase
of the LEG signal initiates prior to 718 ms which is the across-
all participants average BRT. This behavior is expected because it
shows a muscular response previous to the mechanical deflection
of the brake pedal.

3.2. Detection of Emergency Braking
Intention
In a first classification analysis we show results when participants
experienced stress, workload, and/or fatigue while driving.
We consider that this is a realistic driving situation, and in
our experiments corresponds to gartering the data from all
experimental combinations. In this analysis, we tested two
individual classifiers for each participant following the procedure
explained in section 2.7.4.

Figure 6A shows the distributions of classification accuracy
achieved with SVM and CNN for each participant (P1 to P7).
Both classifiers in all participants (except for participant P3
with the SVM) presented distributions of classification accuracy
that were significantly different and higher than accuracychance
(p < 0.05, Wilcoxon signed-rank test). Participants P1 and

P3 presented distributions of classification accuracy that were
significant different and greater for the CNN than the SVM
(p < 0.05, Wilcoxon rank-sum test). For participants P2 and
P6, the SVM presented distributions of classification accuracy
that were significant different and greater than the CNN (p <

0.05, Wilcoxon rank-sum test). Finally, no significant differences
were found between the medians of the classification accuracy
distributions of the SVM and CNN (p > 0.05, Wilcoxon rank-
sum test) in participants P4, P5, and P7. Figures 6B,C shows
the ROC curves created by thresholding a test set for SVM
and CNN for each participant (P1 to P7). Both classifiers in
all participants presented curves above the threshold. These
results are also summarized in Table 3. The mean ± std of
participants P1 and P3 was greater for the CNN (88.1 ± 2.7
and 65.2 ± 6.5, respectively) than for the SVM (72.7 ± 1.3 and
57.3 ± 8.8, respectively). On the contrary, the mean ± std of
classification accuracy in participants P2 and P6 was greater for
the SVM (78.9 ± 1.2 and 60.0 ± 1.3, respectively) than for the
CNN (70.5 ± 2.5 and 60.2 ± 2.3 respectively). The remaining
participants, P4, P5, and P7, presented similar average accuracy
in both classifiers (65.0 ± 1.5, 77.7 ± 1.2, and 80.1 ± 1.3,
respectively for the SVM, and 64.7 ± 2.6, 74.4 ± 2.6, and 79.7
± 2.1, respectively for the CNN). Note that in all cases, the
average classification accuracy is above accuracychance. Finally,
the grand-average across-all-participants is similar for the two
classifiers, 71.10 ± 8.69 for the SVM and 71.83 ± 9.60 for the
CNN. To compare the performance of the ROC curve of the two
classifiers, the AUC score was obtained for each participant and
reported in the Table 3. SVM classifiers presented values above
0.6 in all participants (except for P3 and P6) which is considered
a discriminatory standard with AUC average of 0.66. CNN
presented values above 0.6 in all participants with AUC average
of 0.77. To sum up, these results show significant recognition
of emergency braking intention irrespective of the fact that the
emergency situations were performed while driver’s experienced
or not cognitive factors as stress, workload, and fatigue.

In a second classification analysis, the detection of emergency
braking intention was assessed by gathering the data from all
participants (training data size= 4674 and test data size= 1556).
The classification accuracy was on average 54.5 ± 0.9 for the
SVM, while it was 68.4 ± 1.3 for the CNN. On the one hand,
these results show that the accuracy is 13.9% greater for CNN
than SVM. On the other hand, the accuracies are lower than
when using the data of each participant individually (the grand-
average across-all-participants was 71.1 ± 8.7 and 71.8 ± 9.6 for
the SVM and CNN, respectively). Indeed, the use of the data from
all participants reduces accuracy in 16.6 and 3.5% for the SVM
and CNN, respectively. Note that the across-participants driving
patterns discrepancies and differences in the brain signaturesmay
explain this different performance.

In the third classification analysis we assessed the detection of
emergency braking intention for each of the seven participants
by training a classifier exclusively with data from the remaining
six participants.With this experiment we study the transferability
of a learned classifier in order to detect emergency braking
in a completely new participant. The final goal would be
to train a classifier with available participants in order to
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FIGURE 6 | (A) Distribution of classification accuracy achieved with SVM and CNN for each participant (P1 to P7). The horizontal dotted red line represents the

significant chance level or accuracychance. (B) ROC curves for SVM classifiers for each participant. (C) ROC curves for CNN classifiers for each participant. The

diagonal dotted black line represents the threshold AUC = 0.5.

TABLE 3 | Summary of classification accuracy results for each participant (P1 to P7) achieved with the SVM and CNN.

Participant SVM CNN

Mean ± std Max Min AUC Mean ± std Max Min AUC

P1 72.7 ± 1.3 75.0 69.6 0.69 88.1 ± 2.7 94.6 78.4 0.94

P2 78.9 ± 1.2 82.6 75.7 0.73 70.5 ± 2.5 78.4 65.6 0.77

P3 57.3 ± 8.8 76.8 41.7 0.55 65.2 ± 6.5 79.0 48.7 0.68

P4 65.0 ± 1.5 69.1 60.0 0.65 64.7 ± 2.6 70.4 58.7 0.71

P5 77.7 ± 1.2 80.5 73.7 0.72 74.4 ± 2.6 82.2 68.6 0.82

P6 66.0 ± 1.3 68.9 62.7 0.59 60.2 ± 2.3 65.8 54.8 0.67

P7 80.1 ± 1.3 83.0 76.5 0.78 79.7 ± 2.1 84.0 74.5 0.87

Average 71.1 ± 8.7 83.0 41.7 0.67 71.8 ± 9.6 94.6 48.7 0.77

The lower row shows the grand-average across-all-participants.

be used by a new driver. Figure 7A shows the distributions
of classification accuracy for this leave-one-out participant
classification experiment for the two classifiers. The results are
also summarized in Table 4. The CNN presented distributions
of classification accuracy that were significantly different and
higher than accuracychance (p < 0.05, Wilcoxon signed-rank
test) in four out of the seven participants (P2, P4, P6, and P7),
while the SVM presented distributions of classification accuracy
that were significantly different and higher than accuracychance

(p < 0.05, Wilcoxon signed-rank test) in three out of the
seven participants (P2, P3, and P4). In addition, the classification
accuracy was on average 54.1 ± 6.7 for the SVM, while it was
59.2 ± 6.0 for the CNN. These results show higher classification
accuracies for CNN than SVM, however they are lower than
in the case of learning a user-specific classifier (grand-average
across-all-participants of 71.1 ± 8.7 and 71.8 ± 9.6 for SVM
and CNN, respectively) and in the case of using of the data
from all participants (average of 54.5 ± 0.9 and 68.4 ± 1.3
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FIGURE 7 | (A) Distribution of classification accuracy achieved with SVM and CNN for the classification experiment leave-one-out participant. The horizontal dotted

red line represents the significant chance level or accuracychance. (B) ROC curves for SVM classifiers for each leave-one-out participant. (C) ROC curves for CNN

classifiers for leave-one-out participant.

TABLE 4 | Summary of classification accuracy results achieved with SVM and CNN in the classification experiment leave-one-out participant.

Participant SVM CNN

out Mean ± std Max Min AUC Mean ± std Max Min AUC

P1 44.7 ± 0.6 46.0 43.3 0.44 54.2 ± 1.9 58.2 50.2 0.54

P2 63.1 ± 1.1 65.2 59.7 0.62 65.3 ± 1.8 69.3 58.1 0.74

P3 60.0 ± 0.8 61.9 58.4 0.59 54.6 ± 3.1 60.5 46.9 0.57

P4 57.9 ± 0.9 60.0 55.2 0.57 62.7 ± 1.4 66.2 59.2 0.65

P5 44.8 ± 0.5 46.2 42.9 0.47 50.9 ± 1.7 56.3 47.0 0.50

P6 54.7 ± 0.7 56.2 52.8 0.53 59.2 ± 1.5 63.3 55.0 0.61

P7 53.3 ± 1.2 57.0 50.4 0.54 67.2 ± 1.7 70.8 60.5 0.74

Average 54.1 ± 6.7 65.2 42.9 0.53 59.2 ± 6.0 70.8 46.9 0.62

The lower row shows the grand-average across-all-participants.

for SVM and CNN, respectively). Figures 7B,C shows the ROC
curves created by thresholding a test set for SVM and CNN
for each leave-one-out participant classification. Both classifiers
presented all ROC curves above the threshold (except for SVM in
leave − one − out participant 1 and 5 and for CNN in leave −
one − out participant 5). To compare the performance of the

ROC curve of the two classifiers, the AUC score was obtained
for each leave-one-out participant and reported in the Table 4.
SVM classifiers presented values above 0.6 only for P2. CNN
presented values above 0.6 in three leave-one-out participants
(P2, P4, and P7). To sum up, both classifiers have similar accuracy
values. However, CNN presented higher AUC values than SVM
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which indicates that CNN was more sensitive in predicting
the braking intention than SVM classifier. The transferability
results show a lower performance than personalized individual
classifiers. From our point of view this makes sense since different
people deal in different ways with different cognitive states. For
example, previous works on stress detection show also better
performance on personalized individual classifiers (Mozos et al.,
2017). However, an increment on the number and diversity of
participants may improve the transferability results.

4. DISCUSSION AND CONCLUSION

This work shows the feasibility of using driver’s
electroencephalographic (EEG) signals to recognize the intention
to perform an emergency braking in driving conditions where
the drivers experienced realistic cognitive states such as stress,
workload, and fatigue. The contribution of this paper is two-fold.
First, our classification results indicate the possibility of detecting
with high probability the emergency braking intention, which
precedes the moment at which the mechanical activation of the
brake pedal becomes observable. This can be used to incorporate
this detection into driving assistance systems in order to avoid
accidents by, for example, reducing the final braking reaction
time to gain braking distance, or by maneuvering the car
automatically in a sudden situation. Second, this works considers
cognitive states that may negatively affect the driving. In
particular we carried out experiments including stress, workload,
and fatigue during the driving task. Notice that this work
considers the early detection of braking intention form EEG
irrespective of the cognitive state(s) experienced by the drivers.
For this reason, we lumped the data of all cognitive states to carry
out the classification between braking intention and normal
driving. This is a novelty in our work as we are considering that
the drivers experience cognitive states during driving rather than
being driving in fully controlled and relaxed environment. The
presented classification results provide evidence of the possibility
of using the brain signals to anticipate the braking action despite
the driver is experiencing typical cognitive factors that are known
to negatively affect driving performance. The proposed CNN
provided significant classification between emergency braking
intention from normal driving. It is not possible however to
compare these results with previous studies due to those related
works were performed in different experimental settings without
contemplating the potential effect on brain processes of different
driver’s cognitive states cause by fatigue, stress, workload during
driving a car. It is important to say that the classification accuracy
rates presented herein and the cognitive states may differ in
real driving situations, thus, more research is still needed to
assess the detection of braking intention during realistic driving
environments. A difficulty here would be to avoid the induction

of cognitive states to consider real stress, workload, and fatigue
during driving. In addition, execution of experiments in real
driving situations should consider critical safety procedures
that are not present in simulated environments. Regarding the
computational algorithm required to recognize between braking
intention and normal driving, it is important to consider that an
extended set of instances is advantageous; however, this requires
longer experiments to record more braking situations. Finally, it
is also required to study the effect of artifacts as blinking, head
movements, limb movements, etc., which will be embedded
in the recorded EEG signals during real driving, since they
may spoil the early detection of braking intention. The future
direction in this research involves, first, to estimate the total time
prior to the activation of the mechanical brake pedal that can be
saved, as this time define the maximum gained braking distance,
and second, to validate our system in real driving scenario to
assess whether realistic conditions may affect the signatures in
the brain signal that allow the detection of emergency braking
intention (Martínez et al., 2018). In addition, we will extend the
diversity of the participants by including people from different
gender and age groups.
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