
Research Article

EEG-Based Emotion Recognition Using Deep Learning Network
with Principal Component Based Covariate Shift Adaptation

Suwicha Jirayucharoensak,1,2 Setha Pan-Ngum,1 and Pasin Israsena2

1 Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, �ailand
2National Electronics and Computer Technology Center, �ailand Science Park, Khlong Luang, Pathum�ani 12120, �ailand

Correspondence should be addressed to Setha Pan-Ngum; setha.p@chula.ac.th

Received 2 May 2014; Revised 30 July 2014; Accepted 30 July 2014; Published 1 September 2014

Academic Editor: Jinshan Tang

Copyright © 2014 Suwicha Jirayucharoensak et al. �is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Automatic emotion recognition is one of the most challenging tasks. To detect emotion from nonstationary EEG signals, a
sophisticated learning algorithm that can represent high-level abstraction is required. �is study proposes the utilization of a deep
learning network (DLN) to discover unknown feature correlation between input signals that is crucial for the learning task.�eDLN
is implemented with a stacked autoencoder (SAE) using hierarchical feature learning approach. Input features of the network are
power spectral densities of 32-channel EEG signals from 32 subjects. To alleviate over�tting problem, principal component analysis
(PCA) is applied to extract the most important components of initial input features. Furthermore, covariate shi	 adaptation of
the principal components is implemented to minimize the nonstationary e
ect of EEG signals. Experimental results show that the
DLN is capable of classifying three di
erent levels of valence and arousal with accuracy of 49.52% and 46.03%, respectively. Principal
component based covariate shi	 adaptation enhances the respective classi�cation accuracy by 5.55% and 6.53%. Moreover, DLN
provides better performance compared to SVM and naive Bayes classi�ers.

1. Introduction

Brain-computer interface (BCI) has been one of the most
interesting biomedical engineering research �elds for dec-
ades. It provides a promising technology allowing humans
to control external devices by modulating their brain waves.
Most BCI applications have been developed for noninvasive
brain signal processing which is practical to implement in
real-world scenarios. �ere are plenty of successful EEG-
based BCI applications such as word speller programs [1] and
wheelchair controllers [2]. Not only can BCI be employed
to mentally control devices, but also it can be implemented
for understanding our mental states. Emotion recognition
is one of such applications. Automatic emotion recognition
algorithms potentially bridge the gap between human and
machine interactions.

A model of emotion can be characterized by two main
dimensions called valence and arousal. �e valence is the
degree of attraction or aversion that an individual feels toward

a speci�c object or event. It ranges from negative to positive.
�e arousal is a physiological and psychological state of being
awake or reactive to stimuli, ranging from passive to active.
�e valence-arousal dimensional model, represented in
Figure 1, of emotion is widely used in many research studies.

Electroencephalogram (EEG) is a record of the oscillation
of brain electric potentials resulting from ionic current
�ow between brain neurons. EEG signals are acquired by
measuring the electrical activities at electrode’s positions
on the scalp. �e 10–20 system [3] of electrode placement,
illustrated in Figure 2, provides an international system to
ensure standardized reproducibility. By referring to 10–20
system, a subject’s studies could be compared over time
and subjects could be compared to each other. Human’s
brain wave is the composition of �ve main frequency bands
called delta (1–3Hz), theta (4–7Hz), alpha (8–13Hz), beta
(14–30Hz), and gamma (31–50Hz), as shown in Figure 3.
�e characteristics of each band can be utilized to estimate
subject’s cognition and emotion states.
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Figure 1: Valence-arousal dimensional model.
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Figure 2: �e 10–20 system of electrode placement [3].

�ere exist several research studies, EEG-based emotion
recognition systems. Koelstra et al. [5] presented methods
for single trial classi�cation using both EEG and peripheral
physiological signals. Power spectrum density (PSD) of EEG
signals was used as the features. A Support vector machine
(SVM) classi�er was used to classify two levels of valence
states and two levels of arousal states. For EEG analysis
results, average and maximum classi�cation rates of 55.7%
and 67.0%were obtained for arousal and 58.8% and 76.0% for
valence. Soleymani et al. [6] provided a multimodal dataset,
called “MAHNOB-HCI,” for an analysis of human a
ective
states. �e EEG and peripheral physiological signals were
employed to classify emotion states. �e system used PSD
of EEG signals from 32 channels as input features. A SVM
classi�er was implemented to classify three levels of valence
states and three levels of arousal states. For EEG-based
classi�cation, the accuracy rates for valence and arousal are
57.0% and 52.4%, respectively. Huang et al. [7] developed an
asymmetry spatial pattern (ASP) technique to extract features
for EEG-based emotion recognition algorithm. �e system
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Figure 3: Brain waves in 5 main frequency bands [4].

employed K-Nearest Neighbor (K-NN), naive Bayes (NB),
and support vector machine (SVM) for emotion classi�ca-
tion. �e average accuracy rates for valence and arousal are
66.05% and 82.46%, respectively.

Moreover, several studies [8–11] used PSD of EEG data
as the input features and performed emotion classi�cation
by using SVM. Other machine learning techniques, such as
naive Bayes, K-NN, LDA, and ANN, have been applied in
other studies [12–15]. Although the number of research stud-
ies on EEG-based emotion recognition algorithms has been
increasing in recent years, the e�ciency of these algorithms
is limited.

2. An Overview of Deep Learning Network

2.1. Hierarchy Feature Learning. Deep learning network
(DLN) is capable of discovering unknown feature coherences
of input signals that is crucial for the learning task to represent
such a complicated model. �e DLN provides hierarchical
feature learning approach. Learned features at high-level are
derived from features at low-level with greedy layer-wise
unsupervised pre-training. �is unsupervised pre-training
provides the stage for a �nal training phase that is �ne-tuning
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Figure 4: Hierarchical architecture of DLN.

process with respect to a supervised training criterion based
on gradient descent optimization. Consequently, the primary
purpose of DLN is to learn the kind of complicated functions
that can represent high-level abstraction. A hierarchical
architecture of DLN is illustrated in Figure 4.

�e DLN potentially performs self-taught learning from
very large numbers of sets of unlabeled data. When learning
algorithms process more data, they provide better perfor-
mance. �e key advantage of self-taught learning and unsu-
pervised feature learning is that the algorithm can learn from
unlabeled data, and then it can learn from massive amount
of information. Consequently, DLN algorithm is suitable for
problems where there are a plenty of sets of unlabeled data
and a handful amount of sets of labeled data.

2.2. Stacked Autoencoder. A stacked autoencoder is a neural
network consisting of multiple layers of sparse autoencoders
in which the outputs of each layer are wired to the inputs
of the successive layers. �e structure of an autoencoder
is depicted in Figure 5. �e autoencoder tries to learn an
approximation to the identity function, shown as follows:

�̂ = ℎ�,� (�) ≈ �. (1)

�e DLN exploits the unsupervised pretraining technique
with greedy layerwise training.�e algorithmperformsunsu-
pervised pretraining one layer at a time, starting from the
input layer to the output layer. �e �rst sparse autoencoder
(1st hidden layer) is trained on the raw inputs (�) to learn

primary features ℎ(1) on the inputs. During pretraining
process, all of weight and bias parameters have been learned
to minimize the cost function, shown in (2). Next, the algo-
rithm performs forward propagation by using the raw inputs
into this trained sparse autoencoder to obtain the primary
feature activations. For pretraining in the next hidden layer,
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Figure 5: Structure of an autoencoder.
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Figure 6: Stacked autoencoder with so	max classi�er.

the algorithm computes its features in the same procedure
from the learned features from the previous hidden layers:

Cost = 12�
�∑
�=1
(�̂� − ��)2 + � �∑

�=1
KL (
‖
̂�) + 2

�∑
�=1

�∑
�=1
�2��, (2)

where � is number of hidden nodes, � is number of
inputs, � is weight of sparsity penalty, KL is Kullback-Leibler
divergence function, 
 is sparsity parameter, 
̂� is probability
of �ring activity,  is weight decay parameter, and � is weight
of hidden nodes.

2.3. So�max Classi�er. So	max classi�er is responsible for
statistically estimating the probability of output values of
the DLN. So	max classi�er attempts to learn all of weight
and bias parameters by using the learned features of the last
hidden layer. A stacked autoencoder with 2 hidden layers
and so	max classi�er for binary classi�cation is illustrated
in Figure 6. In the case of binary classi�cation (� = 2),
the so	max regression hypothesis outputs ℎ�(�), shown as
follows:

ℎ� (�) = 1
���1 	 + ���2 	(�) [

���1 	���2 	] . (3)
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So	max classi�er can be generalized to be multiclass classi-
�cation. �e hypothesis will output a vector of � estimated
probabilities, shown as follows:

ℎ� (�) = 1
∑
�=1 ���� 	(�)

[[[[[[[
[

���1 	(�)
���2 	(�)
...

���� 	(�)

]]]]]]]
]
. (4)

�e so	max layer needs to learn the weight and bias parame-
ters with supervised learning approach byminimizing its cost
function, shown as follows:

Cost = − 1�
�∑
�=1


∑
�=1
1 {�� = �} log ���� 	(�)

∑
�=1 ���� 	(�) +
2

∑
�=1

�∑
�=1
�2��,

(5)

where � is number of hidden units, � is number of inputs,� is number of classes, � is ground truth, and � is weight of
hidden nodes.

2.4. Fine-Tuning Stacked Autoencoder. A	er completing the
weight and bias parameter learning in the so	max classi�er
or output layer, the algorithm has to perform �ne-tuning
of all weight and bias parameters in the whole network
simultaneously. Fine-tuning procedure treats all layers of a
stacked autoencoder as a single model and improves all the
weights of all layers in the network by using backpropagation
technique. �e standard backpropagation algorithm is used
to learn the network weights and biases based on labeled
training examples. �e learning goal is to minimize classi�-
cation errors.

2.5. DLN for EEG Data Processing. �e original concept
of greedy layerwise unsupervised pretraining on the deep
learning networks derived from [17]. �e network consisted
of multilevel restricted Boltzmann machine. Later, Wulsin
et al. [18] applied the unsupervised pretraining concept to a
stack of autoencoder for classifying and detecting anomaly
measurement in EEG waveforms. �e paper demonstrated
that DLNs and raw data inputs may be more e
ective for
online automated EEG waveform recognition than other
standard techniques. DLN has also been applied to classify
sleep stages [19]. �e study utilized an unsupervised feature
learning architecture on both raw EEG data and power spec-
tral feature extraction to perform sleep stage classi�cation.

3. Methodology

3.1. DEAP Dataset. DEAP [20] is a multimodal dataset for
analysis of human a
ective states. �e EEG and peripheral
physiological signals of 32 subjects were recorded as each
subject watched 40 one-minute highlight music videos. A	er
watching each music video, the subjects performed a self-
assessment of their levels of arousal, valence, dominance,
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Arousal (passive-active)

Dominance (dominated-dominant)

Liking (dislike-like)

Figure 7: Self-assessment manikin for emotion states [21].

and liking. Self-assessment manikins (SAM) [21], as shown
in Figure 7, were used to visualize the scales. �e subjects
selected the numbers 1–9 to indicate their emotion states in
each category.

�is study mapped the scales (1–9) into 3 levels of each
valence and arousal states. �e valence scale of 1–3 was
mapped to “negative,” 4–6 to “neutral,” and 7–9 to “positive,”
respectively.�e arousal scale of 1–3 wasmapped to “passive,”
4–6 to “neutral,” and 7–9 to “active,” respectively. According to
the new scale mapping, the system provides 9-state emotion
classi�cation: happy, pleased, relaxed, excited, neutral, calm,
distressed, miserable, and depressed, shown in Figure 8.

3.2. EEG Feature Extraction. In our experiment, the pro-
posed system employed 32-channel EEG signals, without any
additional peripheral physiological signals. �e EEG signals
were downsampled from 512Hz to 128Hz. �e EEG channel
consisted of Fp1, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1,
P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz,
C4, T8, CP6, CP2, P4, P8, PO4, and O2. �e power spectral
density was calculated using FFT with a Hanning window of
size 128 samples. �e power spectral features of EEG signals
on these channels were extracted in 5 frequency bands: theta
(4–8Hz), lower alpha (8–10Hz), upper alpha (10–12Hz), beta
(12–30Hz), and gamma (30Hz up). In addition to the power
spectral features, the di
erence between the spectral power
of all the symmetrical 14 pairs of electrodes on the right and
the le	 hemispheres in 5 frequency bands was extracted to
measure the possible asymmetry in brain activities due to
emotional stimuli. A total number of 230 EEG features were
used as the input of DLN.

3.3. Feature Normalization. �e baseline power was �rst
subtracted from all of the extracted power spectral features,
yielding the change of power relative to the prestimulus
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Figure 8: Emotion state classes.

period, a	er which the features were rescaled into the range
[0.1, 0.9]. �is normalization process is required since the
DLN uses sigmoid as the activation function in the output
layer. Some of the features below −2∗SD and above +2∗SD
were truncated into 0.1 and 0.9, respectively.

3.4. DLN Implementation. �e proposed EEG-based emo-
tion recognition system is implemented with a stack of three
autoencoders with two so	max layers, illustrated in Figure 9.
�e system performs emotion classi�cation by estimating
valence and arousal states separately. Two so	max classi�ers,
one for valence and another for arousal, can share the
outcome of unsupervised pretraining procedure because they
both use the same set of unlabeled raw data. However, two
so	max classi�ers need to use di
erent stacked autoencoders
during �ne-tuning backpropagation.

�e DLN utilizes the unsupervised pretraining technique
with greedy layerwise training, starting from the input layer
to the so	max layer. �e �rst sparse autoencoder (1st hidden
layer) is trained on the inputs’ features (230 power spectral

features) to learn the primary features ℎ(1) on these input fea-
tures. We use L-BFGS to optimize the cost function, squared
error between input features and outputs. All of parameter
settings in the DLN for EEG-based emotion recognition are
shown in Table 1.

Subsequently, the algorithm performs forward propa-
gation by using the input features into this trained sparse
autoencoder to obtain the primary feature activations. �e
features, deriving from feedforward propagation of the 1st
hidden layer,must be used to performunsupervised pretrain-
ing in the second hidden layer. �e algorithm computes its
features in the same procedure from the learned features from
the previous hidden layers.

�e weight and bias parameters of the so	max layer
are trained by using a supervised learning approach. �e
output features of the last hidden layer are used as the input
features of both so	max layers.Weuse a set of self-assessment
emotion states (valence and arousal) of subjects as a ground
truth. �ese so	max layers can be trained as the parameters
concurrently.

Table 1: DLN parameter settings.

Parameters Value

Maximum iterations: SAE learning 400

Maximum iterations: so	max learning 100

Maximum iterations: �ne-tuning 200

Hidden layer size 100, 50

Sparsity parameter (
) 0.10

Weight of sparsity penalty (�) 3.0

Weight decay parameter (): SAE learning 3�−3
Weight decay parameter (): so	max learning 1�−4
Weight decay parameter (): �ne-tuning 1�−3
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Figure 9: DLN with two so	max classi�ers.

A	er the network �nishes learning weight and bias
parameters in both so	max classi�ers, the algorithm has to
perform �ne-tuning of all weight and bias parameters in
the whole network simultaneously. However, we are not able
to use the same network parameters for two classi�ers. We
need to save the learned parameter outcomes of unsupervised
pretraining and load the parameters for �ne-tuning process
of another so	max classi�er. �e �ne-tuning process treats
all layers of a stacked autoencoder and so	max layer as
a single model and improves all the weights of all layers
in the network by using backpropagation technique with
supervised approach. �e backpropagation process is used
to learn the network weights and biases based on labeled
training examples to minimize the classi�cation errors.

Summary of DLN training procedure is illustrated in
Figure 10. �e algorithm performs a greedy layerwise unsu-
pervised pretraining process, starting from the �rst hidden
layer to the last hidden layer. Initial weights and biases of
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the trained hidden layer are assigned for parameter optimiza-
tions. Next, the features from feedforward propagation of the
hidden layer must be used to perform unsupervised pretrain-
ing in the next hidden layer. A	er �nishing unsupervised
pretraining in the last hidden layer, so	max training and �ne-
tuning procedures are required.

3.5. Covariate Shift Adaptation of Principal Components. Deep
learning networks implemented with stacked autoencoders
have capability of representing a highly expressive abstrac-
tion. �erefore, we are confronted with over�tting problems,
especially with the tremendous number of input features and
hidden nodes.Moreover, a nonstationary e
ect of EEG signal
is still challenging to develop a reliable EEG-based emotion
recognition. �e proposed system employs the concept of
principal component based covariate shi	 adaptation [22] to
handle both over�tting problems and nonstationary e
ects
simultaneously. Principal component analysis (PCA) [23] is
to extract themost important principal components and nor-
malize these components individually by shi	ing a window
over the data to alleviate the e
ect of nonstationarity.

PCA is a statistical method that uses orthogonal transfor-
mation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated vari-
ables called principal components. �e number of principal
components is less than or equal to the number of original
variables. �is transformation is de�ned in such a way
that the �rst principal component has the largest possible
variance. �e proposed system reduces the number of input
features from 230 to 50 features.

To minimize the nonstationary e
ects of input features,
the proposed system normalizes the input features with the
average of previous feature values within a rectangular win-
dow of length �. We performed this normalization for each
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Figure 11: Shi	ing window in covariate shi	 adaptation.

Feature

extraction

EEG
signals

DLN-100

(a)

Feature

extraction

EEG
signals

DLN-50

(b)

Feature

extraction

EEG
signals

PCA

DLN-50

(c)

Feature

extraction

EEG
signals

PCA

CSA

DLN-50

(d)

Figure 12: Overview of four experiment setups.

input feature individually. Figure 11 illustrates the shi	ing
window during input feature normalization for covariate
shi	 adaptation in each video trial. In our experiments, the
window size of the process is set to 10.

4. Experiments and Results

In our experiments, the e�ciency of our proposed EEG-
based emotion recognition system was evaluated by four
experiment setups, shown in Figure 12. In the �rst setup, we
implemented the emotion recognition by using a deep learn-
ing network with 100 hidden nodes in each layer (DLN-100).
We employed the feature extraction process to calculate all of
input features of the DLN from 32-channel EEG signals. At
each epoch, the system learned 230 input features consisting
of power spectral density of 5 frequency bands and the
differences of power spectral densities of 14 asymmetry pairs.
Next, the second experiment reduced the number of hidden
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nodes to 50 (DLN-50) for investigating the e
ect of hidden
node size in the DLN.

�e third experiment setup, shown in Figure 12(c),
exploited the PCA to alleviate over�tting problem of the
DLN.�e PCA extracted the 50 most important components
from initial 230 input features.�e extracted featureswere fed
into the DLN with 50 hidden nodes in each layer.

�e last experimental setup enhanced the e�ciency of the
emotion recognition system by applying covariate shi	 adap-
tation (CSA) concept to solve the problem of nonstationarity
in EEG signals.�e systemnormalized the input featureswith
the average of previous feature values within a rectangular
window of length �. �is normalization was processed for
each input feature individually.

�e classi�cation accuracy of valence and arousal states
in four experiment setups was measured with a leave-one-
out cross validation scheme.�e full leave-one-out cross val-
idation of 32 subject acquisitions was performed. A training
dataset was a composition of all input features from the other
31 subjects. A test dataset was the subject’s input features
under evaluation. Each individual dataset consisted of power
spectral features from EEG signal records while the subject
was watching 40 one-minute music videos. �e DLN per-
formed its weight and bias optimization based on gradient
descent approach. �erefore, the classi�cation accuracy was
occasionally a
ected by its initial weight and bias parameter.
In our experiment, we repeated the classi�cation accuracy
measurement �ve times and used the average of the accuracy
for further analysis.

�e comparison of accuracy from four experiment setups
for valence and arousal states on individual subjects is listed
in Table 2.�e average accuracy and standard deviation of 32
subjects in four experiments are depicted in Figure 13. �e
DLN-100 provides the accuracy of 49.52% for valence and
46.03% for arousal. �e DLN-50 accuracy slightly decreases
into 47.87% and 45.50%. �e number of hidden nodes in the
DLN a
ects accuracy performance of a
ective state classi�-
cation.�e greater the number of hidden nodes is, the higher
accuracy the DLN provides. In experiments, the number of
hidden nodes in each layer was reduced from 100 to 50 nodes.
�e accuracy decreased 1.62% and 0.53% for valence and
arousal classi�cations, respectively.

�ere is a strong relationship between autoencoder and
principal component analysis [24]. If the number of hidden
nodes is less than the number of visible nodes, the autoen-
coder essentially performs nonlinear principal analysis (NPCA).
Both approaches are responsible for learning some correla-
tions of data. If some of the input features are correlated,
then these algorithms will be able to discover some of those
correlations. �e PCA helps the stack of autoencoder to
learn some linear correlations among the input features by
acting as one more hidden layer at the input and then boost
the performance of the learning task. From experimental
results, the PCA increases the accuracy performance by 3.01%
for valence and 3.14% for arousal.

Subsequently, we applied covariate shi	 adaptation (CSA)
concept to alleviate the e
ect of nonstationarity in EEG
signals. �e CSA provides the classi�cation performance to
53.42% for valence and 52.03% for arousal. �e PCA+CSA
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Figure 13: Average accuracy of the experiments.

setup improves the accuracy by 5.55% and 6.53% for valence
and arousal states, respectively.

To evaluate the e�ciency of the DLN, LIBSVM tools
[25] were used to measure the accuracy performance of a
SVM classi�er. Its kernel function was set to radial basis
function and other parameters were assigned by default
values. �ere were three experiment setups for the SVM
classi�er: 230 input features, PCA, and PCA+CSA. Table 2
shows the accuracy performance of the SVM classi�er.

�e comparison of DLN and SVMaccuracy is depicted in
Figures 14 and 15 for valence and arousal states, respectively.
�e DLN outperforms SVM in all experiments. It is inter-
esting to investigate the e
ect of PCA for feature dimension
reduction. �e PCA enhanced the accuracy performance of
the DLN but it diminished those of the SVM. �e e
ect of
PCA on SVM is congruent with a study by Li et al. [26].

Overall accuracy of the SVM classi�er to perform EEG-
based emotion state classi�cation fromDEAP dataset is quite
low. In our experiments, all parameters used in the SVM
classi�er were assigned with their default values. Moreover,
the SVM exhaustedly estimated its optimal decision surfaces
with a large number of sets of training data (74400 instances).
�ese two reasons potentially lead to the SVM’s poor perfor-
mance in this case.

�e performance comparison among EEG-based emo-
tion classi�cation algorithms is shown in Table 3. We also
utilized a naive Bayes (NB) classi�er in WEKA tool to per-
form emotion state classi�cation of theDEAPdataset with 10-
fold cross validation. Another NB classi�cation technique in
Chung and Yoon [16] uses a weighted-log-posterior function
for the Bayes classi�er but its accuracy performance was
measured in leave-one-trail-out cross validation.

5. Discussion

�e primary purpose of this research is to explore how
well the deep learning network in the version of stacked
autoencoder performs EEG-based a
ective computing algo-
rithm. From our experimental results, the average of emotion
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Table 2: Valence and arousal state classi�cation accuracy with leave-one-subject-out cross validation.

Valence accuracy (%) Arousal accuracy (%)

DLN SVM DLN SVM

N100 N50 PCA CSA F230 PCA CSA N100 N50 PCA CSA F230 PCA CSA

S01 46.14 44.64 50.31 56.52 38.63 40.29 42.92 50.21 48.98 38.57 42.85 41.67 42.58 23.83

S02 47.64 44.72 49.73 48.48 41.50 44.88 47.04 35.85 37.56 34.65 36.43 32.62 23.25 17.46

S03 52.45 51.43 58.10 59.81 47.38 51.75 40.17 42.84 40.61 42.86 54.43 31.63 22.08 12.38

S04 39.20 36.43 37.52 40.98 24.21 22.12 29.92 39.45 36.98 52.20 46.22 16.50 22.58 34.04

S05 54.32 56.76 55.56 60.97 44.58 33.33 49.42 48.62 47.31 58.78 53.10 41.75 39.13 47.00

S06 49.48 47.43 54.81 71.06 44.50 50.21 60.08 49.24 49.77 45.65 62.18 43.46 29.71 20.29

S07 51.87 52.51 57.94 73.48 47.00 50.58 42.88 46.25 44.27 53.15 56.01 41.13 37.79 39.83

S08 49.19 48.81 54.27 48.44 39.58 47.08 37.54 54.44 52.19 57.24 60.14 46.92 45.25 52.71

S09 55.86 58.81 63.73 38.48 43.00 36.96 27.50 49.81 49.06 62.15 64.18 47.88 51.25 54.46

S10 43.54 40.43 45.27 40.98 39.47 32.83 30.00 41.21 39.52 52.40 64.16 34.96 34.38 25.88

S11 43.87 40.31 44.90 48.11 34.04 37.46 37.38 35.68 34.48 35.45 35.85 23.58 27.54 25.08

S12 44.32 41.56 43.40 48.06 37.79 39.21 42.12 50.74 49.56 44.45 50.81 51.25 46.96 36.88

S13 54.86 53.31 44.10 47.36 49.38 32.92 30.13 48.65 48.31 38.07 41.26 35.08 27.54 28.17

S14 33.81 35.64 43.69 44.06 30.00 35.58 44.67 51.96 49.27 61.99 62.14 44.67 51.63 42.13

S15 58.74 57.45 42.90 46.60 52.13 40.63 40.00 48.55 47.90 64.15 65.01 36.29 29.46 23.25

S16 47.95 45.76 35.69 38.77 36.92 29.83 25.00 41.29 40.61 50.98 49.64 39.33 39.67 21.88

S17 53.20 49.35 45.56 47.86 51.50 44.56 40.00 56.58 58.98 61.61 62.89 50.79 38.83 33.54

S18 55.21 53.72 56.65 57.98 40.92 43.63 42.50 51.43 54.73 62.82 66.47 51.54 39.58 54.33

S19 56.38 53.51 55.90 62.27 39.04 45.38 40.42 47.19 47.52 49.74 59.81 46.67 38.00 42.67

S20 48.65 46.31 62.85 65.11 51.29 42.04 40.00 52.63 56.73 54.95 55.26 50.38 34.79 37.17

S21 51.78 48.14 67.98 70.23 46.92 46.71 42.50 45.97 44.27 37.15 41.85 40.75 35.83 25.58

S22 42.97 43.22 40.44 45.56 37.46 31.71 37.71 47.11 45.65 49.40 52.60 36.13 43.79 30.79

S23 58.43 55.01 58.73 61.73 48.75 48.58 47.50 28.45 31.02 31.15 36.35 24.88 23.25 22.50

S24 49.74 46.81 45.27 45.73 36.54 40.63 35.00 59.45 61.15 58.32 62.72 60.04 46.46 39.67

S25 35.72 36.26 41.56 45.06 31.33 26.04 37.50 40.74 40.65 37.49 39.68 33.33 24.54 25.13

S26 43.16 40.51 45.85 52.90 36.33 36.58 28.21 41.88 39.27 45.07 48.10 27.70 23.54 29.38

S27 58.65 60.14 49.94 52.61 40.58 56.17 54.88 45.86 46.31 42.03 42.81 44.96 34.29 37.13

S28 48.85 46.76 49.35 53.77 38.13 35.79 46.83 40.22 39.52 40.45 45.32 31.71 32.33 24.79

S29 51.25 48.06 51.23 54.52 41.79 45.04 49.00 35.44 35.15 37.28 38.60 27.33 35.21 19.46

S30 56.40 53.76 52.81 54.36 40.46 29.00 34.63 52.21 49.23 41.49 54.64 33.79 32.08 32.33

S31 51.34 48.10 59.02 61.69 43.04 42.46 44.71 41.76 40.02 55.20 51.97 34.67 29.79 36.13

S32 49.67 46.06 63.19 65.90 41.75 34.63 40.00 51.28 49.36 59.49 61.39 45.25 43.38 42.83

Mean 49.52 47.87 50.88 53.42 41.12 39.83 40.26 46.03 45.50 48.64 52.03 39.02 35.21 32.46

SD ±6.34 ±6.57 ±8.18 ±9.64 ±6.39 ±7.94 ±7.87 ±6.84 ±7.17 ±9.85 ±9.74 ±9.59 ±8.56 ±10.90

classi�cation accuracy from the deep learning network with
a stack of autoencoders is better than existing algorithms.
Consequently, the DLN is a promising alternative as EEG-
based emotion classi�er. However, one of the most chal-
lenging limitations for performing EEG-based emotion rec-
ognition algorithm is coping with the problem of intersub-
ject variations in their EEG signals.

�ere are several promising methods to handle the inter-
subject variations. Lotte and Guan [27] proposed an algo-
rithm for learning features from other subjects by perform-
ing regularization of common spatial patterns (CSP) and
linear discriminant analysis (LDA). �e method regularized
the estimated covariance matrix toward the average cova-
riance matrix of other subjects. Samek et al. [28] studied
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Figure 14: DLN versus SVM valence accuracy.
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Figure 15: DLN versus SVM arousal accuracy.

transferring information about nonstationarities in data,
instead of learning the task-relevant part from others. �ese
principal nonstationarities are similar between subjects and
can be transferable. Also they have an adverse e
ect on clas-
si�cation performance, and thus removing them is favorable.
We plan to implement one of these two methods, depending
on the nonstationary characteristics of the dataset, for allevi-
ating the intersubject variations in our next version of EEG-
based emotion recognition system.

One of themajor limitations of theDLN is its tremendous
amount of computational time requirement during unsu-
pervised pretraining and supervised �ne-tuning procedures.
In our experiment setup, the DLN for EEG-based emotion
recognition is constituted of three stacks of hidden layers
and each hidden layer has 100 hidden nodes. At each epoch,

Table 3: Summary of accuracy performance (%).

Valence Arousal

DLN (with PCA+CSA) 53.42 ± 9.64 52.03 ± 9.74
SVM 41.12 ± 6.39 39.02 ± 9.59
NB-230 features 43.97 33.13

NB-weighted log posterior 53.40∗ 51.00∗

∗Subject-dependent results [16].

the algorithm learned 230 input features. To estimate an
individual subject’s classi�cation accuracy, there were in total
31 subjects watching 40 videos, each of 60 seconds (31 ∗40 ∗ 60 = 74,400) epochs. �ey are used to adjust the
weight and bias parameters of the DLN. Table 1 shows other
DLN’s parameter settings. �e approximated time used to
train the DLN is 20–25 minutes on a laptop computer (Core
i5-3320M 2.6GHz, RAM 8GB, SSD 128GB, Windows 7 64-
bit Professional).

To speed up training time of the DLN, we are able to
exploit some parallelism between two so	max classi�ers.
However, we need to duplicate the stack of autoencoder
implementation for valence and arousal states. Both stacks of
autoencoders can be used for separated �ne-tuning process
of valence and arousal simultaneously. During unsupervised
pretraining, two so	max classi�ers can share the outcome
of unsupervised pretraining procedure because they both
use the same set of unlabeled raw data. A	er completing all
sequences ofDLN training procedure, shown in Figure 10, the
DLN can be used to classify emotion states in real time. Even
though the DLN requires tremendous amount of training
time, it is able to perform EEG-based emotion classi�cation
in real time. During classi�cation phase, the DLN simply
feeds the input features through all layers of the network. To
give better response, we are able to decrease the window size
of covariate shi	 adaptation but we may trade o
 with lower
classi�cation accuracy.

6. Conclusion

�e proposed EEG-based emotion recognition is imple-
mented with a deep learning network and then enhanced
with covariate shi	 adaptation of the principal components.
�e deep learning network is constituted of a stack of three
autoencoders and two so	max classi�ers for valence and
arousal state classi�cations. �e purpose of PCA is to reduce
dimension of input features. �e CSA handles the nonsta-
tionary e
ect of EEG signals. �e classi�cation accuracy of
the DLN with PCA+CSA is 53.42% and 52.05% to classify
three levels of valence states and three levels of arousal states.
�e DLN provides better accuracy performance compared to
SVM and naive Bayes classi�er. One of the major limitations
for performing EEG-based emotion recognition algorithm is
dealing with the problem of intersubject variations in their
EEG signals. �e common features of transferable nonsta-
tionary information can be investigated to alleviate the inter-
subject variation problems.
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