
EEG-based Motion Intention Recognition via Multi-task RNNs

Weitong Chen∗ Sen Wang† Xiang Zhang‡ Lina Yao ‡

Lin Yue § Buyue Qian ¶ Xue Li ∗‖

Abstract

Recognition of human intention based on Electroen-
cephalography (EEG) signals attracts strong research
interest in pattern recognition because of its promising
applications that enable non-muscular communications
and controls. Over the past few years, most EEG-based
recognition works make significant efforts to learn ex-
tracted features to explore specific patterns between a
segment of EEG signals and the corresponding activi-
ties. Unfortunately, vectorization-based feature repre-
sentations, either vector-like or matrix-like ones, suffer
from massive signal noise and difficulties of exploiting
signal correlations between adjacent sensors of EEG sig-
nals. Most importantly, EEG signals are represented
by one unique frequency and then fed into the subse-
quent learning model. Neglecting different frequencies
of EEG signals can be detrimental to activity recogni-
tion because a particular frequency of EEG signals is
more helpful to recognize some activities. Inspired by
this idea, we propose to extract EEG signals with differ-
ent frequencies and introduce a novel Multi-task deep
learning model to learn the human intentions. We have
conducted extensive experiments on a publicly avail-
able EEG benchmark dataset and compared our method
with many state-of-the-art algorithms. The experimen-
tal results demonstrate that the proposed Multi-task
deep recurrent neural network outperforms all the com-
pared methods in a multi-class scenario.

1 Introduction

The human brain is apparently a complex system that
always drives researchers in different areas to explore its
mystery. Fortunately, Brain-Computer Interfaces (BCI)
can translate neuronal activities into signals, which thus
permits completely new research possibilities of discov-
ering the correlation between the brain activities and
behaviors. Electroencephalography (EEG) signal anal-
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ysis, which is a non-invasive technique to acquire the
brain dynamics through BCI, can reflect brain activities
when a subject is performing specific tasks. Therefore,
EEG-based intention recognition has been widely stud-
ied in recent years and become one of the important
research topics in the community of pattern recogni-
tion [12, 20, 18, 14]. Many promising applications that
recognize human intentions via EEG signals, such as
EEG signal controlled wheelchairs [6], brain typing [31],
and brain wavelet-controlled exoskeleton [7], restore the
ability to those individuals who are currently suffering
from high degrees of motor disability or locked-in syn-
drome.

1.1 Motivation Most works on EEG-based inten-
tion recognition represent features of EEG signals at
only one frequency before feeding the features into the
subsequent learning model [18, 23, 30]. Learning EEG
signals at only one frequency may be detrimental to the
performance of intention recognition. In fact, the infor-
mation within an EEG signal segment can be further di-
vided into different frequency ranges, each of which has
different relevance levels to specific brain activities. A
certain frequency range was specifically associated with
particular neuron activities. Specifically, most of the
neuronal activities can be reflected by EEG data in the
range of 0.5Hz to 28Hz, which primarily falls into six
frequency bands: Alpha, Beta1, Beta2, Beta3, Theta,
and Delta. These segmented EEG rhythms have unique
biological significances. For instance, Alpha wavelets
fluctuate with closing eyes and relaxation in mind, while
the Beta waveforms are closely linked to motor behav-
iors and are attenuated during active movements [10].
Through signal decomposition, the transient features
can be accurately captured and localized in a frequency
context, which contributes to better intention recogni-
tion performance[33, 32, 28]. In [16], only Alpha rhythm
has been used to recognize intentions achieving around
60% of accuracy. By considering the spatial correlations
between the segregated rhythms, Korik et al. [13] and
Kim et al. [12] precisely recognize different hand move-
ments. However, little temporal information, such as
correlations between different rhythms over time, has
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been taken into account, which may be beneficial to
recognition performance.

1.2 Challenges Although EEG-based intention
recognition has advanced so rapidly with promising
achievements, there still exists some major challenges
because of the technological limitations: (1) The
quality of signals directly determines the distinctive
power of the extracted features. Unlike other invasive
techniques that have direct contacts with neurons,
EEG-based BCI system acquires signals via sensors
placed over the skull leading to strength variations
and a mass of noises in signals; (2) Learning signals
to recognize a particular intention can achieve high
performance, because all ambiguous information will
much less affect the supervised learning model that
only targets at a binary classification. Unfortunately,
the relevance between EEG wavelets and multiple
different intentions is difficult to model, which results
in low performance of multi-intention recognition. (3)
It has witnessed that the same intention can yield
different shapes of EEG signals leading to the large
intra-class variation problem. This may blame to
mental status as it can greatly influence the shape of
EEG signals [25], even for the same intention. Such
large intra-class variation may further worsen the
performance of EEG-based multi-intention recognition.

1.3 Solution Given these challenges, we proposed a
novel framework in which a multi-task recurrent neural
network learns segregated EEG signals. Because noise
may only be dominant at a particular frequency, we
firstly decompose EEG signals into different frequency
channels to reduce noise from the other frequencies
ranges. In this way, a more robust feature learning can
be achieved comparing to non-segregated signal repre-
sentation methods. For each frequency channel, signals
with ground-truth information, i.e. intention labels, will
be learned by a Recurrent Neural Networks (RNNs) to
obtain sophisticated representations at that frequency.
Specifically, a special kind of RNNs, Long Short Term
Memory (LSTM) networks, is applied to forge temporal
features from signals with different frequencies. To over-
come the large intra-class variation problem, a shared
layer has been used to exploit temporal correlations be-
tween features of signals with different frequencies. The
proposed model is not only capable of identifying a spe-
cific intention, but also accurately recognize multiple
motion intentions.

1.4 Contribution We summarize contributions of
our method as follows::

• We advance the correlation between different EEG

frequencies and biological significance by learn-
ing segregated signals for human motion intention
recognition;

• In this paper, we proposed a novel framework
that applies Multi-task Recurrent Neural Networks
to learn distinctive features from EEG signals.
More importantly, the proposed method learns not
only each frequency channel but also exploits the
temporal correlation between different channels. In
this way, improvements of both binary and multiple
intention recognition are achieved.

• To evaluate our method, we have conducted ex-
tensive experiments on a publicly available EEG
benchmark dataset and compared our method with
many state-of-the-art algorithms. The experimen-
tal results demonstrate our approach outperforms
all the compared methods and hit a new record with
97.8% of accuracy. Also, we have validated the
robustness of our methods on another real-world
dataset.

The remainder of the paper is organized as follows.
Related work is discussed in Section 2. Section 3
presents the details of the proposed framework. The
experimental results are reported in Section 4. Finally,
we conclude this paper in Section 5.

2 Related Work

Over a decade, analyzing EEG signals has attracted ex-
tensive research interest in pattern recognition because
there is an additional approach to conduct non-muscular
communication and control. Recent research works have
demonstrated that EEG-based intention recognition ap-
plications are being able to restore patients’ social inter-
actions and movement capabilities [12, 27]. Since EEG
is a non-invasive manner to acquire the neuronal activi-
ties, it is widely used for capturing the human intended
activities [8, 18, 14, 30]. In general, great efforts have
been made to improve either feature representation or
learning models[29, 4, 3].

Due to the complexity and high dimensionality of
EEG signals, the accuracy of the intention recognition
models is highly dependent on the rusticity of the fea-
ture representation. Vizard et al. [26] achieved 71.59%
of accuracy on a binary alertness states prediction by
employing the common spatial pattern (CSP) on the
feature extraction. Inspired by [26], Meisheri et al. [15]
and Shiratori et al. [21] exploited multi-class CSP sce-
narios for the EEG feature extraction and only achieved
54.63% and 56.7% of accuraciess, respectively. By uti-
lizing features extracted from the Mu and Beta rhythms
separately, Kim et al. [12] produced a high accuracy of

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited280

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



t t+1 t+n. . .
Electrodes

Brain

EEG  Acquistion

.

.

.

EEG  Records Over Time

. . .

EEG Signal Decomposition

Alpha

Beta

Delta

Theta

. . .Task1 

LSTM

Task2 

LSTM

Shared 

LSTM

Task1 

LSTM

Task2 

LSTM

Shared 

LSTM

Task1 

LSTM

Task2 

LSTM

Shared 

LSTM
. . .

. . .

Task1 

LSTM

Task2 

LSTM

Shared 

LSTM
Softmax

Feature extraction and Multi-task LSTMs Training

Intention Prediction

Figure 1: The Workflow of the Proposed Approach. EEG Signal will firstly be acquired and recorded
by the BCI headset; it will then be decomposed to multi-resolution rhythms accordingly. Time series features
embedded in the EEG signals will be decoded by the proposed Multi-task Model, and be used for recognizing
intent of humans.

80.5% by adopting a random forest classifier.
The EEG signals from the brain continuously vary

by adopting themselves. It is because the neurons react
differently to the same brain activities [25]. It is requires
the classifier able to capture the underlying consistency
among EEG signals. Kang et al. [11] reached 70%
of classification accuracy by using a Bayesian CSP
model, along with an Indian Buffet process to capture a
shared latent subspace across subjects. Inspired by the
success of deep neural networks in different domains.
Bashivan et al. [2] and Zhang et al. [30] took the
advantage of Deep Neural Networks (RNNs) and related
variations to capture the nature of time-series features
over time, and achieved significantly high performance
in intention recognition 85.05% and 95.5% of accuracy
correspondingly.

3 Methods and Technical Solutions

Figure 1 illustrates the conceptual framework of the
proposed approach. The goal of our approach is to
precisely recognize human motion intentions based on
raw EEG signals.

3.1 Data Acquisition The neuronal activities in
brain are translated into EEG signals by using a BCI
system with wearable headsets. When an imagery
action is performed by a subject in mind, fluctuations of
the voltage from the scalp will be continuously captured
by multiple electrode sensors attached on the wearable

Table 1: Correlation between the Spectrum of EEG
bandwidths and Brain Functions.

Bandwidth Rhythm Function

0.5-3.5 Hz Delta Continuous-attention tasks
3.5-8 Hz Theta Inhibition of elicited responses
8-12.5 Hz Alpha Relaxed and closing the eyes
12.5-16 Hz Beta 1 Mental and physical stress
16.5-20 Hz Beta 2 Sustained attentional processing
20.5-28 Hz Beta 3 Mental alertness power

headset (as illustrated in Figure 1 ). Therefore, an EEG
reading r at time step t can be represented with a single
n-dimension vector r t =

[

r1t , r
2
t , ..., r

n
t

]

, where the rit is
the reading of ith electrode sensor at time step t . The
EEG record of a single subject in an experiment run
is Ri

t, where i ∈ ℜ is the sequence electrode sensor
attached on the wearable headset, and t ∈ T is the
duration of an experiment run T .

3.2 EEG Signal Decomposition The EEG record
contains multiple time series corresponding to mea-
surements across different frequency bands. The most
salient features are correlated with different human be-
haviors resided in different frequencies. The spectro-
gram of signals can be used for studying the rich-
ness of signals, and the Fast Fourier Transform (FFT)
can be applied to observe the power of the EEG sig-
nals. Inspired by the EEG signals used in clinical prac-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited281

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Figure 2: EEG signal decomposition. The h [n] is
high-band filter, and the l [n] is the low-band filter.

tice, each frequency range has uniquely biological sig-
nificance and signals are well correlated with specific
brain functions [6, 24], as shown in Table 1. There-
fore, an EEG signal can be quantized according to its
pathological characteristics in the frequency range from
0.5Hz to 28Hz [24]. The raw EEG signal r can be seg-
mented into different categories of bandwidth c, where
c = {δ, θ, α, β1, β2, β3}. The decomposed EEG reading
R of ith electrode sensor at time step t can be rep-
resented as a linear combination of a particular set of

wavelets R
i
t =

[

r
α,i
t , r

β,i
t , r

β2,i
t , r

β3,i
t , r

θ,i
t , r

δ,i
t

]

. In this

study, we focus on six frequency bands in the range
from 0.5Hz to 28Hz.

A specified frequency range of EEG signals can be
obtained by applying the band-pass filters. A band-
pass filter that only passes required range frequency
of a signal and rejects frequencies outside the range.
In general, a band-pass filter consists of a high-pass
filter and a low-pass filter. The high-pass filter, h [n],
passes signals with a frequency higher than a certain
cut-off frequency n. The low-pass filter, l [n], only
attenuates signals with higher frequency than the cut-
off frequency m. The procedure of a signal st multi-
resolution is schematically illustrated in Figure 2, where
{m,n} = {x ∈ Q | 0 < x < 28}. The down-sampled
outputs of the first filter provide the rθt and the input of

the next decomposition. By comparing filtered r
β3,i
t and

the original signal rit at same time in the same channel,
where i = 3 and t = 1.8 million seconds, the first two
graphs in Figure 2 show that the features embedded in
the EEG signal become distinguished over time after
band-pass filtering.

On the other hand, by converting the signal rβ3,it

from its time domain to a representation in the fre-
quency range, as illustrated in the third and fourth sub-
graphs in Figure 3, the connection between different fre-
quency wavelets is lost. However, there are correlations
between the EEG wavelets, and the corresponding in-
tentions are ambiguous [25]. Therefore, we employ a
shared layer in our model to capture the correlation
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Figure 3: Decomposed EEG signal samples.

between different decomposed wavelets, which will be
detailed in the next session.

3.3 Multi-Task Learning The recurrent neural
networks (RNNs) [5] has sufficient ability to process
arbitrary sequential inputs by recursively applying a
transaction function to its hidden vector ht. The ac-
tivation function f of the current hidden state ht at t

time step can be computed as followings:

(3.1) ht =

{

0 t = 0
∫

(ht−1, xt) otherwise

where xt is the current state input, and ht−1 is the
previous hidden state. However, RNNs with transition
function of this form has difficulties to learn long-
range dependencies. The components of the gradient
vector can vanish or explode exponentially over a long
sequence. LSTM (Long Short-Term Memory) network
[9] was proposed to address the vanishing gradient
problem by incorporating gating functions. At each
time step, an LSTM maintains a hidden vector h and
a memory vector m for controlling state updates and
outputs [8]. The LSTM unit at each time step t is
defined as a collection of vectors in Rd. Each unit
includes i, f , o, c and h, which are the input gate,
forget gate, output gate, memory cell, and hidden state
respectively. The forget gate controls the amount of
memory in each unit to be ”forgotten”, the input gate
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rules the update of each unit, and the output gate checks
the exposure of each internal memory state. The LSTM
transition equations are defined as follows:

. . .

. . .

. . .

. . .

Unfolded

. . .

Softmax

Figure 4: Multi-task LSTM Architecture. Un-
folded structure illustrated the iteration between a
shared-task S and one of the task m.

it = σ(Wrirt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wrfrt +Whfht−1 +Wcfct−1 + bf )

ot = σ(Wrort +Whoht−1 +Wcoct−1 + bo)

ct = ftct−1 + it tanh(Wrcrt +Whcht−1 + bc)

ht = ot tanh(ct),

(3.2)

where xt is the input at the time step t, W

are weights, bs are bias terms, and σ denotes the
logistic sigmoid function. Therefore, we employed multi
LSTM tasks to extract distinguished sequential features
and embedded them in different frequency domains.
As shown in Figure 4, LSTM (m) and LSTM (n) are

different tasks, and they are assigned to capture the
transitory features and embed decomposed EEG signals
overtime, where m,n = {x ∈ Z | 1 6 x 6 6}. In order
to capture the correlation between decomposed signals,
we introduced a share hidden layer LSTM (s), as shown
in Figure 4. The hidden layer of LSTM cells are fully
connected to the task-specific LSTM cell LSTM (m),
and the activation function f of the current hidden

state for the shared LSTM h
(s)
t remains the same as an

ordinary LSTM. The activation function for the task-

specific LSTM h
(m)
t at time step t will be updated as

below:

(3.3) ht =

{

0 t = 0
∫

(

h
(m)
t−1 ⊙ h

(s)
t−1, r

c,i)
t

)

otherwise

A new gating mechanism is proposed in the task

neuron h
(m)
t−1 in order to process the output h

(s)
t−1 passed

by the neuron in the shared layer h
(s)
t−1. The new state

c
(m)
t for the task-specific LSTM (m) at time step t can
be computed as follows:

c
(m)
t = ftc

(m)
t−1 + i

(m)
t tanh(Wrcr

c,i
t

+Whch
(m)
t−1 ⊙ h

(s)
t−1 + b(m)

c ),
(3.4)

where r
c,i
t is the input at the time step t, h

(m)
t−1 is the

output from h
(m)
t−1 at t − 1, h

(s)
t−1 is the output from the

shared task h
(s)
t−1 at t − 1 time step, and ⊙ denotes as

the concatenate operation.

4 Experiment

To evaluate the performance of the proposed model, we
performed three types of experiments. First, we bench-
marked our model on a publicly available dataset eegm-
midb1 in terms of accuracy. Then we conducted exten-
sive experiments to examine and analyze the influence
of the multi-resolution wavelets. Lastly, we investigated
the robustness of the model on a real-world case. The
source code and sample data were made publicly avail-
able on github2.

4.1 Dataset A publicly and freely available bench-
mark EEG dataset, also known as eegmmidb, from
PhysioNet[19], was used as a benchmark dataset in this
study. EEG signals were acquired using a BCI 2000 sys-
tem3 at a 160Hz sample rate and referenced to a wear-
able headset with 64 electrodes sensors. The dataset
contains more than 1,500 one-to-two-minute experiment

1https://physionet.org/pn4/eegmmidb/
2https://github.com/AnthonyTsun/Multitask_RNN/
3http://www.schalklab.org/research/bci2000
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runs of 109 subjects. Each of subject performed 14 ex-
periment runs in five different imagery tasks: open and
close left or right fist, open and close both fists, open or
close both feet, open and close left fist, and open and
close right fist. The eye closed records are considering
a baseline.

For the subsequent evaluations, we sampled ten
subjects from the dataset. Each subject included 28, 000

EEG signal readings. It is denoted as Rc
t =

{

r
c,i
t

}64

i=1
,

where i is the number of electrodes sensors. In addition,
Alpha and Beta2 rhythms were extracted from the raw
EEG records because of their high correlation to the
experimental tasks. Rα

t , R
β2
t , and Rc

t were fed into
LSTM (m), LSTM (n) and LSTM (s) tasks respectively.
During the training phase, the model uses 70% of the
samples for training, and 30% for the validation and
testing.

Table 2: Class annotation in two different datasets.

Dataset Class 1 Class 2 Class 3 Class 4 Class 5
eegmmidb eye closed left hand right hand both hands both feet
emotiv confirm up down left right

4.2 Evaluation In this session, we showed the over-
all performance of our model and evaluated the effect
of the multi-resolution signals. We named our Method
MTLEEG.

4.2.1 Compared models To evaluate the proposed
method, we have compared it with many of state-of-
the-art methods, as well as the baseline methods on
the dataset eegmmidb. A brief introduction of compare
model is listed below:

1. Almoari et al. [1] employed the Support Vector
Machine, along with features extracted from multi-
resolution EEG signals for the binary classification.

2. Shenoy et al. [20] used regularized signal filtering to
capture EEG features and adopted Fishers Linear
Discriminant (FDA) for the binary classifications.

3. Rashid et al. [17] used an Neural Network (NN)
algorithm to classify the decomposed EEG signals.

4. Kim et al. [12] extracted features from Alpha and
beta rhythms, and then predicted EEG signals by
using a random forest classifier.

5. Sita et al. [22] achieved decent classification per-
formance by adopting an LDA classier, along with
selected EEG signals.

6. Zhang et al. [30] had the best recognition result by
employing the Recurrent Neural Networks (RNNs)
with raw EEG signals.

Table 3: Comparison between the proposed methods
and all the compared methods.

Index Method Class Accuracy
1 Almoari[1] Binary 0.749
2 Shenoy[20] Binary 0.8206
3 Rashid[17] Binary 0.92
4 Kim [12] Multi (3) 0.805
5 Sita[22] Multi (3) 0.8724
6 Zhang[30] Multi (5) 0.9553
7 RNN Multi (5) 0.9327
8 CNN Multi (5) 0.8410
9 RNN-rα Multi (5) 0.8834
10 RNN-rβ Multi (5) 0.9084
11 RNN-r Multi (5) 0.9374
12 RNN-rα,β,, r Multi (5) 0.9380
13 MTLEEG Multi (5) 0.9786

For the baseline models, we kept the same struc-
tures and settings and fed baselines with different kinds
of features extracted from the same dataset to evaluate
the influence of the multi-resolution signals.

4.2.2 Experiment result It is clear that the pro-
posed model outperforms state-of-the-art methods and
the baseline methods. The best accuracy was reported
in Table 3, with an improvement of 2.33% over the sec-
ond best method [30]. Although method #1-3 focused
on relative scenarios, our model surpasses their method
significantly. Furthermore, the single RNN with rα,β,, r

multi-resolution signal achieved a relatively competitive
result. This implies that the importance of signal seg-
regation.

The Receiver Operating Characteristic (ROC)
curve can demonstrate the discrimination capability of
a classifier by plotting the True Positive Rate against
the False Positive Rate in a range of threshold values.
The area under the ROC curve (AUC) measures the ac-
curacy. However, it is typically used for evaluating the
binary classification problem. To evaluate multi-class
classification performance, we binarized the output by
considering each task separately (one task vs. the oth-
ers). Figure 5a along with the Table 4 shows that ROC
curves in all categories are above 0.999, where shows
very high performance of our classifier. Figure 5b il-
lustrates the accuracy improves with the increases in
training iterations during the feature learning phase. It
is clear that the proposed method can achieve stable
performance (≥ 90%) in 1,000 iterations.

Data size is can affect the performance of deep neu-
ral networks. Therefore, we tested our model with dif-
ferent data proportion and evaluated the corresponding
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Figure 5: Performance evaluation of the proposed method. (a) Zoomed ROC curves for 5-class
classification, (b) The effectiveness of normalization method, (c) The relationship between accuracy and training
data proportion.

accuracy (left y-axis) and running time (right y-axis)
in Figure 5c. As illustrated in Figure 5c, it is observed
that the performance positively correlates to the data
size. 70% of the original data can contribute an 90.76%
of accuracy, which shows that our approach is weakly

dependent on the size of data. For computational com-
plexity, training time varies linearly with respect to the
training data size.

Table 4: Evaluation on the influence of decomposed EEG signals.

Method Class1 Class2 Class3 Class4 Class5 Average
Percision RNN-rα 0.9824 0.8295 0.8756 0.7681 0.8869 0.8872

RNN-rβ2 0.9059 0.9364 0.9219 0.8882 0.8953 0.9092
RNN-r 0.9517 0.9280 0.9463 0.9214 0.9517 0.9376
RNN-rα,β2,r 0.9660 0.9315 0.8942 0.9304 0.9392 0.9383
7 layer RNN 0.9618 0.9618 0.9574 0.9732 0.9396 0.9545
MTLEEG 0.9824 0.9721 0.9687 0.9796 0.9735 0.9763

Recall RNN-rα 0.9549 0.8779 0.8176 0.8754 0.8275 0.8834
RNN-rβ2 0.9701 0.8348 0.8735 0.9182 0.8887 0.9084
RNN-r 0.9532 0.9301 0.9239 0.9378 0.9304 0.9380
RNN-rα,β2,r 0.9512 0.9273 0.8949 0.9532 0.9457 0.9374
7 layer RNN 0.9380 0.9084 0.9257 0.9028 0.9392 0.9228
MTLEEG 0.9919 0.9573 0.9687 0.9805 0.9869 0.9770

F1-Score RNN-rα 0.9685 0.8530 0.8456 0.8183 0.8562 0.8842
RNN-rβ2 0.9369 0.8827 0.8971 0.9029 0.8920 0.9078
RNN-rα,β2,r 0.9446 0.9276 0.9199 0.9370 0.9487 0.9373
RNN-r 0.9596 0.9308 0.9088 0.9341 0.9348 0.9381
7 layer RNN 0.9497 0.9241 0.9413 0.9413 0.9394 0.9382
MTLEEG 0.9822 0.9643 0.9687 0.9800 0.9801 0.9751

AUC RNN-rα 0.9685 0.8530 0.8456 0.8183 0.8562 0.8680
RNN-rβ2 0.9925 0.9874 0.9915 0.9918 0.9916 0.9904
RNN-r 0.9596 0.9308 0.9088 0.9341 0.9347 0.9336
RNN-rα,β2,r 0.9935 0.99466 0.9932 0.9964 0.9973 0.9950
7 layer RNN 0.9982 0.9977 0.9990 0.9990 0.9987 0.9985
MTLEEG 0.9989 0.9987 0.9990 0.9996 0.9996 0.9991
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Table 5: Accuracy comparison on Emotive Dataset

Index Method Class Accuracy
1 RNN-r Multi(5) 0.6751
2 7 layer RNN Multi(5) 0.7980
3 RNN-rα,β2,r Multi(5) 0.8103
4 MTLEEG Multi(5) 0.8847

4.2.3 Effects of the Multi-resolution Signals
To evaluate the influence of the multi-resolution EEG
signals, we transformed our model to a single task
RNN by evaluating it with the same data but in
different resolutions. We compared our model with
four baselines: RNN-rα and RNN-rβ2 models only
learn α and β2, respectively; RNN-r learns raw non-
segregated EEG signals; RNN-rα,β2,r separately learns
each rhythm (α, β2, and r) and concatenates all three
features into a longer feature vector. Also, the second
best counterpart in Table 3, which proposed to use a 7-
layer RNN model [30], was adopted in the comparison.
The evaluation was measured by Precision, Recall,
F1 score, and AUC (area under ROC Curve). The
detailed results in Table 4 illustrate that our model that
considers the correlation between rhythms over time
consistently outperforms all the baselines in the table.
Such results have proved that the shared layer in the
proposed methods contributes to further performance
improvement.

4.3 Use Case To test the robustness of our proposed
model, we tested our model on a real-world application.
The application was developed by Zhang et al. [31]
for a scenario of Brain Typing4. The experiment
dataset was collected at a sampling rate of 128Hz
from 7 participants for five different different executive
commands, up, down, left, right, and confirm (eye
closed). The alpha rhythm and the beta2 rhythm
were extracted from the signals as because of high
relevance to the typing gestures. 70% data samples were
used in the training phase, while the remaining records
were used for testing and validation. The parameters
followed the previous settings. For the use case, we
compared our model with the second-best method (7
layer RNN) [30], RNN-r, and RNN-rα,β2,r. The results
were reported in Table 5.

It is observed that our model was surpassing all
the comparing methods and achieved 88% of accu-
racy. Table 6 illustrate the accuracy of our model
in each class. Decreased performance (from 97.8%
to 88.4%) is blamed to much fewer signal sensors
(14 sensors in EMOTIVE EPOC+ V.S. 64 sensors

4http://www.cse.unsw.edu.au/ z5119405/nav/Demo.html

Table 6: Confusion Matrix.

Class 1 2 3 4 5
1 0.9586 0.0165 0.0018 0.0174 0.0058
2 0.0207 0.8833 0.0284 0.0399 0.0276
3 0.0048 0.0637 0.8470 0.0751 0.0570
4 0.0219 0.0627 0.0285 0.8489 0.0580
5 0.0062 0.0477 0.0354 0.0585 0.8522

Table 7: Model Evaluation.

Class Precision Recall F1-Score AUC
1 0.9763 0.9585 0.9673 0.9673
2 0.8383 0.8833 0.8602 0.8602
3 0.8839 0.8330 0.8445 0.8445
4 0.7840 0.8488 0.8151 0.8151
5 0.8668 0.8521 0.8594 0.8594
Avg 0.8869 0.8521 0.8852 0.8693

in BCI2000) were used to collect data. However, our
model still robustly yielded satisfied performance in
recognizing gesture commands, as illustrated in Table 7.

5 Conclusions

In this paper, we propose to extract EEG signals with
different frequencies and introduce a novel Multi-task
deep learning model to learn the human intentions.
We advance the correlations between EEG frequencies
and biological significances by learning different rhymes
jointly, and maintain the correlations between different
learning tasks via a shared layer embedded in the multi-
task deep learning model. Experiments have shown that
our method has achieved recorded high performance in
human intention recognition.

6 Future Work

In our future work, for each frequency channel, we
intend to incorporate a Convolutional Neural Network
to encode the spatial information from the placement
of the electrode sensors to improve the performance.
Also, we plan to investigate most sophisticated sharing
mechanisms in the RNNs based multi-task architecture
to enhance the arbitrary signal into a robust spatio-
temporal representation .
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