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EEG-Based Drowsiness Estimation for Safety
Driving Using Independent Component Analysis
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Abstract—Preventing accidents caused by drowsiness has be-
come a major focus of active safety driving in recent years. It
requires an optimal technique to continuously detect drivers’
cognitive state related to abilities in perception, recognition,
and vehicle control in (near-) real-time. The major challenges
in developing such a system include: 1) the lack of significant
index for detecting drowsiness and 2) complicated and pervasive
noise interferences in a realistic and dynamic driving environ-
ment. In this paper, we develop a drowsiness-estimation system
based on electroencephalogram (EEG) by combining independent
component analysis (ICA), power-spectrum analysis, correlation
evaluations, and linear regression model to estimate a driver’s
cognitive state when he/she drives a car in a virtual reality
(VR)-based dynamic simulator. The driving error is defined as
deviations between the center of the vehicle and the center of
the cruising lane in the lane-keeping driving task. Experimental
results demonstrate the feasibility of quantitatively estimating
drowsiness level using ICA-based multistream EEG spectra. The
proposed ICA-based method applied to power spectrum of ICA
components can successfully (1) remove most of EEG artifacts,
(2) suggest an optimal montage to place EEG electrodes, and
estimate the driver’s drowsiness fluctuation indexed by the driving
performance measure. Finally, we present a benchmark study in
which the accuracy of ICA-component-based alertness estimates
compares favorably to scalp-EEG based.

Index Terms—Correlation coefficient, drowsiness, electro-
encephalogram, independent component analysis (ICA), linear
regression model, power spectrum, virtual reality (VR).

I. INTRODUCTION

R
ECENTLY, driving safely has received increasing atten-

tion of the publics due to the growing number of traffic

accidents. Drivers’ fatigue has been implicated as a causal factor
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in many accidents because of the marked decline in the drivers’

abilities of perception, recognition and vehicle control abilities

while sleepy. The National Highway Traffic Safety Administra-

tion (NHTSA) conservatively estimates that 100 000 police-re-

ported crashes are the direct results of driver fatigue each year

[1]. This results in an estimated 1550 deaths, 71 000 injuries, and

$12.5 billion in monetary losses. In 2002, the National Sleep

Foundation (NSF) also reported [2] that 51% of adult drivers

had driven a vehicle while feeling drowsy and 17% had ac-

tually fallen asleep. Although many governments and vehicle

manufacturers try to make policies to prevent such accidents in-

cluding strategies to address rates of speed, alcohol consump-

tion; promotion of using helmets and seat belts, enhancements

of vehicle structures, etc. [3], [4], the knowledge and technolo-

gies available today are still not yet enough to prevent the cat-

astrophic incidents resulted from loss of alertness and lack of

attentions on drivers intrinsically.

Driving under the influences of drowsiness will cause:

1) longer reaction time, which may lead to higher risk of crash,

particularly at high speeds; 2) vigilance reduction including

nonresponses or delaying responding where performance on

attention-demanding tasks declines with drowsiness; 3) deficits

in information processing, which may reduce the accuracy and

correctness in decision-making [5]–[7]. Many factors can cause

drowsiness or fatigue in driving including lack of sleep, long

driving hours, use of sedating medications, consumption of

alcohol, and some driving patterns such as driving at midnight,

early morning, midafternoon hours, and especially in a mo-

notonous driving environment [8]. Accurate and nonintrusive

real-time monitoring of driver’s drowsiness would be highly

desirable, particularly if this measure could be further used to

predict changes in driver’s performance capacity.

A number of methods have been proposed to detect drowsi-

ness in the past few years. These methods can be categorized

into two major categories. One focuses on detecting physical

changes during drowsiness by image processing techniques,

such as average of eye-closure speed, percentage of eye-closure

over time, eye tracking as quantization of drowsiness level, and

driver’s head movements [8]–[16]. These image-processing

based methods use optical sensors or video cameras to detect

eye-activity changes in drowsiness and can achieve a satisfac-

tory recognition rate. However, these parameters might vary

in different environmental situations and driving conditions,

it thus might require devising different detection logics for

different types of vehicles.

Other methods focused on measuring physiological changes

of drivers, such as heart-rate variability (HRV), electrooculo-

graphic (EOG), or particularly, electroencephalogram (EEG), as
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a means of detecting the human cognitive states [17]–[21]. Stern

et al. [22], [23] reported that the eye blink duration and blink

rate typically increase while blink amplitude decreases as func-

tion of the cumulative time on tasks. Other EOG studies have

found that saccade frequencies and velocities decline as time

on the task increases [24], [25]. It has been known that abun-

dant information in EEG recording covaries with drowsiness,

arousal, sleep, and attention [26]. Previous psychophysiological

studies show that typical sleep rhythm regulated by the circadian

process can be divided into nonrapid-eye-movement (NREM)

sleep and rapid-eye-movement (REM) sleep [27], [28]. NREM

sleep is further subdivided into stages 1–4. In the first part of

falling into sleep (microsleep at NREM), increasing amplitudes

of slow alpha waves of the EEG signals were observed with

positive correlation at occipital sites (O1 and O2) and negative

correlation at central sites (C3 or C4) [29], [30]. Recently, Van

Ordan et al. [33] compared these eye-activity based methods

to EEG-based methods for alertness estimates in a compen-

satory visual tracking task. They showed that although these

eye-activity variables are well correlated with the subject per-

formance, those eye-activity based methods require a relatively

long moving averaged window aiming to track slow or tonic

changes in vigilance, whereas the EEG-based method can use

a shorter moving averaged window to track second-to-second

fluctuations in the subject error in a visual compensatory task

[31]–[36].

While approaches based on EEG signals have the advantages

in making accurate and quantitative assessment of alertness

levels, relatively little information has been captured in real

time until signal processing methods and computer power

are fast enough to extract the relevant information from the

EEG. That is, we need to explore the EEG correlates of fatigue

and drowsiness, as well as to evaluate to what extent these

cognitive-state related EEG activities can be efficiently incor-

porated into a real-time drowsiness monitoring system. One

of many technical challenges of using EEG-based monitoring

systems is the contamination from pervasive EEG artifacts, in-

cluding muscle noise, eye activity, and blink artifacts caused by

driver’s hand, torso, head, and eye movement, and instrumental

noises such as line noise, electronic interference, etc. Using

low-pass filtering method is not sufficient to remove these

contaminations. Another challenge of using the EEG-based

monitoring system in operational environments is the intra-

and interindividual variability in EEG dynamics accompanying

loss of alertness [31]–[36]. Jung et al. [31] and Lin et al. [62]

have reported that the EEG correlates of fatigue and drowsiness

appear stable within individual across different sessions, but

somewhat variable between subjects. These results suggested

the feasibility of a practical individualized system for nonin-

vasive monitoring of the cognitive state of subjects performing

auditory target detection and/or visual tracking tasks in a

laboratory settings.

In this paper, we propose new methods for accurate and

nonintrusive monitoring the continuous fluctuations of driver’s

global-level drowsiness indexed by the driving performance

in near real-time in a realistic driving task. We first construct

a virtual reality (VR)-based interactive driving environment

consisting of a highway scene and a six degree-of-freedom

Fig. 1. The block diagram of the dynamic VR-based driving simulation
environment integrated with the EEG-based physiological measurement
system.

(DOF) motion platform. The VR technique allows subjects to

interact directly with a virtual environment rather than passively

responding to monotonic auditory and visual stimuli, and is an

excellent setting for brain research to study EEG dynamics in

interactive and realistic tasks. We then design a lane-keeping

driving experiment to indirectly assess driver’s drowsiness

level by measuring second- or minute-scale fluctuations in

driving errors and accompanying changes in the EEG spectra.

After collecting the multistream brain potentials, independent

component analysis (ICA) [37]–[52] is used to remove a wide

variety of artifacts based on blind source separation and extract

the representative EEG features. By correlating changes in

subband log power spectra and the driving performance, we

build an individualized linear regression model to assess con-

tinuously the EEG dynamics accompanying loss of alertness

for each operator.

This paper is organized as follows. Section II describes the de-

tailed descriptions of the EEG-based drowsiness experimental

setup including VR-based driving environment, EEG data col-

lection, subject’s instructions, and index of drowsiness measure-

ment. In Section III, we explore the relationship between the

drowsiness level (subject driving performance) and the EEG

power spectrum by combining ICA, subband power spectrum

analysis, correlation analysis, and linear regression model. De-

tailed discussions of our experimental results are given in Sec-

tion IV. Finally, we conclude our findings in Section V.

II. SYSTEM ARCHITECTURE

A VR-based dynamic driving simulation environment is

designed and built up for interactive driving experiments.

It includes four major parts as shown in Fig. 1: 1) the 3-D

highway driving scene based on the virtual reality technology;

2) the driving cabin simulator mounted on a 6-DOF dynamic

Stewart motion platform; 3) the EEG measurement system with

36-channel EEG/EOG/ECG sensors; and 4) the proposed signal
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Fig. 2. Flowchart of the VR-based highway scene development environment.
The dynamic models and shapes of the 3-D objects in the VR scene are created
and linked to the WTK library to form a complete interactive VR simulated
scene.

processing modules including ICA, power-spectral analysis,

and linear regression model.

A. VR-Based Driving Environment

In this paper, a VR-based high-fidelity 3-D interactive

highway scene and its emulation software, WorldToolKit

(WTK) library and application programmer’s interface (API)

are developed [53]. The detailed development diagram of the

VR-based scene is shown in Fig. 2. First, we create models of

various objects (such as cars, roads, trees, etc.) for the scene

and setup the corresponding positions, attitudes, and other pa-

rameters. Then, we develop the dynamic models among these

virtual objects and build a complete simulated highway scene

of full functionality using the high-level C-based API program.

The VR-based four-lane highway scene is projected on a

120 -surround screen (304.1-cm wide and 228.1-cm high),

which is 350 cm away from the driving cabin. The four lanes

from left to right are separated by a median stripe. The distance

from the left side to the right side of the road is equally divided

into 256 points (digitized into values 0–255), where the width

of each lane and the car is 60 and 32 units, respectively. The

refresh rate of highway scene was set properly to emulate a car

driving at a fixed speed of 100 km/hr on the highway. The car

is randomly drifted (triggered from the WTK program and the

on-set time is recorded) away from the center of the cruising

lane to mimic the consequences of a nonideal road surface. The

subject’s driving error is defined as the deviation between the

center of the vehicle and the center of the cruising (third) lane

and it was continuously and simultaneously measured by the

WTK program and recorded in the physiological measurement

system accompanying with EEG/EOG/ECG physiological

signals.

B. Data Acquisition

Thirty-three EEG/EOG channels (using sintered Ag/AgCl

electrodes with an unipolar reference at right earlobe), 2 ECG

channels (bipolar connection), and the deviation between the

center of the vehicle and the center of the cruising lane are

simultaneously recorded by the Scan NuAmps Express system

(Compumedics Ltd., VIC, Australia). All the EEG/EOG sen-

sors were placed based on a modified International 10–20

system. Before data acquisition, the contact impedance be-

tween EEG electrodes and scalp was calibrated to be less than

5 k . The EEG data were recorded with 16-bit quantization

level at a sampling rate (SR) of 500 Hz and the recording are

down-sampled to Hz for the simplicity of data

processing. Then EEG data were preprocessed using a simple

low-pass filter with a cut-off frequency of 50 Hz to remove the

line noise (60 Hz and its harmonic) and other high-frequency

noise for further analysis.

C. Subjects

It has been shown that human fatigue or drowsiness most

commonly occurs late at night and during the afternoon. During

these periods, alertness deficits would most likely take place

in 1-h monotonous working [7], [8]. In this paper, we thus

conducted all driving experiments in the early afternoon hours

after lunch to maximize the opportunities to collect data during

which subject driving performance became intermittent. All

the subjects were instructed to keep the car at the center of

the cruising lane by controlling the steering wheel. For each

session, the subject started with a min calibration

procedure and then was asked to drive the car continuously

for 45 min. The EEG/EOG/ECG data and the driving errors

were measured and recorded simultaneously. Participants then

returned on different days to complete the second 45-min

driving session or the third session if necessary. We had col-

lected successfully EEG data of 16 subjects (ages from 20 to

35 yr) participated in the VR-based driving task. We select

participants who had two or more microsleep episodes based on

the measured driving errors and confirmed by video recordings

in at least two driving sessions for further analysis. Based on

these criteria, five subjects (ten sessions) were selected for

further modeling and cross-session testing.

D. Drowsiness Measurement

To find the relationship between the measured EEG signals

and subject’s cognitive state, and to quantify the level of the

subject’s alertness, we defined the subject’s driving error index

as the deviation between the center of the vehicle and the center

of the cruising lane. Our pilot experimental studies showed that

when the subject is drowsy (checked from video recordings),

the driving error increases, and vice versa. Since the fluctuates of

drowsiness level with cycle lengths were longer than 4 min [31],

[32], [34], the driving errors were smoothed using a causal 90-s

square moving-average filter advancing at 2-s steps to eliminate

variance at cycle lengths shorter than 1–2 min.

III. DATA ANALYSIS

Fig. 3 shows the flowchart of the proposed signal processing

procedure. The efficacy of using ICA to remove eye blinking

and other artifacts such as muscle activity, line noise, and car-

diac signals have been demonstrated in many studies [45]–[52].

Therefore, after collecting 33-channel EEG signals and driving

deviations in a 45-min simulated driving session, the ICA

algorithm is first used to remove a wide variety of artifacts.
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Fig. 3. Flowchart of data processing procedure for the drowsy estimation
system.

Second, we calculate the normalized moving-averaged subband

log power spectra of all 33 ICA components. The correlation

coefficients between the smoothed subjects’ driving error and

the subband log power spectra of all ICA components at each

frequency band are further evaluated to form a correlation

spectrum. The normalized log subband power spectra of 2 ICA

components with the highest correlation coefficients in some

critical bands are further selected as the input features of the

linear regression model to estimate the individual subject’s

driving performance. Detailed analyses are described in the

following subsections.

A. ICA

Given an -dimension data vector

observed at each time point , the goal of

ICA is to find a linear mapping matrix or unmixing matrix

such that the unmixed components

of the linear transform of are statistically

independent. The ICA methods were extensively applied

to blind source separation problem since 1990s [36]–[44].

Subsequent technical reports [46]–[52] demonstrated that

ICA was a suitable solution to the problem of EEG source

segregation, identification, and localization based on the

following assumptions.

1) The summation of different EEG source signals at the sen-

sors is linear and instantaneous.

2) The signal source of muscle activity, eye, and cardiac sig-

nals are not time locked to the sources of EEG activity

which is regarded as reflecting synaptic activity of cor-

tical neurons [45]–[48].

By applying ICA algorithm to the EEG recorded from the scalp

surface, we attempt to achieve the twin goals: removing EEG

artifacts and extract EEG source signals associated with human

fatigue or drowsiness index by the subject behaviors based on

the assumptions that these signals are statistically independent.

In this paper, the observed data vector was first processed

by “centering” to subtract its mean vector as to make a

zero-mean variable to simplify the ICA algorithm. After cen-

tering, the observed data vector is “whitened” to a new vector

to make its components uncorrelated and their variances

equal unity, i.e., . This can be done by using

eigenvalue decomposition (EVD), , where

is the orthogonal matrix of eigenvectors of ,

and is the diagonal matrix of its eigenvalues. Whitening

transforms the matrix into a new orthogonal matrix, .

This can be seen from

where is the independent component. Then, the ICA algo-

rithm was carried out with the “infomax” principle [40], [44],

which is derived from a neural network by

maximizing the mutual information of the nonlinear

output .

(1)

where is the entropy of the output, while

is whatever entropy the output has which didn’t come from

the input . In contrast with decorrelation techniques such

as Principal Components Analysis (PCA), which ensures that

, ICA imposes the much stronger criterion

by finding the multivariate probability density function of

factorized: . When is monotonically

increasing or decreasing, (i.e., has a unique inverse), the p.d.f.

of the output, can be written as a function of the p.d.f. of

the input as

(2)

The entropy of the output is given by

(3)

In order to maximize to the entropy of , which makes

more independent, by changing , we need to maximize the

first term of (3), where the second term on the right may be con-

sidered to be unaffected by alterations in a parameter deter-

mining . This can be done by considering the “training set”

of “ ” to approximate the density, , and deriving an “on-

line” stochastic gradient ascent rules for adjusting based on

the infomax principle [40].

For one input and one output with logistic transfer function

(4)

where and

. Then is calculated as

(5)

For -input and -output network, the learning rules are sim-

ilar in form

(6)
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Fig. 4. Scalp topography of ICA weighting matrixW of 33 ICA components.

or for individual weight of

(7)

where is the cofactor of which is times

the determinant of the matrix obtained by removing the row

and column from . More details can be referenced to [40].

In this paper, the ICA weighting matrix can be obtained

using learning rule (6) and (7). After ICA training on 33-channel

EEG data in our case, we obtain 33 ICA components. The back

projection of the ICA components to the EEG signals can be

done by

...

...
...

...

(8)

where the columns of the inverse matrix give the pro-

jection strengths of the respective components onto the scalp

sensors. The scalp topographies of the components provide evi-

dence for their biological origin (e.g., eye activity should project

mainly to frontal sites, and the drowsiness-related potential is

on the parietal lobe to occipital lobe, etc.). In general, corrected

EEG signals can then be derived as , where is the

matrix of activation waveforms , with rows representing arti-

factual sources set to zero. Fig. 4 shows the scalp topographies

of ICA back-projection matrix of Subject 3. As shown in

Fig. 4, most of the EEG artifacts and channel noises in EEG

recordings are effectively separated into ICA components 1 and

4, while ICA components 5, 11, and 13 (selected by visual in-

spection) may be considered as effective “sources” associated

with drowsiness in the VR-based driving experiment. Further

check was performed in the Section IV.

B. Power-Spectrum Analysis

Analysis of changes in spectral power and phase can char-

acterize the perturbations in the oscillatory dynamics of on-

going EEG. Applying such measures to the activity time courses

of separated independent component sources avoids confounds

caused by miscancellation of positive and negative potentials

from different sources to the recording electrodes, and by mis-

allocation to the recording electrodes activity that originates in

various and commonly distant cortical sources. Fig. 5 shows the

diagram of moving-average power spectral analysis [54] for a
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Fig. 5. Moving-averaged log power-spectral analysis for ICA/EEG signals.

single ICA component, which was obtained from decomposi-

tion of 33 channels of the EEG signals. The time series of the

single ICA component was first divided into 750-point epochs

using Hanning window in (9) with 250-point overlap, i.e., step-

ping in 2 s. Each 750-point epoch was further divided into sev-

eral 125-point frames using Hanning windows with 25-point

step size again.

(9)

Each 125-point frame was extended to 256 points by

zero-padding to calculate its power spectrum by using a

256-point fast Fourier transform (FFT), resulting in power-spec-

trum density estimation with a frequency resolution near 1 Hz.

Then we averaged the power spectrum of all the subepochs

within each epoch. Previous studies [55], [56] show that the

transient amplitudes of EEG power spectrum involved in

wake-sleep regulation are very different. The cortex produces

low amplitude and fast oscillations during waking, and gen-

erates high-amplitude, slow cortical oscillations during the

onset of sleep. Their reports also showed that the EEG spectral

amplitudes correlated with the wake-sleep transition more

linearly in the logarithmic scale than in the linear scale. Our

previous study [62] based on the same task and empirical

results in this study also confirm this phenomenon. Therefore,

the averaged power spectrum of each epoch was normalized to

logarithmic scale to linearize these multiplicative effects. The

resultant power-spectrum time series of single ICA component

for each 45-min session consisted 40 frequency bins (from 0.98

to 39.1 Hz) stepping at 2-s time intervals. Finally, a median

filtering using a moving averaged 90-s window was applied

to the power spectrum to further minimize the presence of

artifacts in the ICA/EEG signals and to match the time intervals

of the driving performance index. The same procedure of

power-spectrum analysis was applied to all 33 ICA components

and other 33 EEG channels for comparisons.

C. Correlation Coefficient

In order to find the relationship between the brain activities

and subject’s driving performance, and to quantify the level of

Fig. 6. Fluctuations in the driving error index and concurrent changes in
power spectrum of ICA components and their corresponding correlation
spectrum. (a) and (b) Changes of power spectrum in 10 Hz with time of the ICA
components 11 and 13 of Subject 3 after 90-s moving-average spectral analysis.
(c) The smoothed 90-s driving error index. (d) Correlation coefficients from
1–40 Hz forming a correlation spectrum of the ICA components 11 and 13.

the subject’s drowsiness, we computed the correlation coeffi-

cient between the time course of the fluctuations in driving error

and the concurrent changes in the ICA spectrum of EEG signals

by using the Pearson Correlation Coefficient

(10)

where is the time series of the driving performance index,

is the time-frequency series of the th ICA component,

is the time stepping size in 2 s, and is the frequency index

. The forms a correlation spectrum

that measures correlation between changes in the ICA/EEG log

power spectrum, , of the th ICA component for the th

frequency index and the subject performance index . The

variables, and (related to the th frequency index) are

the expected values of and , respectively. Fig. 6(a)

and (b) show an example of the log spectral changes at 10 Hz of

components 11 and 13 of Subject 3. Fig. 6(c) shows the minute-

scale fluctuation of the driving performance index in a 45-min

driving session. Note that the fluctuations in the driving error

index change slowly in minute scales, which was consistent with

previous studies [31], [34] in an auditory detection task. We then

calculate the correlation coefficient between the time series of

the driving performance index and the concurrent changes in

the power spectrum in components 11 and 13 using (9) for each

frequency. Results for 40 frequencies between 0.98 and 39.1 Hz

are shown Fig. 6(d).
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Fig. 7. Correlation spectra between smoothed driving error and log subband power spectra of (a) 33 EEG channels and (b) 33 ICA components for frequencies
between 1 and 40 Hz of Subject-3. It is observed that the subband power spectra between frequency bands 10 � 14 Hz have high positive correlation with driving
error in most EEG channels and both 11th and 13th ICA components. (c) and (d) Scalp topographies of weighting matrices for dominant ICA component 11 that
was centered on Pz (28th) channel and ICA component 13 that was centered on P4 (29th)/O4 channels.

IV. RESULTS AND DISCUSSIONS

A. Relationship Between the ICA/EEG Power Spectrum and

Drowsiness

After ICA training and analysis of log subband power spec-

trum for each ICA components/EEG channels, we computed

the spectral correlations between changes in the ICA/EEG log

subband power spectrum and driving performance by com-

puting the correlation coefficients between the two time series

at each frequency band. Fig. 7 shows the resulting correlation

spectra of Subject 3 in (a) 33 EEG channels and (b) 33 ICA

components. The horizon axis indexes frequency bands be-

tween 1 and 40 Hz and the vertical axis indexes the EEG

channels/ICA components. In Fig. 7(a), the correlation spec-

trum shows a strong positive correlation between fluctuations

in EEG bandpower of frequency bands between 10 and 14 Hz

across most of the EEG channels. As driving error increases, so

does EEG bandpower. Strong correlations also appear between

ICA log power spectrum and subject driving performance

[Fig. 7(b)]. For example, the log power spectra of components

11 and 13 between 9–25 Hz are strongly positively correlated

with subject driving performance. Fig. 7(c) and (d) shows the

scalp topographies of components 11 (Pz-dominant) and 13 (P4

dominant). The correlations are particularly strong at central

and posterior areas, which are consistent with previous studies

in the driving experiments [19], [21], [29]. The relatively

high correlation coefficients near -band (8–13 Hz) suggests

that alpha band frequencies (8–13 Hz) may be suitable for

drowsiness (microsleep) estimation, as the subject’s cognitive

state might fall into stage one of the NREM sleep. Next, we

compared correlation spectra from different subjects to see if

Fig. 8. Correlation spectra between smoothed driving errors and log subband
power spectra of first 5 ICA components of (a) Subject 3 and (b) Subject 2,
respectively. It is observed that the first 2 ICA components of Subjects 3 and 2
are somewhat different in their scalp topography but within the ambit of parietal
lobe and occipital lobe.

the relationship between IAC power and driving performance is

stable across subjects. Fig. 8 shows the scalp topographies and

spectrum correlation between smoothed driving performance

and log subband power spectra of top five ICA components

of Subject 3 and Subject 2. As can been seen, that the best

drowsiness-correlated components (best matching) differ in

Subjects 2 and 3, in general their scalp topographies are all

within the ambit of central lobe to occipital lobe. This result

is consistent with the subject variability in the relationship be-

tween scalp EEG power and subject task performance reported

in [31] and [62].
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TABLE I
CORRELATION COEFFICIENTS BETWEEN LOG SUBBAND POWER SPECTRA

AND DRIVING ERROR OF SUBJECT 3 CORRESPONDING TO DIFFERENT

FREQUENCY BANDS FROM 8 TO 15 HZ OF ICA COMPONENT 11 AND 13 IN

TRAINING AND TESTING SESSIONS USING SAME ICA WEIGHTING

MATRICES OBTAINED FROM TRAINING SESSION

TABLE II
CORRELATION COEFFICIENTS BETWEEN LOG SUBBAND POWER SPECTRA AND

DRIVING ERROR OF SUBJECT 3 USING FIVE BEST FREQUENCY BANDS (FROM

10 TO 14 HZ) CORRESPONDING TO DIFFERENT SINGLE ICA COMPONENT.
SAME ICA WEIGHTING MATRICES OBTAINED FROM TRAINING SESSION

WERE USED FOR TESTING SESSION PERFORMED ON OTHER DAY

B. Selection of Frequency Bands Based on Spectral Analysis

and Driving Errors

Our previous studies [62], based on the same driving task,

showed that it is not optimal to use full EEG frequency bands

to accurately estimate individual changes in vigilance and

driving error because the pervasive artifacts could contaminate

some frequency bandpowers in EEG dynamics. In this paper,

therefore, we decided to choose the best EEG channel(s)

and frequency band(s) that most correlated with drowsiness

level of subjects to estimate the fluctuation in subject driving

performance.

In this section, we compared the correlation between log sub-

band power spectra and driving error for each frequency bands

and individual ICA component to find the optimal subbands

and localizations of electrodes according to the scalp topogra-

phies of ICA weighting matrices. Table I shows the correla-

tion coefficients between the power spectrum of ICA compo-

nents 11 and 13 at different frequency bands and the driving

performance of Subject 3 across different driving sessions. The

ICA unmixing matrix was obtained by training ICA with the

training set and tested against testing sessions collected in dif-

ferent days from the same subject. For Subject 3, time courses

of ICA power spectra of components 11 and 13 best correlated

with subject driving performance. The strongest correlation be-

tween ICA power and driving performance occur between 10

and 14 Hz ( ) as shown in Table I. Table II lists the

spectrum correlation at 10–14 Hz of components 5, 11, 13, 24,

26, 29, and 31 in both training and testing sessions. Both com-

ponents exhibit strong alpha activity which was associated with

microsleep at occipital and central sites. Table III lists the two

TABLE III
OPTIMAL 2 ICA COMPONENTS AND FREQUENCY-BAND RANGES

CORRESPONDING TO DIFFERENT SUBJECTS ACCORDING TO THE

HIGHER CORRELATION COEFFICIENTS BETWEEN LOG SUBBAND

POWER SPECTRA AND DRIVING PERFORMANCE

best drowsiness-related ICA components and their best-corre-

lated frequency bands in different subjects. The relationship be-

tween minute-scale changes in driving performance and power

spectrum appears variable across subjects.

The above analyses provide strong and converging evidence

that changes in subject alertness level indexed by driving perfor-

mance in a driving task are strongly correlated with the changes

in the ICA power spectrum at several frequencies at predomi-

nantly central and posterior cites. This relationship is stable over

time in different sessions from the same subject, but relatively

variable between subjects. These results are consistent with the

findings from a simple auditory target detection task reported

in [31], [32]. These findings suggest that for maximal accuracy

the estimation algorithm should be capable of adapting to indi-

vidual differences in the mapping between EEG and alertness.

C. Drowsiness Estimation Based on EEG Log Bandpower

An early study [31] of alertness monitoring based on a simple

auditory detection task demonstrated the feasibility of using

linear regression and neural network to estimate the time course

of detection error rate from changes in EEG power. A nature

question is to what extent an index of alertness based on auditory

detection performance can estimate fluctuations in performance

on more realistic and complicated tasks such as driving. In this

section, we investigate the feasibility of accurately estimating

subject driving performance in a VR-based driving simulation

experiments. Results of this study will also serve as the base-

line/standard for justifying the development of more sophisti-

cated alertness-monitoring method based on linear regression

model applied to power spectral data of ICA components (as

opposed to EEG channels).

The linear regression model attempts to model the relation-

ship between the selected input features to the observed

output data at each sampled data point. i.e., given the input

data set and desired output data at each data point, the

least-squared linear regression method is to find an optimal

parameter set , such that , subjected to

minimizing the squared error cost function .

We first need to decide the number of EEG channels and fre-

quency bins to use in the multivariate a linear regression model.

For practical and routine application, EEG-based cognitive as-

sessment systems should use as fewer EEG sensors as possible

to reduce the preparation time for device wiring and compu-

tational cost for continuous alertness level estimation in near

real time. Previous studies [31], [34] demonstrated it is feasible

to accurately estimate subject performance based on as few as

two EEG channels which is statistically significantly better than

using only one EEG site. Therefore, in this paper we use two

out of 33 EEG sites. However, due to individual variability, we



2734 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 12, DECEMBER 2005

TABLE IV
CORRELATION COEFFICIENTS BETWEEN LOG SUBBAND POWER SPECTRA AND DRIVING ERROR OF SUBJECT 3 USING BANDPOWER IN FREQUENCY BANDS

FROM 10 TO 14 HZ CORRESPONDING TO DIFFERENT SINGLE EEG CHANNEL IN TRAINING/TESTING SESSION

TABLE V
OPTIMAL 2 EEG CHANNELS AND THE ASSOCIATED FREQUENCY-BAND RANGES CORRESPONDING TO DIFFERENT SUBJECTS BASED ON CENTRAL ELECTRODE

POSITIONS OF 2 ICA COMPONENTS WHICH HAVE BETTER CORRELATION COEFFICIENTS BETWEEN LOG SUBBAND POWER SPECTRA AND DRIVING PERFORMANCE

TABLE VI
DRIVING ERROR ESTIMATION USING TOTAL TEN FREQUENCY BANDS (5 FOR EACH EEG CHANNEL)

AS INPUT FEATURES OF THE LINEAR REGRESSION MODEL FOR FIVE SUBJECTS

Fig. 9. Driving error estimates for training/testing sessions of Subject 3, based
on a linear regression model (solid line) with subband log power spectra at
frequency bands 10 � 14 Hz of EEG channels Pz and P4 (selected according
to Table V), overplotted against actual driving error time series for the session
(dotted line). The correlation coefficient between the two time series is r = 0:91

in the training session and r = 0:87 in the testing session.

need to, for each subject, select five frequency bins of the best

two EEG channels as inputs to multivariate linear regression

models. As an example, Table IV shows, for Subject 3, the cor-

relation coefficients between the log subband power spectra and

the driving error based on frequency bands from 10 to 14 Hz at

Fz, FCz, Cz, CPz, P3, Pz, and P4 in the training/testing ses-

sion. Comparing to the results of using ICA components, the

correlation coefficients are in general lower than the values in

Table II, partially due to pervasive artifacts and other noises.

In this example, Pz and P4 channels were selected for further

linear regression analysis. Fig. 9 plots the resultant driving per-

formance estimate based on a linear regression model applied

to the power-spectral time series at 10–14 Hz of Pz and P4.

The correlation coefficient between estimated and actual driving

performance is 0.91 in the within-session testing and 0.87 in

the cross-session testing. Table V lists the optimal two EEG

channels and associated frequency bands for different subjects.

Table VI shows the accuracy of driving performance estima-

tion for all five subjects. The mean correlation coefficient be-

tween actual driving error time series in within- and cross-ses-

sion testing is 0.846 and 0.824, respectively.

D. Drowsiness Estimation Based on Log Bandpower of ICA

Components

In this paper, we use a least-square multivariate linear re-

gression model [60], [61] to estimate the subject’s driving error

based on the information obtained from the subband power-

spectra analysis of ICA components. In our paper, we used only

two ICA components that exhibit the highest correlation be-

tween the ICA subband power spectrum and the driving per-

formance to remove the contamination from EEG artifacts and

extract drowsiness-related brain activity. Results of our correla-

tional analysis presented above suggest we can use the power

spectrum as few as two components at five frequency bins (e.g.,

10–14 Hz for ICA component 11 for Subject 3) as the input data

of linear regression model. After training process, we get the

optimal parameters such that the output of the linear re-

gression model, , best matches the observed output

(driving performance, ) with minimal . For

each subject who participated in two–three driving experiments,

the ICA unmixing matrix obtained from the training sessions

was used to spatially filter the features in the testing sessions so

that all data were processed in the same way for the same sub-

ject before feeding to the estimation models. The linear regres-

sion model was trained on one session and tested on the other

session for each subject. Fig. 10 plots the estimated and actual

driving error of training/testing sessions of Subject 3. The linear

regression model in this figure is trained with one session and

tested against the training session (within-session) and a sepa-

rated session (cross-session testing). As can been seen, the es-

timated driving error matched well with the actual driving per-

formance ( ) in the within-session testing and

in the cross-session testing, which are higher than those using

power spectrum of two EEG scalp channels shown in Fig. 9.
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TABLE VII
DRIVING ERROR ESTIMATION USING TOTAL TEN FREQUENCY BANDS IN TWO DOMINANT ICA COMPONENTS (5 FREQUENCY BANDS

FOR EACH ICA COMPONENT) AS INPUT FEATURES OF LINEAR REGRESSION MODEL FOR FIVE SUBJECTS

Fig. 10. Driving error estimates for training/testing sessions of Subject 3,
based on a linear regression model (solid line) with subband log power spectra
at frequency bands 10 � 14 Hz of ICA components 11 and 13 selected
according to Table III, overplotted against actual driving error time series for
the session (dotted line). The correlation coefficient between the two time
series is r = 0:93 in the training session and r = 0:92 in the testing session.

Fig. 11. Driving error estimates for training/testing sessions of Subject
2, based on a linear regression model (solid line) with subband log power
spectra at frequency bands 8 � 12 Hz of ICA components 8 and 17 selected
according to Table III, overplotted against actual driving error time series for
the session (dotted line). The correlation coefficient between the two time
series is r = 0:91 in the training session and r = 0:89 in the testing session.

Fig. 11 demonstrates the results of driving performance estima-

tion for Subject 2. Again, the performance estimate matched

well with the actual driving performance ( ) in the

within-session testing and in the cross-session testing.

Table IV shows the statistics across ten sessions for five subjects.

The mean correlation coefficient between estimated and actual

driving performance is for within-session testing

and for cross-session testing. These results sug-

gest that continuous ICA-based driving performance estimation

using a small number of frequency bands is feasible, and can

provide accurate information about minute-to-minute changes

in operator’s alertness.

Finally, we compared the accuracy of the proposed

ICA-component based estimates to those produced by the

best EEG-based standards. Comparing Tables VI and VII, the

accuracies of estimates based on ICA spectrum are consistently

better than those based on scalp-recorded EEG spectrum; ex-

pect the within-session testing in Subject 5. This result justifies

the further development of the proposed method. However, for

practice and routine application or in some applications where

the number of available EEG channels is limited, EEG-based

cognitive assessment systems should use as fewer EEG sensors

as possible to reduce the preparation time for device wiring

and computational cost for continuous alertness level esti-

mation in near real time. According to the analysis shown in

Tables III–VII, we believe it is adequate to use the only 2 EEG

channels at central positions of the two effective ICA com-

ponents to assess the alertness level of subjects continuously

when the number of EEG sensors is not sufficient for ICA

decomposition which usually requires more than ten channels

of simultaneously recorded data.

V. CONCLUSION

In this paper, an EEG-based drowsiness estimation tech-

nology based on ICA, power-spectrum analysis, correlation

analysis, and the linear regression model is proposed and eval-

uated in a VR-based driving environment. We demonstrated

a close relationship between fluctuations in driving perfor-

mance and the log subband power ICA/EEG spectrum. This

relationship appears stable within individuals across sessions,

but is somewhat variable between subjects. Our experimental

results show that the proposed analysis methods are feasible to

accurately estimate individual driving error accompanying loss

of alertness by linear regression model applied to ten subband

log power spectra near -bands of 2 ICA components as inputs.

Averaged accuracies of within- and cross-session estimation for

five subjects are 86.2% and 88.2%, respectively. We also com-

pared the results to those obtained by linear regression models

applied to two best drowsiness-related EEG channels located

at central electrodes of the corresponding ICA components.

Average accuracies of within- and cross-session estimation for

five subjects are 84.6% and 82.4%, respectively. Although the

accuracy is somewhat lower than those using ICA components,

it does not require collecting more EEG channels data for ICA

training. Thus, this approach might be advantageous in certain

applications where the number of available EEG channels is

limited. Both methods can lead to online portable embedded

systems for noninvasive monitoring of the cognitive state of

human operators in attention-critical settings.
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