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Several solutions have been proposed to study the relationship between ongoing brain

activity and natural sensory stimuli, such as running speech. Computing the intersubject

correlation (ISC) has been proposed as one possible approach. Previous evidence

suggests that ISCs between the participants’ electroencephalogram (EEG) may be

modulated by attention. The current study addressed this question in a competing-

speaker paradigm, where participants (N = 41) had to attend to one of two concurrently

presented speech streams. ISCs between participants’ EEG were higher for participants

attending to the same story compared to participants attending to different stories.

Furthermore, we found that ISCs between individual and group data predicted whether

an individual attended to the left or right speech stream. Interestingly, the magnitude of

the shared neural response with others attending to the same story was related to the

individual neural representation of the attended and ignored speech envelope. Overall,

our findings indicate that ISC differences reflect the magnitude of selective attentional

engagement to speech.

Keywords: intersubject correlation, EEG, attended speaker paradigm, naturalistic stimuli, speech envelope

tracking, selective auditory attention, correlated component analysis

INTRODUCTION

The effects of attention on the neural processing of the human brain are typically studied with
discrete and highly controlled stimuli. While this has certainly contributed to the understanding of
information processing in the brain, recently, paradigms have shifted toward more ecologically
valid designs that mirror real-world scenarios. One naturalistic study design is the attended
speaker paradigm, in which participants are instructed to attend to one of two (or more)
simultaneously presented speech streams (Cherry, 1953). Over the past few years several methods
have been developed to study how the brain deals with the complexity and dynamics of running
speech (Hamilton and Huth, 2020). One such method is the intersubject correlation (ISC) which
calculates the correlation across participants’ brain signals to assess the reliability of the brain
response between participants. ISCs were first established in functional neuroimaging and revealed
important insights into commonalities in sensory processing (Hasson et al., 2004). While discrete
stimuli require repeated presentation to acquire a reliable response (Luck, 2014), ISC has the

Frontiers in Neuroscience | www.frontiersin.org 1 June 2021 | Volume 15 | Article 685774

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.685774
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.685774
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.685774&domain=pdf&date_stamp=2021-06-14
https://www.frontiersin.org/articles/10.3389/fnins.2021.685774/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Rosenkranz et al. Attention Effect on EEG-Based ISC

advantage that a single exposure of the same continuous stimulus
to each participant is sufficient to produce a measurable brain
response across participants.

Shared brain responses as captured by ISC contain lower-
level sensory processes as well as higher-level processes such as
memory retention (Hasson et al., 2004, 2008; Cohen and Parra,
2016). Previously, ISC of electroencephalographic (EEG) signals
have been indicated to be influenced by attention (Dmochowski
et al., 2012; Ki et al., 2016; Cohen et al., 2018). When diverting
attention away from a sensory stream, the resulting ISC will
be smaller across participants (Ki et al., 2016; Cohen et al.,
2018). Accordingly, the allocation of attention to the stimulus
increases ISCs. So far, single stream paradigms have been used
to study attention effects on EEG-derived ISCs. In such a case, as
a control condition, attention is diverted away from the primary
task by secondary task demands. However, this approach may
come with several limitations. Firstly, single streams such as
movies or audiobooks (presented in the absence of background
noise) require only modest attentional resources (Herrmann
and Johnsrude, 2020). Secondly, dual task manipulations may
not only divert attention away from the primary task but
may also impact on sensory processing and memory demands
(Lavie, 2005). This limits the exclusive attribution of single vs.
dual task differences to attention. Besides, a validation of ISC
values as being influenced by attention could be supported by
correlating these effects to well established neural signatures
of selective attention, such as speech envelope tracking (Kerlin
et al., 2010; Ding and Simon, 2012; Horton et al., 2013; Zion
Golumbic E. M. et al., 2013; Kong et al., 2014). The aim
of the present study was to address these issues by using
a competing-speaker paradigm. In this challenging listening
scenario attentional resources are required to comprehend the
target speaker, and sensory stimulation and memory demands
are identical, regardless of whether individuals are instructed to
attend to the left or right speech stream.

In the current study, participants were presented with two
stories simultaneously and attended to one of them while their
EEG was recorded. Importantly, all participants were exposed to
the same stimulus, i.e., both stories. Stimuli were not repeated,
because repetition can reduce ISC values (Dmochowski et al.,
2012; Ki et al., 2016; Cohen et al., 2017). We hypothesized that
ISC values between participants attending to the same story are
higher than ISC values between participants attending to different
stories. We reasoned that ISC values across opposing conditions
reflect the shared neural response to the physical properties of the
stimulus. Thus, the difference between ISC values of participants
within the same condition and across conditions would reflect the
attention effect.

To further explore the individual differences of attentional
focus, ISC was related to speech envelope tracking, which is
a well-established procedure measuring the participants’ neural
response to running speech (Ding and Simon, 2012). One
property of running speech is its temporal fluctuations in
amplitude, known as the speech envelope (Rosen, 1992), which is
reflected in the human auditory cortex when listening to running
speech (Aiken and Picton, 2008; Kubanek et al., 2013). When
multiple speech streams are presented concurrently, selective

attention to one of them seems to act as a top-down sensory gain
control mechanism. This mechanism enhances the responses to
the attended auditory stimulus relative to the ignored stimulus. It
is reflected in a stronger correlation between the EEG activity and
the attended speech envelope compared to the ignored speech
envelope (Ding and Simon, 2012; Horton et al., 2013; Kong et al.,
2014). The strength of the attentional gain on speech envelope
tracking hints at whether a participant comprehended the to-
be-attended speaker (O’Sullivan et al., 2015). Given that ISC as
well as speech envelope tracking are modulated by attention it
was expected that ISCs of participants attending to the same
story are positively related to the attention effects on speech
envelope tracking.

Lastly, ISC was used to predict whether participants attended
to the left or right story. Therefore, the analysis of Ki et al.
(2016) was adapted. In contrast to Ki et al. (2016), no second task
was necessary as attending to one story automatically resulted in
diverting attention from the other story. Furthermore, attending
to multiple streams compared to one stream is more demanding.
Thus, by comparing prediction accuracies between the two
studies, differences in attentional demand could be identified.

MATERIALS AND METHODS

Participants
In this study, datasets of two previously reported experiments
were merged and re-analyzed (Jaeger et al., 2020; Holtze et al.,
2021), resulting in EEG recordings of forty-one German native
participants (N = 20, mean age 22.45 years ± 2.74, 15 female;
N = 21,mean age 24.19 years± 3.93, 14 female). Participants were
free of psychological or neurological conditions and had normal
hearing abilities.

Task
Both studies followed a similar procedure (for further details see
Jaeger et al., 2020; Holtze et al., 2021). They contained multiple
10 min blocks of stimulus presentation. While the first block
was the same for both studies, the studies differed in subsequent
blocks. Therefore, only the first block was considered in the
current study. The stimulus consisted of two simultaneously
presented fairy tale audiobooks narrated in German. The tales
were spoken by two different male speakers and were matched
in sound intensity as described in Mirkovic et al. (2016). The
same stimulus was used in both studies, but the studies differed
in stimulus presentation. One used freefield audio presentation
by positioning speakers to the front left and front right of
the participants (±45◦, Jaeger et al., 2020). The other used
headphones, in particular behind-the-ear hearing aid dummies
(Holtze et al., 2021). In this study, stimuli were preprocessed
using a head-related impulse response to spatially separate
both speakers (±30◦, Kayser et al., 2009). Thus, one speaker
was perceived from the front left while the other speaker was
perceived from the front right. In both studies, participants
were instructed by the experimenter to either attend to the
left speaker (NFreefield = 10; NHeadphones = 12) or the right
speaker (NFreefield = 10; NHeadphones = 9) while ignoring the other

Frontiers in Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 685774

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Rosenkranz et al. Attention Effect on EEG-Based ISC

one throughout the whole experiment. Each participant was
exposed to the same stimulus and experimental conditions only
differed in the attentional allocation to either the story on the
left or right side.

EEG Recording
Participants were seated in a comfortable chair in a dimly lit and
sound-attenuated booth. Two different cap configurations were
used. In the freefield study a 96-channel Ag/AgCl cap (Easy-cap
GmbH, Herschling, Germany) was used, while in the headphone
study a 64-channel Ag/AgCl cap (Easy-cap GmbH, Herschling,
Germany) was used. Cap electrodes around the ear were left
unprepared due to the concurrent acquisition of ear-EEG signals
using cEEGrids (Debener et al., 2015). This affected 12 electrodes
in the freefield and ten in the headphone study. Furthermore, in
the headphone study five electrodes in the neck region were left
unprepared as they were not well attached to the scalp, leaving 84
and 49 prepared scalp electrodes in the freefield and headphone
study, respectively. Both experiments recorded at a sampling
rate of 500 Hz, used one EOG (electrooculography) electrode
below each eye and a nose-tip reference electrode. Impedance was
kept below 20 k� for all scalp electrodes. The EEG caps were
connected to a stationary BrainAmp amplifier (Brainproducts
GmbH, Gilching, Germany).

EEG Preprocessing
The EEG data were analyzed using MATLAB (MATLAB R2020a,
The Math-Works Inc. Natick, MA, United States) and the
EEGLAB toolbox, version 2020.0 (Delorme and Makeig, 2004).
First the data were screened for artifactual channels, which
had a high standard deviation over time. For eight participants
in the freefield study between 1 and 6 channels were rejected
(mean = 3.4, SD = 2.1), mostly laying in the neck region. No
channel in the headphone study was rejected. Afterward, the data
were re-referenced to common average, low-pass filtered at 40 Hz
(FIR filter, filter order: 100, window type: Hann), resampled to
250 Hz and high-pass filtered at 1 Hz (FIR filter, filter order:
500, window type: Hann). For further analysis, only the first
10 min block of stimulus presentation was considered, thus,
for each participant a 10 min epoch after stimulus onset was
created. For that, a constant delay between the EEG recording and
the stimulus presentation was considered, based on the results
obtained in a timing test.

The preprocessed data were cleaned from artifacts using the
open source EEGLAB plugin clean_rawdata version 0.32 which
automatically detects artifactual data using artifact subspace
reconstruction (ASR). ASR is based on a sliding window
principal that detects high-amplitude segments in relation
to artifact-free calibration data. Each artifactual timepoint is
removed and reconstructed based on the calibration data
(Mullen et al., 2015). In the current study, no calibration data
were recorded prior to the experiment. Therefore, to generate
calibration data, the preprocessed data were cleaned using the
ASR plugin functions clean_drifts [Transition: (0.25 0.75)] and
clean_windows (MaxBadChan: 0.075). Except for the parameters
in brackets, the default values were used. The generated
calibration data were then submitted to the function asr_calibrate

to compute the statistical properties of the calibration data
and afterward submitted together with the preprocessed data
to the function asr_process, which reconstructs the artifactual
timepoints based on the calibration data.

Next, to match the channel layout of the freefield and
headphone studies the interpolation function interpmont was
used which is part of the open source Interpmont EEGLAB
extension1. Lastly the preprocessed data were low-pass filtered at
15 Hz (FIR filter, filter order: 100, window type: Hann).

Intersubject Correlation
ISCs were computed in MATLAB by adapting publicly available
code2 that was written for the study conducted by Cohen
and Parra (2016). ISC values were calculated using Correlated
Component Analysis which finds components with maximal
correlations between datasets (Dmochowski et al., 2012). For a
detailed description of this method see Parra et al. (2019). In
short, the within-subject cross-covariance (Rw) and the between-
subject cross-covariance values (Rb) were computed. Then, the
eigenvectors vi, where i = 1,. . .,D defines the dimensions, that
capture the largest correlation of matrix Rw

−1Rb were calculated.
Rw was regularized using a shrinkage parameter (γ = 0.4)
before calculating the eigenvalues due to biased estimation of the
eigenvalues for small Rw (Blankertz et al., 2011).

Synchrony in neural responses between participants within
the same condition and between participants of opposite
conditions were compared by calculating individual ISC values
for each participant (Dmochowski et al., 2012; Cohen and Parra,
2016; Parra et al., 2019). Therefore, the EEG of each participant
was once correlated with the EEG of all participants from the
same attention condition (ISCsame) and once with the EEG of
all participants from the other attention condition (ISCother). For
each participant k, ISC was calculated using the same projection
vector v, which was computed from the data of all participants,
excluding participant k to avoid over-fitting:

Cki =
vTi Rb,kvi

vTi Rw,kvi

where Rb,k represents the between-subject covariance and Rw,k

the within-subject covariance:

Rb,k =
1

N − 1

Nc∑

k = 1

Nc∑

l = 1,l 6=k

(Rkl + Rlk)

Rw,k =
1

N − 1

Nc∑

l = 1,l 6=k

(Rkk + Rll)

Rkl is defined as the cross-covariances of all electrodes in
participant k with all electrodes in participant l and is calculated
as follows:

Rkl =
∑

t

(xk (t) − xk)(xl (t) − xl)
T

1https://github.com/jadesjardins/interpmont
2https://www.parralab.org/isc/
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where x(t) represents the scalp voltage at timepoint t = 1,. . .,S.
Nc defines the number of participants to-be-correlated. When
calculating ISCsame, participant l attended to the same story as
participant k, and Nc is the number of participants that also
attended to the same story as participant k. Conversely, when
calculating ISCother , participant l and participant k attended to
different stories and Nc defines the number of participants that
attended to the opposite story than participant k. In other words,
ISCsame denotes the average correlation of participant k with
people who attended to the same story and ISCother denotes the

average correlation of participant k with people who attended to
the other story. If, for example, participant k attended to the left
story, its averaged correlation value with people of the attend-left
condition corresponds to ISCsame and attend-right condition to
ISCother (see Figure 1). Based on previous studies ISC values were
summed over the three most correlating components to receive
an ISC score (Dmochowski et al., 2012; Cohen and Parra, 2016;
Ki et al., 2016; Cohen et al., 2018; Petroni et al., 2018).

To determine whether ISC values are above chance, a random
ISC distribution was computed by randomly circulating the data

FIGURE 1 | Participants were instructed to attend to one of two simultaneously presented stories while EEG was recorded. Experimental conditions differed in

allocation of attention to the story presented from the front left (yellow) or front right (purple). A 49-channel configuration was used for further analysis. (Intersubject

correlation) Correlations between participants’ EEG signals were maximized using Correlated Component Analysis. The matrix on the right illustrates that correlations

between participants that also attended to the left or right story are categorized as ISCsame whereas correlations across conditions are categorized as ISCother . As

the correlation matrix is symmetrical one half can be neglected. (Speech envelope tracking) Speech envelope tracking was performed by segmenting the signals into

30 s epochs. For each epoch, the EEG signal of every channel was cross-correlated with the attended (red) and ignored (blue) speech envelope. The figure shows

an example when the left stream is attended to, and the right stream ignored.
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of each participant in time. Thereby, the spatial and temporal
structure of the EEG signal is preserved while any correlation
between participants is random (Parra et al., 2019). The shifted
data followed the same procedure as the original data, thus
within- and between-subject covariance matrices were calculated
to receive eigenvectors that capture the largest correlations. The
eigenvectors were subsequently used to calculate the chance level
of ISCsame and ISCother as the sum over the three most correlating
components. For each participant, calculating ISC on circular
time shifted data was done over 100 iterations with different time
shifts to generate a random distribution.

Classification

To replicate the findings of Ki et al. (2016) on the classification
accuracy of ISC, we closely followed their analysis pipeline. The
classification analyses aimed to discriminate between participants
that attended to the left or the right story. Therefore, a
projection vector was calculated for each condition (i.e., attended
to left/right story) separately. Afterward, each participant was
once correlated to all participants from the left side and once
to all participants from the right side using the respective
projection vector. The participant to-be-correlated was left
out of the component extraction step, to avoid over-fitting.
Individual correlations with the left group and the right group
are further referred to as ISCleft and ISCright , respectively. Again,
ISC scores were defined as the sum over ISC values with the
three strongest correlated components. Next, the area under
the receiver operator characteristic curve (AUC) was utilized to
evaluate the prediction accuracy of ISCleft and ISCright to correctly
classify whether a participant attended to the left or the right side,
respectively. Thus, two AUCmodels were created. One predicted
whether or not a participant attended to the left story based on
the ISCleft score and the other one predicted whether or not a
participant attended to the right story based on the ISCright score.

Chance-level AUC values were determined by randomly
assigning the class labels (i.e., left/right) 1,000 times, resulting
in a random AUC distribution. For each iteration, the
procedure started with the extraction of the components for
each group, continued with the calculation of individual ISC
scores with the left and right group and ended with the
calculation of AUC values.

Forward Model

Backward models, such as Correlated Component Analysis,
find common sources of covariation in the observed data and
store them into components (Parra et al., 2019). Thus, high-
dimensional data like EEG recordings are reduced to a set of
components. However, backward models cannot directly identify
physiologically plausible brain activity patterns at the level of the
scalp electrode (Parra et al., 2019). To fill this gap, the backward
model was transformed into a forward model by recovering the
observation from the component projection (Haufe et al., 2014).

Speech Envelope Tracking
Speech Envelope

The speech envelope of each speech stream was extracted using
a procedure described by Petersen et al. (2016). In short, the

absolute of the Hilbert transform of the speech stream was
taken and low-pass filtered at 15 Hz (FIR filter, filter order: 4,
window type: Blackman). The first derivative of the filtered signal
was taken to highlight tone and syllable onsets, and half-wave
rectified. Finally, the signal was downsampled to 250 Hz to match
the sampling frequency of the EEG signal.

Cross-Correlation

Speech envelope tracking was performed by cross-correlating the
EEG signal with the speech envelopes. Therefore, each 10 min
signal was epoched into twenty 30 s segments. Correlation
coefficients were computed for each participant, channel, and
epoch between the EEG signal and the speech envelope of the to-
be-attended and to-be-ignored stream at time lags ranging from
−500 to 500 ms (see Figure 1).

By averaging over epochs and participants, peak components
with similar latencies and topographies as event related potential
(ERP) components were revealed (Picton, 2013). A P2-like
component was expected in the cross-correlation function of
the attended stream between 100 and 200 ms time lag (e.g.,
Kong et al., 2014; Petersen et al., 2016). As the component
was revealed by cross-correlation, it is further referred to as
P2crosscorr (Mirkovic et al., 2019; Jaeger et al., 2020). To account
for individual differences in the spatial representations of the
stimulus, the global field power (GFP) of the cross-correlation
functions was estimated. Therefore, the standard deviation over
all electrodes was calculated for the attended and ignored cross-
correlation functions (see Figure 2). GFP describes the cross-
correlation magnitude of all channels at different time lags and
is, therefore, referred to as GFPcrosscorr . The effect of attention
on the GFPcrosscorr was investigated in the time window around
P2crosscorr which ranged from 130 to 184 ms time lag. This time
window was determined by calculating the full width at half
maximum of the P2crosscorr .

The individual selective attention effect on speech envelope
tracking was calculated as follows. First, for each participant,
the cross-correlation functions were averaged over all 20 epochs.
Second, individual GFPcrosscorr functions for the attended and
ignored stream were calculated. Third, the mean over the
P2crosscorr time window was taken, resulting in one value for
the attended and ignored stream, respectively. Lastly, the value
of the ignored stream was subtracted from the value of the
attended stream.

Statistical Analysis
All statistical analyses were done using RStudio (Version
1.2.5033; RStudio, Inc., Boston, MA, United States; R-Version:
3.6.1). For analyzing differences between ISCs, paired tests at an
alpha level of 0.05 were used (Bonferroni corrected in case of
multiple comparison). For normally distributed data, a paired
t-test was used, and Cohens’ d was reported as an effect size.
For non-normally distributed data, a Wilcoxon signed rank test
was used and effect sizes are reported as correlation coefficients
(r; Tomczak and Tomczak, 2014). Note that in the present work
the same EEG data of an individual were used to calculate
ISC values with the same and other attention condition. Thus,
the initial observation (i.e., EEG recording) of the individual
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A

B

FIGURE 2 | Cross-correlation functions of each channel averaged over

epochs and participants. Topographies below show the channel weights,

indicating channels that contributed most to the correlations at time lags from

−50 to 300 ms in steps of 50 ms. (A) Cross-correlation functions of individual

EEG channels with the attended speech envelope. The red line marks the

global field power of the cross-correlation (GFPcrosscorr ). (B) Cross-correlation

functions of individual EEG channels with the ignored speech envelope. The

blue line marks GFPcrosscorr of the ignored speech envelope.

participant to-be-correlated was not independent for the two
ISC scores. However, the participant pairs that constituted
individual ISCsame and ISCother values were unique, and efforts
were made to increase the sample size by combining two
datasets. We therefore argue that the influence of the individual
observation only had aminor effect and that the use of dependent
measures was reasonable.

Significance of the prediction accuracy was assessed by
testing the original AUC value against the distribution of 1,000
class shuffled AUC estimates. For the random distribution, the
AUC value at the significance level p < 0.001 (one-sided) was
compared to the original accuracy, assuming that the real AUC
value is higher than the 99.9th percentile of the permuted
distribution (Combrisson and Jerbi, 2015). AUC values were
calculated using the pROC package for R (Robin et al., 2011).
To check for a difference in classification accuracies between
the different models (i.e., ISCleft and ISCright) the two AUC
values were tested against the null hypothesis that there is no
difference between the classifications, using an equivalent to a
Mann-Whitney U-test (DeLong et al., 1988).

Regarding speech envelope tracking it was first evaluated
whether the selective attention effect on the cross-correlation
was present. The selective attention effect was defined as
the difference between the attended and ignored GFPcrosscorr
functions in the P2crosscorr time window. The difference was
tested for significance using a paired Wilcoxon signed rank test

(one-sided), because the values were not normally distributed.
To investigate the relationship between ISC scores and the
attention effect on cross-correlation, Spearmans rank correlation
coefficient (rho) was calculated.

RESULTS

Higher ISC Within a Condition Than
Across Conditions
For each participant, two individual ISC scores were computed as
the sum over the three components with the highest correlations.
Individual ISCsame scores (M = 0.034, SD = 0.008) represent
the magnitude in correlated EEG activity with participants
that attended to the same story. ISCother scores (M = 0.021,
SD = 0.004) represents the magnitude in correlated EEG activity
with participants that attended to the other story. A dependent
t-test revealed that ISCsame scores were significantly higher
than ISCother scores [Figure 3A; t(40) = 11.845, p < 0.001],
corresponding to a large effect size (Cohen’s d = 1.97).
Apparently, all 41 participants showed a higher neural synchrony
with people who attended to the same story than with people who
attended to the other story. Furthermore, ISC scores were evenly
distributed for the datasets of both studies, indicating that the
differences in channel configuration and stimulus presentation
between the two studies did not lead to a difference in ISC
score distributions.

To test whether ISC scores are not merely chance-level
correlations, ISC scores were compared against the chance-level
distribution. As depicted in Figure 3A none of the ISCsame scores
and only five individual ISCother scores were within the 95th
percentile range of the random distribution. Therefore, it can
be concluded that all ISCsame and 87.8% of the ISCother scores
represent correlations above chance.

We also explored whether the effect of attention could be
confirmed on individual ISC component values (see Figure 3B).
Components are per definition independent from each other
(Parra et al., 2019) and previous work has emphasized that the
three components which contribute to ISC scores may reflect
distinct neural processes (Dmochowski et al., 2012; Cohen and
Parra, 2016; Ki et al., 2016). We found that correlations of
the same and other condition were significantly different from
each other on the first (V = 858, p < 0.001, r = 0.865),
second [t(40) = 8.077, p < 0.001, Cohen’s d = 1.75], and third
[t(40) = 6.79, p < 0.001, Cohen’s d = 1.34] component, even after
correcting for multiple comparison (α = 0.05/3).

Forward Model
The weights of the forward model represent the relationship
between channels and component activity. They indicate
channels that contributed much to the component, in other
words to the correlation between participants. The spatial
patterns shown in Figure 3C are similar to those reported
in previous EEG-based ISC studies using continuous auditory
stimuli (Cohen and Parra, 2016; Ki et al., 2016). Note that ISCsame

and ISCother values were based on the same projection vector.
Therefore, they correspond to the spatial pattern calculated from
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A B

C

FIGURE 3 | (A) Individual ISC scores between participants within the same attentional condition (red), and other attentional condition (blue). Participants from the

freefield and headphone study are marked with solid gray and dashed black lines, respectively. The horizontal black lines represent 95th percentile of chance-level

ISC scores for the same and other group correlation, respectively. (B) Mean and standard error of the mean (SEM) of intersubject correlations within a condition

(same) and across conditions (other) for each component. 95th percentile of chance-level correlations is marked in gray. *** indicates significance at p < 0.001.

(C) Forward model of the three most correlating components. The rows represent each component starting from the strongest in descending order. The first column

contains data from all participants combined. The second and third column exclusively contain data from participants that attended to the left or right story,

respectively. Channel weights which indicate channels that contribute most to the correlations between participants are indicated by color.

all participants (first column), which appeared to switch order on
the second and third component.

Stronger Tracking of Attended Than
Ignored Speech Envelope
Figure 4A depicts the global field power (GFP) of the cross-
correlation between the EEG activity and the attended as well
as ignored speech envelope. GFPcrosscorr of the attended stream
was significantly larger than the GFPcrosscorr of the ignored stream
in the P2crosscorr time window (V = 746, p < 0.001, r = 0.639).
In other words, a selective attention effect in the P2crosscorr time
window was present.

A Mann-Whitney U-test revealed no difference (W = 147,
p = 0.95), in the selective attention effect on speech envelope

tracking between the two studies that were included in the current
study. Thus, there was no indication of sound presentation type
or channel configuration influencing speech envelope tracking.

ISC and Speech Envelope Tracking Are
Related
The relationship between ISC and speech envelope tracking
was assessed by correlating the difference between the attended
and ignored GFPcrosscorr functions at the P2crosscorr time window
against ISCsame scores. As hypothesized, a significant positive
correlation was found (Figure 4B, rho = 0.401, p = 0.0097).
Thus, participants with greater attention modulation of speech
envelope tracking showed a higher correlation with people who
attended to the same stimulus. Furthermore, there was no
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A

B C

FIGURE 4 | (A) Grand average global field power (GFP) of cross-correlation between the EEG signal and the attended (red) and ignored (blue) speech envelope after

averaging over all epochs and participants. Red and blue shaded areas show the confidence interval of the respective function. *** indicates a difference (p < 0.001)

between the two functions in the time window of P2crosscorr , i.e., from 130 to 184 ms time lag. (Bottom) Correlation between ISC and selective attention effect on

speech envelope tracking. Attentional modulation of the speech envelope tracking is defined as the difference between the attended and ignored GFPcrosscorr in the

P2crosscorr time window. Each datapoint represents one participant. (B) Correlation with participant’s ISCsame score. (C) Correlation with participant’s ISCother score.

relationship between ISCother scores and the attention effect in
the P2crosscorr time window (Figure 4C, rho = 0.12, p = 0.435),
suggesting that the neural synchrony between people attending to
opposite stories is not related to the effect of attention observed
in speech envelope tracking.

High Prediction Accuracy for Attended
Side
For classification, the condition of each participant (i.e., attended
to the left/right story) was used as the ground truth. Each
participant was correlated to other participants that attended
to the left story (ISCleft) or the right story (ISCright). These
correlations were used to predict whether or not a given
participant attended to the left or the right story, respectively.
As depicted in Figure 5A ISCleft (AUC = 0.969) as well as
ISCright (AUC = 0.911) showed very high prediction accuracies
above the significance level at p < 0.001. Thus, correlations
with participants of one condition predicted with high accuracy

whether or not a participant attended to a particular story.
The AUC values showed no significant difference (D = 1.2,
p = 0.234), suggesting that attention to either story did not alter
the prediction accuracy. Figure 5B shows the relation between
a participant’s ISCleft and ISCright scores with respect to the
condition. It appears that people who attended to the left story
tend to show higher correlations to the left group than to the right
group and vice versa.

DISCUSSION

We here evaluated whether selective auditory attention in
the attended speaker paradigm affects the neural reliability
between individuals, as measured by ISC. A strong difference
in ISC scores was found when correlating participants that
attended to the same vs. different story. We also confirmed the
previously reported selective attention effect on speech envelope
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A

B

FIGURE 5 | (A) Prediction accuracies assessed by AUC indicate the

performance of ISC to correctly classify whether or not a participant attended

to the left story (ISCl eft ) or the right story (ISCr ight ). Gray-shaded area indicates

significance level at p < 0.001. (B) Each datapoint represents the relation of a

participant’s ISCl eft and ISCr ight score. The colors indicate the condition of the

participant. The diagonal line illustrates how informative each datapoint was

for the models.

tracking. As hypothesized, this selective attention effect was
positively correlated with ISCsame scores. Lastly, based on ISC
scores, we were able to accurately predict to which story a
participant attended to.

As expected, ISC scores were higher when a participant’s EEG
was correlated with the EEG of those participants that attended
to the same story (ISCsame) compared to those that attended to
the other story (ISCother). This attentional effect complements
previous studies reporting higher ISC for attended compared to
ignored stimuli (Ki et al., 2016; Cohen et al., 2018). However,
the latter mentioned and other studies used a single uni- or
multi-modal stream of information (Dmochowski et al., 2012;
Cohen and Parra, 2016; Cohen et al., 2017; Iotzov et al., 2017). In
contrast, in the current study, participants were exposed to two
concurrently presented speech streams while they had to direct
their attention to one of them, possibly suppressing the other.
The participants’ EEG was correlated within the same condition
as well as across conditions. Thus, attentional processing in
the present work required disentangling two simultaneously

perceived speech streams. The paradigm enabled us to look at
the neural representations of both speech streams, which were
represented in ISCsame and ISCother scores, the difference of which
reflecting selective auditory attention.

With regards to ISC between participants that attended to
different stories (ISCother), most correlations were above chance.
This implies that stimulus exposure alone, i.e., being presented
with two stories simultaneously while focusing one’s attention
on different stories, was sufficient to produce a shared response
between participants. ISCsame, on the other hand, represents
synchronized brain activity in response to both stories with an
additional attentional effect toward one story, which increased
ISC (see Figure 3A). Importantly, the whole period of stimulus
processing, i.e., 10 min, was reduced to two scores (ISCsame

and ISCother). We interpret the difference between ISCsame and
ISCother scores as a participants’ attentional engagement with
the to-be-attended story, over the entire 10 min. Engagement
has previously been linked to ISC and has been described as
a brain state with increased affect and attention (Dmochowski
et al., 2012; Cohen et al., 2017, 2018). The current study follows
a similar view of engagement as the mobilization of limited
cognitive or neural resources that are necessary to comprehend
a stimulus (Herrmann and Johnsrude, 2020). It follows that
people who engage with the same stimulus, will have a more
similar neural representation of the stimulus and, therefore,
a high ISC score (Cohen et al., 2017; Nastase et al., 2019).
A small difference between a participants’ ISCsame and ISCother

score suggests less engagement with the to-be-attended story
compared to participants that had much higher ISCsame than
ISCother scores. However, all participants in the current study
adhered to the instructions and engaged to some degree with the
to-be-attended story, since higher ISCsame than ISCother scores
were found for all participants (see Figure 3A). Overall, the
results are in congruence with previous studies on ISC and
engagement (Dmochowski et al., 2012; Ki et al., 2016; Cohen
et al., 2017) and further show that the neural reliability between
participants hints at the direction of attentional engagement.
However, as already mentioned, the strength of attentional
modulation varied over participants. Behavioral measures could
potentially disentangle whether this variability was due to
individual differences in motivation to engage with the to-be-
attended story or due to the capability to invest attentional
resources (Herrmann and Johnsrude, 2020). As individuals differ
regarding how well they can continuously attend to one story
(Jaeger et al., 2020), measuring ISC over shorter, consecutive time
periods during the experiment could also help to assess how
fluctuations in engagement relate to the comprehension of the
to-be-attended stream.

Looking at the single component level of ISC an attention
effect could be confirmed on all three components (see
Figure 3B). Interestingly, for ISCother only the first component
was clearly above chance. Given that ISCother mostly captures
the physical stimulus properties of both stories, we argue that
the first component represents low-level sensory processing,
which seems to contribute most to ISC scores. The forward
models (see Figure 3C) for the first component were very similar
regardless of whether all participants were considered together
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or separately for each condition (attention to the left or right
story). They appeared to be similar to ISC forwardmodels derived
from multi-sensory conditions (Dmochowski et al., 2014; Cohen
and Parra, 2016). We, therefore, conclude that this component
primarily captures sensory processing. However, Cohen and
Parra (2016) have emphasized that the first component may as
well capture higher-level processes, as the common topography
across stimulus modality may suggest involvement of brain
areas beyond sensory processing. They further argue that the
second component reflects auditory processing, due to a distinct
topography compared to visual stimuli. On the contrary, Ki
et al. (2016) have argued that the second and third component
may also reflect higher-level processing. In the present study,
ISCother values were found to be close to chance for the second
and third component while ISCsame values are clearly above
chance. This indicates that these components captured neural
activity that was not reliably produced across participants of
different conditions. Furthermore, when considering participants
that either attended to the left or the right story, the forward
model shows similar topographies to previous work that included
a single auditory stream (see Figure 3C; Cohen and Parra, 2016;
Ki et al., 2016). However, compared to the participants that
either attended to the left or right story the distribution of
weights for the second and third component is different when
all participants are considered together. Thus, the second and
third component seem to represent processes that are specific
to the attended stimulus. Future studies could investigate these
components more specifically to draw stronger conclusion about
the neural and cognitive processes that contribute to ISC.

Regarding speech envelope tracking, an attention effect, that
is, a difference between the neural representation of the attended
and ignored speech envelopes, was found between time lags
ranging from 100 to 200 ms. This latency range is consistent
with previous studies (Kong et al., 2014; Petersen et al., 2016).
As predicted, a positive relationship was found between the
strength of attentional modulation in speech envelope tracking
and ISC scores between participants within the same condition.
Note that the magnitude of ISC is related to the reliability
of evoked neural activity within a participant (Ki et al., 2016;
Parra et al., 2019). This is reflected in the current results as a
reliable attention effect within a participant (speech envelope
tracking) is related to the reliability of evoked response between
a participant and others (ISC). Previous work has shown that
the neural representation of stimulus features as captured with
speech envelope tracking is related to ISC (Dmochowski et al.,
2018; Kaneshiro et al., 2020). Our findings suggest that this
relationship is partly driven by attention, since no relationship
was found between attentional modulation of speech envelope
tracking and ISCother scores. In other words, the difference in
the neural representation of the attended and ignored speech
envelope was unrelated to the response across participants to the
physical stimulus properties alone.

Speech envelope tracking and ISC are both influenced by
the complexity of a stimulus. For example, audio-visual stimuli,
compared to audio stimuli alone, result in higher ISCs (Cohen
and Parra, 2016; Ki et al., 2016). Furthermore, the integration of
audio-visual stimuli showed improved speech envelope tracking

of the attended speaker compared to auditory stimuli alone (Zion
Golumbic E. et al., 2013). Thus, multisensory stimulation seems
to increase ISC as well as speech envelope tracking which fits
to the positive relationship between the two methods observed
in the current study. Overall, the findings could motivate future
paradigms to take advantage of multisensory stimuli and move
the field even further toward real-life stimulation.

Although the current study mainly focused on the
investigation of ISC, one point should be mentioned regarding
the global field power of the cross-correlation functions. An early
difference (i.e., between 0 and 100 ms time lag) was observed
between the cross-correlation functions of the attended and
ignored speech envelope (see Figure 4A). At time lags close
to and even before 0 ms, non-zero cross-correlation values
were observed, which could be misinterpreted as a stimulus
response before the stimulus actually started. However, this is
likely a consequence of using a cross-correlation, which maps
the speech envelope to the EEG signal at multiple overlapping
timepoints, thereby causing temporal smearing (Crosse et al.,
2016). Furthermore, at time lags earlier than 50 ms the ignored
stream seemed to show a higher cross-correlation than the
attended stream. It has previously been argued that this high
cross-correlation of the to-be-ignored stream at early time
lags is related to a subsequent suppression of that stream
(Kong et al., 2014).

Correlating a participant’s EEG with the EEG of participants
that attended to the left (ISCleft) or right story (ISCright)
strongly indicated to which story the participant attended to
with prediction accuracies of 96 and 91%, respectively. These
high prediction accuracies did not significantly differ from
each other. The numerically higher prediction accuracy for
ISCleft could be the result of subtle differences in sample
size between the left and right condition. The calculated
prediction accuracies exceeded those reported in a previous
study that used a single speech stream (Ki et al., 2016). One
of the reasons for this discrepancy could be related to the
study design. To comprehend the to-be-attended story while
a second interfering story is presented, one needs to utilize
more cognitive resources than for listening to a single speech
stream (Herrmann and Johnsrude, 2020). Thus, the attentional
demand to engage with the to-be-attended story might have
increased the synchrony between participants listening to the
same story. In sum, we argue that the situational demand of
the current study led to a high difference in ISC between people
attending to and ignoring a story. Apparently, ISC not onlymarks
engagement when the stimulus is attractive, but also when the
situation is demanding.

The present study only considered task related top-down
attentional processes and provided evidence that these
processes have a strong influence on ISC. However, the
natural environment is full of situations in which our attentional
focus is captured by bottom-up, stimulus-driven events, such
as salient sounds (Kayser et al., 2005) or a participant’s own
name (Moray, 1959; Holtze et al., 2021). Certain scenes in a
movie, such as a gun pointed at the viewer, elicit moments of
high synchrony between participants (Dmochowski et al., 2012).
Hence, salient events embedded in running speech streamsmight
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likewise synchronize participants’ neural responses. The degree
to which these changes in attention also influence the reliability
of evoked responses between participants remains yet unclear.
Future studies considering the interplay of bottom-up and top-
down attention could deepen our understanding of how humans
process naturalistic stimuli.

As neuroscience moves toward ecologically valid paradigms, it
becomes increasingly important to better understand the neural
processing of complex stimuli. This study clearly demonstrated
the potential of the ISC approach in capturing attentional
engagement toward running speech in a scenario with multiple
speakers. ISCs relate to individual neural representations of
attended and ignored speech signals and help to dissociate
between them. We conclude that shared responses between
participants are informative about individual differences in
attentional engagement and can help to understand the
processing of complex stimuli in natural listening situations.
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