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ABSTRACT This paper proposes two novel methods to classify semantic vigilance levels by utilizing

EEG directed connectivity patterns with their corresponding graphical network measures. We estimate the

directed connectivity using relative wavelet transform entropy (RWTE) and partial directed coherence (PDC)

and the graphical network measures by graph theory analysis (GTA) at four frequency bands. The RWTE

and PDC quantify the strength and directionality of information flow between EEG nodes. On the other

hand, the GTA of the complex network measures summarizes the topological structure of the network.

We then evaluate the proposed methods using machine learning classifiers. We carried out an experiment

on nine subjects performing semantic vigilance task (Stroop color word test (SCWT)) for approximately

45 minutes. Behaviorally, all subjects demonstrated vigilance decrement as reflected by the significant

increase in response time and reduced accuracy. The strength and directionality of information flow in

the connectivity network by RWTE/PDC and the GTA measures significantly decrease with vigilance

decrement, p<0.05. The classification results show that the proposed methods outperform other related and

competitive methods available in the literature and achieve 100% accuracy in subject-dependent and above

89% in subject-independent level in each of the four frequency bands. The overall results indicate that the

proposed methods of directed connectivity patterns and GTA provide a complementary aspect of functional

connectivity. Our study suggests directed functional connectivity with GTA as informative features and

highlight Support Vector Machine as the suitable classifier for classifying semantic vigilance levels.

INDEX TERMS Vigilance decrement, electroencephalogram, relative wavelet transform entropy, partial

directed coherence, graph theory analysis, machine learning.

I. INTRODUCTION

Vigilance refers to the mental capacity to sustain attention

over an extended time. Previous research has demonstrated

that cognitive performance typically declines with time on

task (TOT), which is a phenomenon commonly denoted as

the vigilance decrement [1], [2]. Different vigilance tasks can

significantly affect the degree of vigilance decrement. In par-

ticular, complex vigilance tasks are mentally demanding and

stressful [3]. In this context, mental effort and frustration
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are the major contributors to the high levels of perceived

cognitive workload in vigilance tasks. The cognitive resource

theory of vigilance decrement has stated that during the

performance of high workload, cognitive resources become

depleted, leading to decrement in perceptual sensitivity [4].

The underload theory predicts a faster decrement in less chal-

lenging tasks. This decrement has been alternatively ascribed

to either withdrawal of the supervisory attentional system,

due to under arousal caused by the insufficient workload,

or to a decreased attentional capacity and thus the impos-

sibility to sustain mental attention [5]. In particular, vigi-

lance decrement is a severe matter of a broad array of work
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environments, including surveillance, airport security, indus-

trial control, driving and medical monitoring [2], [6]. In all

these domains, individuals are required to keep the mental

states with high vigilance level. Hence, an effective method

of detecting vigilance levels is of paramount importance to

prevent vigilance-related risks and productivity losses.

Several physiological indicators, such as electrocardio-

gram (ECG), electrooculogram (EOG) [7], electromyogram

(EMG) [8], eye-closure [9], [10] and electroencephalogram

(EEG) [11]–[13] have been used for vigilance level detec-

tion. However, identifying reliable and valid biomarkers

remains a challenge within the research community. EEG

has been regarded as one of the most reliable and effec-

tive measurements for identifying vigilance state since it is

the direct reaction of the brain states [14]. Besides, EEG

technology is safe, non-invasive, low cost, easy to operate,

and has high temporal resolution. The transitions of vigi-

lance state are usually accompanied by the changes in the

power spectrum in EEG, suggesting a robust and efficient

way for vigilance level detection. Spectral powers in typical

frequency bands are closely related to vigilance decrement.

Data analysis presented in this study involve four frequency

bands, [delta (< 4 Hz), theta (4–7 Hz), alpha (8–12 Hz), and

beta (13–30 Hz) frequency bands]. Different brain regions

may show different level of sensitivities to vigilance levels.

Generally speaking, studies have reported frontal increase in

alpha and theta power, during vigilance decrement, which

indicates a loss of cortical arousal [13], [15]–[17].

Meanwhile, other studies showed that alpha and theta

bands activities in the central and occipital regions are more

correlated to fatigue due to vigilance tasks [18]–[20]. In line

with these findings, Parikh andMicheli-Tzanakou [21] found

an increased power of alpha and theta associated with a

decreased power of beta at the occipital area of the brain.

In particular, the alpha rhythm increased when human’s vigi-

lance level decreased, while at the same time, the beta rhythm

decreased [22], [23]. Interestingly, alpha rhythm has sub-

sequently proved to be diagnostic of cognitive fatigue and

loss of alertness in a range of applied settings [24]–[27].

An increase in frontal sites near 4 Hz theta and decrease

near 40 Hz gamma have specifically been correlated with

reduced arousal drowsiness [28]. Particularly, frontal theta

power typically increasedwithmental workload and demands

on working memory [29], suggesting its sensitivity to mental

effort associated with vigilance decrement [30], [31].

Some studies have reported that occipital alpha and beta,

in addition to, frontal delta and theta decrease with vigilance

decrement [32], [33]. The phenomenon where the alpha peak

frequency exhibits a slight decrease is observed during the

transition to drowsiness. This is in line with a study that

showed beta band significantly decreased during the state

of driving sleepiness. The decrease appeared in frontal [19],

central [34], and temporal [34] regions. Delta and gamma

bands were also reported to be associated with drowsiness

[34]. However, it remains unclear which frequency band

and brain region is highly sensitive to changes in resource

utilization during vigilance decrement due to a complex task.

In particular, most of the studies describe the EEG signals of

a single channel in a local brain region and do not involve

the interactions between brain regions. Ishii et al. [35] have

demonstrated that the complex neural mechanism of men-

tal fatigue in vigilance tasks included a facilitation system

and an inhibition system involving a wide range of brain

regions, not limited to task-related regions. In line with that,

few studies have utilized functional connectivity to esti-

mate the functional coupling between brain regions under

fatigue [36]–[38]. The studies found that when mental fatigue

level increases due to vigilance tasks, the functional cou-

pling decreased, specifically over the parietal-to-frontal areas

in individual theta, alpha and beta frequency bands. How-

ever, for the simulated driving task, studies have reported an

increase in the connectivity network in the frontal-central, and

central-parietal/occipital areas at the end of driving sessions

[39]–[41]. Besides, a recent study has reported both; decrease

and increase in the connectivity networks in driving fatigue

[42]. The decreased connections were found across most of

the brain regions, while the increased connections were found

from frontal to parietal or occipital regions. It seems that the

frontal region is still an essential part during the alert and

fatigue states. Besides, the occipital region is related with the

visual task.

To date, few studies have utilized vigilance tasks that

involve cognition and sensory processes. In the present

work, we aim at studying the neural mechanism of vigi-

lance state while doing novel semantic vigilance task using

SCWT. In semantic vigilance tasks, operators are required

to respond to targets that are lexical and withhold response

to neutral stimuli, which are not semantically representa-

tive or related to target signals. Thus, the tasks are unique

in that they do not fall neatly into the cognitive sensory

vigilance distinction and involve both cognitive and sen-

sory processes. In particular, the semantic task requires high

mental demand, high effort and frustration. To this end,

we propose to utilize RWTE and PDC to estimate the func-

tional connectivity and GTA to summarize the topological

structure of the network for vigilance levels. Data analysis

presented in this study involves the four frequency bands,

due to the unknown influence of vigilance decrement on

frequency bands with respect to a semantic task. Furthermore,

we assessed the feasibility of applicable vigilance detec-

tion through five different classifiers: K-Nearest Neighbors

(KNN), Linear Discriminant Analysis (LDA), Decision Tree

(DT), Naïve Bayes Classifier (NBC), and Support Vector

Machines (SVM).

This paper is organized as follows. Section II describes the

participants, experiment protocol, data acquisition and signal

preprocessing. Section III presents the proposed methods of

EEG connectivity, graph theory analysis, feature extraction,

statistical analysis and classification. Section IV presents the

results of connectivity and classification. Section V provides

a detailed discussion on the findings. Finally, section VI

concludes this paper.
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II. EXPERIMENT

A. PARTICIPANTS

Nine healthy young students from the American University

of Sharjah (age: 22 ± 2 years, (mean ± standard devia-

tion)) have participated in this study. All participants had

normal or corrected to normal vision and no reported hearing

deficits/difficulties. Besides, they had no history of neurolog-

ical or psychiatric illnesses and had no current or prior use

of psychoactive medication. The experiment was conducted

between 3.00 pm and 7.00 pm to avoid the influences of

circadian rhythm on cognitive vigilance performance [43].

The aims and procedures of the experiment were explained

to all the subjects before commencing the experiment. They

were asked to give a written informed consent before partic-

ipation in the study. The participants were free to stop their

participation during the experiment or to withdraw from the

experiment for any reason. All participants were asked to

abstain from caffeine, exercise, energy drink, and tobacco

use for 24 hours before testing. All methods performed fol-

lowed the Declaration of Helsinki. The Institutional Review

Board of the American University of Sharjah approved the

experiment.

B. EXPERIMENT PROOCOL

The experiment task was designed based on SCWT and

presented to participants using a graphical user interface

designed with MATLAB (Mathworks, Natick, MA). The

SCWT involved six color words (such as [‘Blue’, ‘Green’,

‘Red’, ‘Magenta’, ‘Cyan’, and ‘Yellow’]) presented ran-

domly on the computer monitor and the answer for each color

word to bematchedwas presented in random sequences. Only

one color-word is displayed on the monitor screen at a time,

see FIGURE 1(a). The displayed color-word is written in a

different color than the word’s meaning. The correct answer

for the color-word is the color in which the word is displayed.

The participants pick their answers as quickly and accurately

as possible by left-clicking the mouse on one of the six

answering buttons as shown in FIGURE 1(a). The matching

answers were presented with random colored-background to

add more attention to the task. Answering incorreclty or fail-

ing to answer each question within the allocated time, would

present feedback to the participants on their performance, i.e.

a message of ‘‘Correct’’ or ‘‘Wrong’’ or ‘‘Time is out’’ is

displayed on the monitor.

Behavioral data such as reaction time (RT) to stimuli and

accuracy of detection were collected while solving the task.

In this task, four indicators measure participants’ attention

levels: commission error, omission error, reaction time and

accuracy. A commission error occurs when a participant fails

to inhibit the response and incorrectly responds to a non-color

word. In contrast, an omission error occurs when a participant

is unable to pick-up or react to the color word. Once partic-

ipants’ responses are checked, the time they spent on task is

recorded. The RT is measured as the average time it takes

for the participant to respond correctly to a target stimulus.

FIGURE 1. The experimental design a) Stroop color-word task (SCWT)
presentation interface and b) timing window. In the timing window,
the plus sign in black background is for the pre and post-baseline. Thirty
(30) min SCWT is for the vigilance task presentation.

The number of trials also depended on the participant’s rating

speed. Different markers were sent to mark the start and the

end of epochs in each SCWT question. The overall accuracy

is calculated based on the number of the color word correctly

matched over the total number of the displayed color word

targets.

The overall experimental time frame for each participant

included 6 minutes for training and filling the question-

naire, 2 minutes for pre-baseline, 30 minutes for performing

SCWT, 2 minutes for post-baseline and 5 minutes for filling

another survey. FIGURE 1(b) shows the time window of the

experiment.

The questionnaire used in this study was based on Brunel

Mood Scale (BRMUS) [44]. All participants filled-in the

questionnaires before and after they performed the seman-

tic vigilance task. The BRMUS composed of 32 items.

These items correspond to an 8-factor model includ-

ing ‘‘Anger,’’ ‘‘Tension’’, ‘‘Confusion,’’ ‘‘Depression,’’

‘‘Fatigue,’’ ‘‘Happy,’’ ‘‘Calmness’’ and ‘‘Vigor.’’ Each item

has 5-point Likert scale ranges from ‘0’ to ‘4’ representing

‘‘not at all’’ to ‘‘extremely’’ depending on the participant’s

feelings.

C. DATA ACQUISITION AND PREPROCESSING

EEG data was recorded using 64 Ag/AgCl scalp electrodes

according to the standard 10–20 system (Waveguard, ANT

B.V., Netherlands) at a sampling rate of 500 Hz. Electrode

impedance was kept below 10 k� throughout all the record-

ings and referenced to the left and right mastoids; M1 and

M2. Main interferences were avoided by anti-aliasing with a

band-pass (0.5-70 Hz) and a 50 Hz notch filter.

Raw EEG signals were preprocessed using EEGLAB tool-

boxes (9.0.4) [45] as well as using custom scripts developed

in our previous studies [46]–[49]. The raw EEG signals were

band-pass filtered using a finite impulse response (FIR) filter
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with 0.1 Hz to 30 Hz bandwidth. All the EEG signals were

then re-referenced to the common average reference and

segmented into target-related EEG epochs of 1200 ms. Inde-

pendent Component Analysis (ICA) was then employed to

remove noise. We extracted the baseline and removed it using

the whole duration of each epoch. The epochs were baseline

corrected by subtracting the −100 to 0 milliseconds pre-

stimulus baseline from all data points in the epoch. Finally,

all EEG epochs were visually double-checked to eliminate

data segments contaminated with noise.

Then, we defined two types of vigilance states for subjects

within the 30-min EEG recordings: 1) the alert state/high

vigilance, including the first 5 min of EEG signals (corre-

sponding to 80 trials) while doing the SCWT, 2) the vigilance

decrement state, which referred to the last 5 min of EEG sig-

nals within the SCWT (corresponding to 80 trials). Then we

investigated the relative wavelet transform entropy and partial

directed coherence in each trial to quantify the strength and

directionality of information flow between nodes. Besides,

we estimated the complex network measures to summarize

the topological structure of the network for each mental state

at four different frequency bands.

III. METHODOLOGY

A. RELATIVE WAVELET TRANSFORM ENTROPY

First, we employed wavelet analysis through the Orthogonal

Discrete Wavelet Transform (ODWT) to obtain the wavelet

coefficients series at 4-different resolutions for each EEG

channel, one for each brain rhythm [50]. Data analysis, pre-

sented in this study, involves four frequency bands; [δ wavelet

(0.1 ∼4Hz), θ wavelet (4∼8Hz), α wavelet (8∼13Hz), and β

wavelet (14∼30Hz)], as described in [51], [52]. The ODWT

for a given EEG signal X (t) is obtained using:

X (t) =
∑4

j=1

∑600

k=1
dj(k)ψj,k (t), (1)

where, dj(k) is the wavelet coefficient at time interval k

(k=1200ms or 600 EEG data points). Then, the subband

wavelet entropy is defined in terms of the relative wavelet

energy of the wavelet coefficients. The energy at each resolu-

tion level j = 1 . . . 4, is estimated by squaring and summing

the wavelet coefficients d(k) corresponding to each EEG

rhythm:

Ej =
∑

k

∣

∣dj(k)
∣

∣

2
, j = 1 . . . 4 (2)

The total energy of the wavelet coefficients are then calcu-

lated using:

Etotal =

4
∑

j=1

Ej (3)

The relative energies at each level are estimated by dividing

each absolute energy value with the total energy:

pj = Ej/Etotal
(4)

Obviously,
∑

j

pj = 1 and the distribution is considered

as time-scale density. The wavelet entropy for each trial is,

in turn defined as:

WEm = −
∑

j

m(pj) log2 m(pj),

j = 1, 2, . . . .4, m = 1, 2, . . .N (5)

where m(pj) is the relative wavelet energy of channel m and

N is the number of nodes.

Second, to obtain the relative wavelet transform entropy

RWTE we regard each channel as a node and then determine

the connections between nodes m and n in term of the relative

wavelet entropy calculated using the following equation:

RWTE(m|n) =
∑

j

m(pj) log2

[

m(pj)

n(pj)

]

,

j = 1, 2, . . . 4, m = 1, 2, . . .N , n = 1, 2, . . . ,N (6)

wherem(pj) and n(pj) represent the relative wavelet energy of

channel m and n, respectively, and N is the number of nodes.

The directed RWTE values are stored in N×N matrix, which

is not symmetric with reference to the main diagonal.

B. PARTIAL DIRECTED COHERENCE

PDC is a multivariate spectral measure used to determine

the directed influences of Granger causality between EEG

signals in a multivariate set.

Let X (n) = [x1(n), x2(n), . . . , xN (n)]
T represents an N

channel EEG signal (N=62 in this study), then a multivariate

model with m channels of EEG signals and order p is defined

by Eq. 7:

X (n) =

p
∑

r=1

ArX (n− r) +W (n), (7)

where W (n) is a white Gaussian noise with mean zero, and

the matrix Ar contains the coefficient matrix, p is the order of

multivariate autoregressive model (MVAR) determined using

Akaike information criterion (AIC) [53] according to:

AIC(p) = 2 log[det(6)] +
2N 2p

Ntotal
, (8)

where, det(6) denotes the covariance matrix of noise vector

W (n) and Ntotal is the total number of EEG samples in all

trials. In the present study, the average MVAR model order

p for all subjects was 7. Once the coefficients of the MVAR

model are adequately estimated, a representation of Granger

causality in the frequency domain can be obtained from the

difference between the N-dimensional identity matrix I and

the Fourier transform of the coefficient series Ar (r = 1,

2, . . . , p) according to:

A(f ) = I −

p
∑

r=1

Are
−j2π fr (9)
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Finally, the directional flow of information at frequency f

from channel j to channel i is defined as

PDCi,j(f ) =
|Ai,j(f )|

√

∑

k

A∗
kj(f )Akj(f )

, (10)

where the asterisk denotes matrix transposition and complex

conjugate, Aij are elements of the matrix A(f ), and PDCi,j
indicates the direction and weight of the information flow

from channel j to i at the frequency f . In this study we used

a moving time window of 1200ms to compute PDC values.

This results in 160 PDC network matrices (each has the size

of 62 × 62 weighted directed matrix) that are created for

each subject in each frequency band. PDC gives values in the

range between [0, 1]. High value indicates higher interaction

between the two nodes.

The statistical significance of PDC values was then esti-

mated using surrogate analysis. Specifically, the original time

series from each channel and epoch were randomly shuffled

to remove the phase interactions between signals and then

we re-calculated the PDC spectra. An empirical distribution

of PDC values under the null hypothesis of no causal rela-

tionships was obtained by repeating the surrogate approach

100 times. Based on this observed distribution, the PDC

values were considered to be a real connection when they

were above the threshold (p = 0.05).

C. GRAPH THEORY ANALYSIS (GTA)

Graph theoretical analysis provides quantitative measure-

ments for assessing the topological architecture of a network.

We considered six network measures to characterize men-

tal state under alert and vigilance decrement. We use the

local: nodal degree (ND), clustering coefficient (CC), local

efficiency (LE), and the global: efficiency (GE) transitivity

(Tr), and modularity (Q) to characterize the derived complex

network. The measures are defined as follows:

NODAL DEGREE (ND): This is the number of edges

linked directly to a particular node, which can be regarded

as the measure of centrality. For a brain network, degree

centrality reflects the cerebral cortex regions that play an

essential role in the information transmission and processing

of the brain.

CLUSTERING COEFFICIENT (CC): is a measure of

network segregation that estimates the degree to which neigh-

boring nodes form complete networks or cliques. For node i,

the local clustering coefficient CC is calculated as the ratio

between the sum of geometric means of all existing weighted

triangles and the number of all possible triangles. In particu-

lar, CC measures how well the cluster of node communicates

and a high value of CC relates to the high local efficiency of

information transfer.

LOCAL EFFICIENCY (LE): is a measure of the fault

tolerance of a network (measure of segregation). It verifies

whether the communication between nodes is still efficient

when a node is removed from the network. Higher LE, indi-

cate the robustness of the network at the local scale.

GLOBAL EFFICIENCY (GE): is a global measure of

how efficiently a network exchanges information internally.

GE is the average of the inverse of the shortest path between

two nodes in the network. GE represents the efficiency of

the communication between all the nodes within the net-

work. A network with high global efficiency indicates that,

on average, nodes are reached by short communications. The

efficiency is then used to quantify the global communication

of a network, often referred to ‘‘global integration’’.

TRANSITIVITY (TR): is a simple measure of segrega-

tion based on the number of triangles in a network. Tr is

a classical version of the clustering coefficient, having the

advantages of not influenced by nodes with a low degree.

MODULARITY (Q): Themodularity shows the tendency

of a network to be partitioned into modules or communities of

high internal connectivity and low external connectivity. The

modularity is equal to the fraction of sum of the weights of

edges that connect nodes in the same community minus what

that fraction would be on average if communities remained

fixed but the edge weights were randomly distributed [54].

The higher the Q, the more confident one can be that a

significant community scatter has been found. The full math-

ematical expressions of the GTA measures can be found in

previous studies [54]–[56].

Because graph-theoretic metrics can be threshold depen-

dent, we examine graph measurements over a range of possi-

ble connection strength. Following prior studies [56], results

were obtained for common graph sparsity thresholded at the

top 30% of individual subject connections.

D. FEATURE EXTRACTION

First, for each subject the RWTE/PDC were computed indi-

vidually for four frequency bands, each resulting in a total of

4×62×62 vectorized weighted directed connectivity features

per trial (we have a total of 80 trials). Second, a set of com-

plex network matrices (62 clustering coefficients, 62 local

efficiency, 1 global efficiency, and 62 node degrees, 1 tran-

sitivity and 1 modularity, were derived from the RWTE/PDC

matrices for each frequency band as a function of threshold.

E. STATISTICAL ANALYSIS AND CLASSIFICATION

A paired t-test was used to examine (the alert state vs

vigilance decrement) differences of subjective, behavioral

responses, directed connectivity and graph theory measures

of the RWTE and PDC for all the frequency bands. Before

conducting the t-test, we used the Kolmogorov-Smirnov test

to check if the data is normally distributed [57]. In this

paper, we investigated functional connectivity based on

strength/weight, directionality and graph theory analysis

measures of two different methods discussed above within

the four frequency bands. FIGURE 2 shows the flow chart of

the proposed method.

To distinguish the two mental states (alert vs. vigilance

decrement), we employed five classifiers namely, KNN,

LDA, NBC, DT, and SVM. The mathematical formula-

tions of the employed classifiers can be found in [58]–[60].
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FIGURE 2. Flow chart of the proposed method.

The classifiers were selected due to the fact they are fast and

successful classifiers in the field of brain-computer interface

(BCI). In addition, we aim to investigate which of the five

classifiers perform better in classifying vigilance levels. This

will help scientists and researchers to select the most suitable

classifier in developing a framework for their vigilance stud-

ies. The classifiers are briefly explained below.

K-NEAREST NEIGHBOUR (KNN) is a technique

based on minimum distance classifier, that is, the N-labeled

sample points in the initial category are selected as the initial

center point, distance is calculated from the newly added

sample to each category, the nearest category is taken as the

category of the sample to be stored, and finally center of each

category is updated. In this study, K-value was searched in the

interval between 1 and 10 with a step size of 1. The optimal

value was then set to 3.

LINEAR DISCRIMINANT ANALYSIS (LDA) is a

classifier used to describe the distinctive nature of two or

more classes by finding a linear combination of features.

These combinations used for dimensionality reduction as

a linear classifier for classification. The ratio of between-

classes variance to the within-class variance is maximized.

NAIVE BAYES CLASSIFIER (NBC) is a probabilis-

tic classifier based on Bayes theorem. It assumes that the

predictor variables are independent random variables. This

assumption helps it to compute probabilities required by

the Bayes formula from even a small training data. Also if

these attributes are not independent, it is possible to obtain a

reasonable classification performance.

DECISION TREE (DT) is a classifier used to construct

a decision tree with branches and nodes using the extracted

feature set. A set of rules representing the different classes is

then derived from the tree. These rules are used to predict the

class of a new sample with an unknown class.

SUPPORT VECTOR MACHINE (SVM) is a binary

classification model constructed in the feature space to find

a hyperplane to maximizes the margin between the input

data classes. The kernel function of SVM in this study is

the Radial Basis Function (RBF), and the learning method

is minimal sequential optimization. For fine parameter tun-

ing, we varied the soft margin regularization parameter C

from the interval 10−2 to 102 with the step of 10 based on

cross-validation approach. The most suitable σ in the RBF

kernel was searched in the range between 0.5 to 4 (step size

of 0.5), and optimal values were set to C = 1 and σ = 3.

In all the classifiers, we investigated the classification accu-

racy of mental state in the form of subject-dependent and

subject-independent classification.

SUBJECT-DEPENDENT CLASSIFICATION: we

employ 10-fold cross-validation to estimate the classification

accuracy. To be concrete, feature sets from the alert state and

vigilance-decrement state are randomly and evenly split into

10 equally-sized subsets. We then do training on nine subsets

and testing on the remaining one subset. With the aim of

obtaining all predicted labels of all samples, we repeat this

procedure 10 times so that each subset is used for validation.

Thus, the classification accuracy can be defined as the ratio

of correctly predicted samples to all samples in the data set.

To reduce the deviation of a random partition of the data set in

the cross-validation, we perform the 10-fold cross-validation

10 times independently and estimate the final classification

accuracy of alert and vigilance-decrement states utilizing the

average value of 10 independent implementations of 10-fold

cross-validation

SUBJECT-INDEPENDENT CLASSIFICATION: We

adopt the leave-one-subject-out (LOSO) cross-validation

strategy to evaluate the EEG vigilance level classifica-

tion performance of the proposed methods. The EEG data

of 8-subjects are used for training the classifiers, and the

remaining EEG data of one subject is used as testing data. The

classifications procedures are repeated such that the EEG data

of each subject is used as the testing data. The average classi-

fication accuracies and standard deviations corresponding to

the propose methods of EEG analysis at the four frequency

bands are respectively calculated.

IV. RESULTS

A. BEHAVIORAL DATA

We examined the subjective assessment of vigilance level

with the BRMUS scores and found significant effect of

task (pre- vs. post experiment) in engagement. Two sample

t-test comparing emotional states before and after the SCWT

revealed significant reduction of engagement. The statistical

analysis showed that anger, tension, vigor, fatigue, and con-

fusion, have significantly increased after performing the task

with p<0.01, while happy, and calmness have significantly
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FIGURE 3. Reaction Time and Accuracy in 5-min interval for SCWT. Error
bars represent standard deviation of the mean across subjects. The
asterisk ‘∗∗’ indicates the differences is significant with p<0.01.

decreased, p<0.05. Then, we investigated the behavioral data

(reaction time RT and accuracy) for trial-design SCWT ses-

sions (first 5-min vs. last 5-min). The RT was calculated as

the average time taken to answer each question in the SCWT

to the number of trials. As expected, we found significant

increase in the RT associated with a decrease in the accuracy

with p<0.01. FIGURE 3 shows the trend of RT and accuracy

for the entire 30 min record in 5 min bins for all the subjects.

Thus, the overall behavioral results indicate that the 30 min

of SCWT was effective in eliciting vigilance decrement to all

participants.

B. RWTE AND PDC CONNECTIVITY

The results of connectivity network showed decrement from

alertness to vigilance decrement states in most of the EEG

nodes. The average differences that are statistically signifi-

cant in the connectivity strengths and directionalities between

the two mental states; alert state - vigilance decrement state

(p<0.05), measured by RWTE and PDC, are shown in

FIGURE 4 and FIGURE 5, respectively. FIGURE 4 shows

the average difference in connectivity strength and direction-

ality measure by RWTE in all the frequency bands (delta

[δ1 − δ2]; theta [θ1 − θ2]; alpha [α1 − α2]; and beta

[β1 − β2]). Note that the variables δ1, θ1, α1 and β1 are

all for alert state while δ2, θ2, α2 and β2 are for vigilance

decrement state. We only considered the node-strength that

is significant at p<0.05. The zero value of RWTE shown

in the center of the color bar means that the connectivity

strength in alert state is equal to the connectivity strength

in the vigilance decrement state. Meanwhile, positive value

of RWTE indicates significant decrease in the connectivity

strength from mental alert to vigilance decrement state and

the negative RWTE value indicates significant increment in

the connectivity at the vigilance decrement level. By looking

at the connectivity network in each frequency band alone as

shown in FIGURE 4, it’s clearly seen that the differences

in the connectivity strength increases from delta to theta to

alpha to beta. Specifically, the higher significant differences

in the connectivity network (in red color map) are located and

directed towards the right hemisphere. Only few electrodes

show significant increase in the connectivity strength from

FIGURE 4. Difference in EEG connectivity. Group mean RWTE strength and
directionality differences between alert and vigilance decrement in the
four frequency bands. The group differences are significantly different at
level α = 0.05 using two-sample t-test.

FIGURE 5. Difference in EEG connectivity. Group mean PDC strength and
directionality differences between alert and vigilance decrement in the
four frequency bands. The group differences are significantly different at
level α = 0.05 using two-sample t-test.

alertness to vigilance decrement at p<0.05. The directions of

their networks are towards the left hemisphere as shown by

the green-to-blue color map in FIGURE 4.

Likewise, connectivity patterns are obtained using PDC.

We conducted a statistical analysis on the obtained connec-

tivity network between alertness and vigilance decrement to

test if they are significantly different at p<0.05. Only the

significant connectivity strengths were reconstructed to form

the connectivity network. FIGURE 5 shows the differences

in connectivity strength and directionality of information

flow between alert and vigilance decrement state in all the
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FIGURE 6. Comparison of estimated weighted node degree (in and out degree) averaged over all subjects under the two mental states (alert - vigilance
decrement) in the four frequency bands. The asterisk ‘*’ showed the significant electrodes at p < 0.05.

frequency bands (delta [δ1 − δ2]; theta [θ1 − θ2]; alpha

[α1−α2]; and beta [β1−β2]). Positive PDC value indicates

decrease in the connectivity strength from alertness to vigi-

lance decrement state and negative PDCvalue indicates incre-

ment in the connectivity strength from alertness to vigilance

decrement. Interestingly, the connectivity results show that

the connectivity network in the right hemisphere are much

sensitive to vigilance decrement in all the frequency bands.

Meanwhile, small increment in the connectivity network

from alertness to vigilance decrement is shown in the left

hemisphere in all the frequency bands. It is also noted that the

strength of the connectivity network in PDC is much higher

than that in RWTE. This shows the superiority of PDC to

RWTE. Additionally, from FIGURE 4 and FIGURE 5, it is

clearly seen that large quantities of edges are directed towards

right hemisphere and frontal brain regions in all the frequency

bands.

FIGURE 6 shows the average differences that are statisti-

cally significant in the node degree between alert and vigi-

lance decrement states measured by RWTE and PDC in the

four frequency bands (delta [δ1− δ2]; theta [θ1− θ2]; alpha

[α1−α2]; and beta [β1−β2]). The results of the nodal degree

in FIGURE 6 show significant decrements (p<0.05) from

alert to vigilance decrement state in all the bands specifically

over the frontal and right hemisphere regions as shown in the

topographical maps. Positive ND indicates decrease in the

connectivity from alertness to vigilance decrement state and

negative ND indicates increment in the connectivity degree.

The higher nodal degrees over frontal and right hemisphere

in FIGURE 6 (in both; RWTE and PDC) are consistent with

the flows of information shown in FIGURE 4 and FIGURE 5.

This support the sensitivity of right hemisphere to vigilance

decrement state.

C. GRAPH THEORY ANALYSIS MEASURES

The local graphical analysis of the RWTE and PDC net-

works shows significant decrement from alert to vigilance

decrement states in most of the brain regions as shown in

FIGURE 7. FIGURE 7 shows a heat maps of the average

differences in clustering coefficient (CC) and local efficiency

(LE) between alert and vigilance decrement states in the

four frequency bands (delta [δ1 − δ2]; theta [θ1 − θ2];

alpha [α1 − α2]; and beta [β1 − β2]). Positive value of

CC and LE in the heat map indicate decrement in the

segregation of the network from alert to vigilance decre-

ment and negative value indicate increment in the segre-

gation. The statistical significant between the two mental

state in all the four frequencies is shown by asterisk ‘∗’

in which single asterisk corresponding to p<0.05. Signif-

icant node indicates the robustness of the network at the

local scale. Notably, the local graphical analysis of CC

and LE in PDC shows more significant nodes than that in

the RWTE.

Likewise, FIGURE 8 shows the global graphical network

analysis under alert (green color) and vigilance decrement

(violet color) in the four frequency bands (delta [δ1 − δ2];

theta [θ1−θ2]; alpha [α1−α2]; and beta [β1−β2]). The dis-

tribution of the global network analysis measurements shows

significant decrement from alertness to vigilance decrement

state in the global efficiency (GE) and Transitivity (Tr)

across all subjects at all the frequency bands. Meanwhile,

the modularity (Q) measure shows significant increase from
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FIGURE 7. Local GTA metrics for the differences between two mental states (alert -vigilance decrement) in the four frequency bands.
The strikes. ‘*’, indicate that the differences between the two mental state is significant with p<0.05.

FIGURE 8. Global GTA metrics for two mental states (alert -vigilance decrement) in the four frequency bands. The strikes ‘*’, ‘**’
and ‘***’ indicate that the differences between the two mental state is significant with p<0.05; p<0.01 and, p<0.005, respectively.

alertness to vigilance decrement state. The overall statistical

analysis between the alertness and vigilance decrement state

as measure by global graphical analysis measurements is

represented by asterisk ‘∗’ in which single asterisk corre-

sponding to p<0.05, and ‘∗∗’ correspond to p<0.01 and

‘∗∗∗’ equivalent to p<0.005. Fascinatingly, higher frequency
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at alpha and beta bands show higher significant decrement

compared to lower frequency bands indicating their sensitiv-

ity to vigilance decrement.

D. CLASSIFICATION

To classify the vigilance levels, we combine the strength and

directionality of RWTE/PDC with their corresponding com-

plex network graphical measures to form feature vectors for

classification. In particular, we first classified RWTE/PDC

separately and found that it can realize the classification

with acceptable accuracy. We then combined strength and

directionality values of RWTE/PDC with GTA measures

(node degree, clustering coefficient, local efficiency, global

efficiency, transitivity and modularity) to improve the classi-

fication accuracy.

The overall classification results in term of the aver-

age accuracies and standard deviations of the proposed

methods with the types of classifiers and bands are pre-

sented in Table 1 for subject-dependent and in Table 2 for

subject-independent classification experiments. The results

suggest that RWTE+GTA and PDC+GTA are capable of

obtaining intrinsic and effective features from EEG data and

the classification accuracy significantly increase using the

propose methods. The combination of RWTE/PDC strength

and directionality with the GTA measures opens up a new

venue to address the challenges in EEG analysis.

Besides, we compared the results of the propose meth-

ods with some existing works in EEG classification, includ-

ing power spectral density feature (PSD) [61], differential

entropy (DE), [62] and wavelet entropy (WE) [63]. The PSD,

DE and WE features are respectively extracted in each of the

frequency bands (δ band, θ band, α band, and β band) to con-

stitute the feature vectors. Feature vectors composed of PSD,

DE, and WE were then fed separately into the classifiers to

recognize vigilance states. The average classification results

of all the methods are also presented in Tables 1 and 2.

From Table 1 and 2, we obtain the following significant

points:
• The best classification accuracy is obtained when

combining the PDC+GTA in all frequency bands com-

pare to all other methods. With PDC+GTA for subject

dependent classification, we achieved 100% accuracy

using KNN, LDA, and SVM and 99.2% accuracy using

NB and DT. However, for subject independent clas-

sification, we achieved 89%, 90%, 92%, 88% and

87% accuracy using KNN, LDA, SVM, NB and DT

respectively. For RWTE+GTA in subject dependent

analysis, we achieved 98%, 98.2%, 100%, 92%, and

98% accuracy using KNN, LDA, SVM, NB, and DT

respectively. Meanwhile, in subject independent exper-

iments we achieved 86% accuracy using KNN, LDA,

98% using SVM, 82% using NB and 87% using DT

respectively.

• For most kind of method, the classification accura-

cies associated with higher frequency bands are better

than the ones in the lower frequency bands. Beta band

outperforms other bands with more than 5% in PSD,

3% in DE and 2% in WE in the subject dependent

and subject independent under all kind of classifiers.

Other methods show higher accuracy in the higher bands

compare to lower frequency bands but not significant.

• For each kind of classifier, SVM performs better than

other classifiers in all the analysis methods. Thus,

we limited our discussion to the results obtained by SVM

classifier.

We also conducted one-tailed paired t-test with significance

levels 0.05 on the results of every two methods (one pro-

posed vs one baseline method) to validate whether the dif-

ference between the means of the two methods is statistically

significant. Therewas a significant improvement in the classi-

fication accuracy by the proposedmethods compare to the tra-

ditional methods as well as to the sole RWTE/PDC methods,

p<0.05. We thus, suggest using strength and directionality

of RWTE/PDC with their corresponding GTA measures for

future vigilance studies.

V. SUMMARY AND DISCUSSION

In this study, we proposed to utilize EEG directed con-

nectivity measured by RWTE and PDC with their corre-

sponding GTA measures to classify semantic vigilance level.

To the best of our knowledge, this is the first study to use

RWTE+GTA and PDC+GTA to classify semantic vigilance

levels. The significant findings are summarized as follows:

first, the developed computerized SCWT was effective in

eliciting vigilance decrement with time-on-task of 30minutes

as shown in behavioral performance depicted by the reac-

tion time and accuracy in FIGURE 3. Second, a common

reduction in the functional connectivity networks (strength

and directionality) were revealed in all the frequency bands

and methods (RWTE and PDC) under vigilance decrement

as shown in FIGURE 4 and FIGURE 5. Third, the local

and global graphical analysis of connectivity network demon-

strated significant reduction with vigilance decrement in all

the frequency bands and methods as shown in FIGURE

6 to FIGURE 8. Fourth, using RWTE/PDC in combina-

tion with their corresponding graph theory analysis mea-

sures (RWTE+GTA/PDC+GTA) as features, we achieved

the highest classification accuracy, in both subject-dependent

and subject-independent tests, as summarized in Table 1, and

Table 2 respectively. The overall findings are discussed in

details in the following paragraphs.

In this study, we found that performing SCWT continu-

ously for 30 minutes significantly influenced the transient

state of mood of all participants. It was shown that all par-

ticipants reported high level of fatigue and confusion after

performing the SCWT due to the high cognitive load required

to sustain attention to the task. There was a significant decline

in behavioral responses from alertness to vigilance decrement

state. The average reaction time taken to answer the SCWT

increased from the first 5-min to the last 5-min of the task

by +14%. Meanwhile, the accuracy of detecting the SCWT
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TABLE 1. Comparisons of the average accuracies and standard deviations (%) of subject dependent eeg-based semantic vigilance level classification
among the various methods.

stimuli decreased by −10%. In line with our previous obser-

vations [64], the significant increase in the RT, suggesting a

genuine reduction in the accuracy for timely responding as

opposed a speed-accuracy tradeoff [65]. The increase in RT

indicated that participants lose their interest in performing the

task or found it stressful. The overall behavioral findings in

this study is in line with previous studies that reported decline

in the cognitive efficiency over time as result ofmental fatigue

to driving tasks [2], [40].

The functional connectivity network analysis measured

by RWTE/PDC showed that, when vigilance level drops,

the flow of information significantly decreased in all the

frequency bands as shown in FIGURE 4 and FIGURE 5.

The GTA measurements including nodal degree, clustering

coefficient, global efficiency and transitivity significantly

decreased with vigilance decrement indicating a loss of infor-

mation exchange between brain regions as demonstrated in

FIGURE 6 to FIGURE 8. Consistent with this observation,

VOLUME 8, 2020 115951



F. Al-Shargie et al.: EEG-Based Semantic Vigilance Level Classification Using Directed Connectivity Patterns and GTA

TABLE 2. Comparisons of the average accuracies and standard deviations (%) of subject independent eeg-based semantic vigilance level classification
among the various methods.

we have previously reported a vigilance-related significant

decrease of cluster coefficient and node degree over a 60-min

SCWT in one frequency band at 0.1-30 Hz [64]. Previous

studies have investigated various mental tasks in the single

frequency bands [36], [40] and there is lack of research in

essential properties in different bands.

In this paper, the functional connectivity network and

graph theoretical analysis measurements were estimated in

four frequency bands to measure the organization of brain

functional connectivity. The statistical analysis showed sig-

nificant decrement, p<0.05, in these analysis measurements

in all the frequency bands from alert to vigilance decrement

state. In particular, the highest common-decrement in the

connectivity strength and topological network parameters

were within the right hemisphere and over parietal-to-frontal

regions demonstrated in all the frequency bands. The decre-

ment in the connectivity network across these regions in all

the frequency bands confirm the vigilance decrement. It has
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been shown previously that frontal-to-parietal direction of

information flux within EEG functional coupling is an intrin-

sic feature of brain network connectivity [66]. Our finding is

in line with previous functional connectivity studies which

found when mental fatigue level increases, the functional

coupling decreases, specifically over the parietal-to-frontal

regions in the single frequency bands [36]–[38]. The study

in this paper also extended the functional connectivity and

graph theoretical analysis from single band to multi-bands

using two different methods of analysis. Hence, the overall

decrease in functional connectivity and GTA parameters in

all the frequency bands in our study is a significant indicator

of vigilance decrement.

Correspondingly, in this study we found significant

increase in the modularity from alertness to vigilance decre-

ment state in all the frequency bands measured by RWTE and

PDC. The increment ofmodularity can be interpreted as a loss

of connections between the nodes due to vigilance decrement.

It is worth noting that, when vigilance level drop, the informa-

tion distributes and shares betweenmodules. Thus, the overall

increase in the modularity confirm the scattering of network

modules or communities with decreasing vigilance level.

Besides, the increment in modularity in this study was also

associated with the decrement in node degree and cluster

coefficient, which suggest it as a reliable index of vigilance

decrement. Overall, it should be noted that the PDC and its

GTA measures were much sensitive to vigilance decrement

compare to RWTE. Although, the two methods are nonlinear

measures reflecting the uncertainty of EEG signals, PDC is

insensitive to zero-phase delay between two EEG signals

occurring due to the effect of volume conduction [67].

In addition, the features extracted from RWTE/PDC

alone and RWTE/PDC with their corresponding GTA mea-

sures successfully classify vigilance levels with high accu-

racy. RWTE features alone showed classification accuracy

above 90% in subject-dependent and above 80% in the

subject-independent level using SVM classifier in all the

frequency bands as summarized in Table 1, and Table 2.

Notably, higher accuracies of 92% and 80.65% were found

in the beta frequency band for subject-dependent and

subject-independent respectively. Although, other classifiers

showed comparable accuracy, SVM performed better in

all the frequency bands as mentioned earlier. Meanwhile,

the combined RWTE and GTA features achieved 100%

accuracy in the subject-dependent and above 89% accuracy in

subject-independent in each of the four frequency bands using

SVM classifier. The combined features of RWTE+GTA out-

performed sole RWTE classification on average of +9.5% in

each of the frequency bands. The higher improvement in the

accuracy is due to that, GTA provide intrinsic and effective

features associated with brain network characteristics. The

improvement in the accuracy obtained by RWTE+GTA is

also in line with previous study that utilized the directional

flow of information with functional connectivity in neuro-

developmental analysis and achieved 4% improvement in

classification [68].

Similar improvement were also fond when combining

PDC with GTA measurements indicating their complemen-

tary nature. Features from PDC alone showed classification

accuracy above 94.7%, and 84.7% in subject-independent and

subject-dependent level respectively in each frequency band.

Meanwhile, combination of PDC+GTA features demon-

strated the highest accuracy with 100% in the subject-

dependent and above 92.1% in subject-independent level

respectively. The combination of PDC+GTA outperformed

PDC alone on average of +7%. This improvement also sug-

gest GTA features provide complementary aspect to PDC

features. It is worth noting that, the classification accuracy

of PDC+GTA outperformed RWTF+GTA by+3% in all the

frequency bands. This suggest PDC+GTA as a robust method

for estimating vigilance levels.

Indeed, in order to highlight the important of combining

strength and directionality of RWTE/PDC with their corre-

sponding GTA parameters, we also take three baseline meth-

ods; PSD, DE and WE for comparison. The classification

accuracy of all the three-baseline methods exceed 82%, 83%,

and 72% in subject-dependent and 71%, 71%, and 62% in

the subject independent level in all the frequency bands.

Our proposed methods of PDC+GTA/RWTE+GTA signif-

icantly outperform theses baseline methods, p<0.01 in all

the frequency bands with minimum improvement of 17% in

the subject dependent and 20% in the subject independent

level using SVM classifier. These improvements highlight

the importance of using graph theory analysis in studying the

reorganization of functional connectivity in vigilance studies.

We also suggest using SVM as golden standard classifier for

vigilance studies. In particular, compare to other classifiers

SVM yielded good performance in many applications, espe-

cially for solving problems with high dimension, nonlinearity

and small dataset [69].

Although we achieved 100% classification accuracy in the

subject dependent level, the maximum accuracy we achieved

in the subject independent was 93.08% for beta band. This

accuracy needs further improvement to establish a robust

BCI system. Dimitrakopoulos et.al [40] reported 97% sub-

ject independent classification accuracy in θ band. Likewise,

Wang et.al [42] utilized phase synchronization and achieved

96.76% classification accuracy using the discriminative con-

nection features in β band. One of the reason we achieved less

accuracy in the subject independent compare to [40], [42] is

that we did not apply any feature selection method to select

the most discriminative feature subset. Subject independent

discriminative features can be obtain using sequential floating

forward selection (SFFS) [70]. The kernel of SFFS can be

used to iteratively select features to maximize the objective

function and to remove the unnecessary contents to avoid the

local maxima. Another reasonmay be due to the small sample

size of 9-subjects in our study. Nevertheless, we should take

into consideration the type of stimuli used to induce vigilance

decrement. In our study we utilized SCWT which is complex

and mentally demanding cognitive task compare to simple

psychomotor vigilance task in [70]. The same study in [70]
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achieved less accuracy of 92% when using cognitive tasks

that involved mental rotation and N-back task.

Besides, our study has some limitations. First, the vigi-

lance levels were classified into two discrete categories: alert

and vigilance decrement. Vigilance could be categorized into

several levels by following the recent Hourglass models of

emotion in the multimodal sentiment analysis [71], [72].

Second, this study focused on vigilance classification with-

out considering any neurofeedback. Developing an adaptive

closed-loop BCI system that consists of vigilance level detec-

tion and feedback is very useful in real-time environment.

In the near future, vigilance detection and prediction tech-

nologies will undoubtedly help guarantee the workplace and

road safety. Third, in this study, we utilized a large number

of EEG channels. Future studies should reduce the number

of EEG channels by removing channels, which are relatively

uncorrelated with one another across trials, or by applying a

source localization method. Correlation-based channel selec-

tion [73] and weighted edit distance [74] could be potential

candidates. In future work, our classification results can be

further improved by utilizing deep learning, or by fusing the

functional connectivity network measures with the cortical

activations [49], [75]. Another area to investigate in the future

to improve the classification accuracy is by combining EEG

modality with functional near-infrared spectroscopy (fNIRS)

[46] or Eye-tracking [76]. These modalities contain comple-

mentary information and can be integrated to construct amore

robust vigilance estimation model.

VI. CONCLUSION

In the present work, we achieved semantic vigilance

level classification based on a combination of RWTE/PDC

and GTA measures. Experimental results revealed that

RWTE+GTA and PDC+GTA perform better than sole

RWTE/PDC and other baseline methods in classifying vig-

ilance level. Besides, the highest classification accuracy

was achieved using PDC+GTA with 100% accuracy in the

subject-dependent and above 92.1% in subject-independent

tests. The overall results indicated that the directed infor-

mation flows and complex network measures provide a

complementary aspect of functional connectivity and sug-

gest PDC+GTA as very informative features for classifying

semantic vigilance.
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