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Highlights:

◮ Twelve entropy indices were systematically compared in monitoring depth of anesthesia

and detecting burst suppression.

◮ Renyi permutation entropy performed best in tracking EEG changes associated with

different anesthesia states.

◮ Approximate Entropy and Sample Entropy performed best in detecting burst

suppression.

Objective: Entropy algorithms have been widely used in analyzing EEG signals during

anesthesia. However, a systematic comparison of these entropy algorithms in assessing

anesthesia drugs’ effect is lacking. In this study, we compare the capability of 12 entropy

indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression

pattern (BSP), in anesthesia induced by GABAergic agents.

Methods: Twelve indices were investigated, namely Response Entropy (RE) and

State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE),

Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE),

approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three

permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE

(RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia

respectively were selected to assess the capability of each entropy index in DoA

monitoring and BSP detection. To validate the effectiveness of these entropy algorithms,

pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk )

analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a

non-entropy measure was compared.

Results: All the entropy and MDFA indices could track the changes in EEG pattern during

different anesthesia states. Three PE measures outperformed the other entropy indices,

with less baseline variability, higher coefficient of determination (R2) and prediction

probability, and RPE performed best; ApEn and SampEn discriminated BSP best.

Additionally, these entropy measures showed an advantage in computation efficiency

compared with MDFA.

Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA.

Overall, it is suggested that the RPE index was a superior measure. Investigating the

advantages and disadvantages of these entropy indices could help improve current clinical

indices for monitoring DoA.

Keywords: EEG, anesthesia, entropy, pharmacokinetic/pharmacodynamic modeling, depth of anesthesia

monitoring

INTRODUCTION
In the operating room, general anesthesia is important to guar-

antee successful surgery and ensure patients’ safety and comfort.

For anesthesia, the reliable monitoring of anesthetic drug effects

on the brain is a clinical concern for anesthesiologists (Monk

et al., 2005). The central nervous system (CNS) is the main target

of anesthetic drugs. Originated in CNS, the electroencephalo-

gram (EEG) reflects the neural activities of brain, and has been

widely used as a surrogate parameter to quantify the anesthetic

drug effect (Rampil, 1998; Bruhn et al., 2006; Jameson and Sloan,
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2006). However, only limited information can be obtained from

the EEG signals purely by waveform observation. With the devel-

opment of signal processing, various methods have been applied

to analyze, identify or detect mental disorders and consciousness

mechanisms from EEG signals (Okogbaa et al., 1994; Natarajan

et al., 2004; Abásolo et al., 2006), as well as evaluating the effects

of anesthesia.

In recent decades, numerous attempts have been made to

develop an index for describing anesthetic drug effects on the

brain, including zero crossing frequency, spectral edge, wavelet

analysis, high-order spectral analysis etc. These studies laid the

foundation of commercial EEG-based monitors of depth of anes-

thesia (DoA), such as BIS (Aspect Medical Systems, Newton, MA)

(Bruhn et al., 2006; Ellerkmann et al., 2010) and M-entropy (GE

Healthcare, Helsinki, Finland) (Viertiö-Oja et al., 2004; Bruhn

et al., 2006). Many of these methods are derived from linear the-

ories. However, various studies have shown that the EEG is a

non-stationary signal that exhibits non-linear or chaotic behav-

iors (Elbert et al., 1994; Pritchard et al., 1995; Zhang et al.,

2001; Natarajan et al., 2004). This prompted many researchers to

adopt non-linear analysis methods in anesthesia study, for exam-

ple largest Lyapunov exponent (Fell et al., 1996), Hurst exponent

(Alvarez-Ramirez et al., 2008), fractal analysis (Klonowski et al.,

2006; Gifani et al., 2007; Liang et al., 2012), detrended fluctua-

tion analysis (DFA) (Jospin et al., 2007; Nguyen-Ky et al., 2010b),

recurrence analysis (Huang et al., 2006), and non-linear entropies

(Bruhn et al., 2001; Li et al., 2008a). In particular, non-linear

entropy methods describing the complexity of EEG signals, have

received considerable attention.

The word “entropy” was first proposed as a thermodynamic

principle by Clausius (1867). It describes the distribution proba-

bility of molecules of gaseous or fluid systems. In 1949, Claude E.

Shannon introduced entropy into information theory to describe

the distribution of signal components (Shannon and Weaver,

1949). So far, numerous entropy algorithms have been proposed

and used to quantify DoA, covering Spectral entropy [which

includes Response Entropy (RE) and State entropy (SE)] (Viertiö-

Oja et al., 2004; Klockars et al., 2012), Approximate entropy

(ApEn) (Bruhn et al., 2000), Sample entropy (SampEn) (Richman

and Moorman, 2000), Fuzzy entropy (FuzzyEn) (Chen et al.,

2007), Shannon Permutation entropy (SPE) (Li et al., 2008a,

2012), Shannon Wavelet entropy (SWE) (Särkelä et al., 2007), and

Hilbert-Huang spectral entropy (HHSE) (Li et al., 2008b).

Spectral Entropy is the method applied in the commercial

M-Entropy Module (Viertiö-Oja et al., 2004). It consists of two

parameters: Response Entropy (RE) and State Entropy (SE). SE

primarily includes the spectrum of the EEG signal from 0.8 to

32 Hz, and RE includes electromyogram activity from 0.8 to 47 Hz

(Viertiö-Oja et al., 2004). Shannon Wavelet entropy (SWE) is the

Shannon entropy in the wavelet domain, which indicates signal

variation at each frequency scale (Rosso et al., 2001). And the

Hilbert–Huang spectral entropy (HHSE) is the Shannon entropy

based on the Hilbert–Huang transform proposed by Huang et al.

(1998). HHSE has been successfully applied to the anesthetic EEG

signals (Li et al., 2008b).

The above methods are based on the frequency spectrum.

Whereas many entropy methods are based on the time series

and phase space analysis. ApEn is an algorithm derived from

the Kolmogorov-Sinai entropy (Pincus, 1991). It quantifies the

predictability of subsequent amplitude values of a signal. A

previous investigation showed that ApEn correlates well with

the concentration of desflurane (Bruhn et al., 2000). However,

ApEn lacks relative consistency and is highly dependent on data

length, SampEn was proposed to overcome ApEn’s limitation

by removing self-matching and relieving its bias (Richman and

Moorman, 2000). SampEn has been used for analyzing EEG sig-

nals (Montirosso et al., 2010; Yoo et al., 2012). FuzzyEn was

proposed by Chen et al. (2007). It is based on the fuzzy member-

ship functions to define the vectors’ similarity, using the soft and

continuous boundaries of fuzzy functions to ensure the continu-

ity and the validity of FuzzyEn’s definition (Chen et al., 2009).

SPE was introduced by Bandt and Pompe (2002). It is a com-

plexity measure based on symbolic dynamics (Bandt and Pompe,

2002). Because of its simple concept and fast computation, SPE

has been widely used in EEG signal analysis (Cao et al., 2004;

Li et al., 2007, 2008a). Furthermore, its derivatives, multi-scale

permutation entropy (Li et al., 2010) and composite permutation

entropy index (Olofsen et al., 2008) have been successfully applied

to analyze EEG signals during anesthesia.

However, “No one knows what entropy really is, so in a debate

you will always have the advantage.” This statement is true for

EEG analysis today (Ferenets et al., 2006). Each entropy index has

its own advantages and disadvantages, but how does their perfor-

mance compare when evaluating the effect of anesthesia on brain

activity? To this end, some researchers have compared the per-

formance of different entropy methods for anesthesia monitoring

(Sleigh et al., 2001, 2005; Bein, 2006). Unfortunately, these arti-

cles analyzed no more than three entropies. To our knowledge, a

systematic comparison of the performance of them in assessing

anesthesia drug effect is lacking. In this study, we aim to com-

pare the capability of several commonly used entropy indices for

monitoring DoA.

We noticed that definitions of all the above entropies are

based on Shannon information theory, which belongs to a short-

range or extensive concept. However, the physical systems espe-

cially the biomedical systems are often characterized by either

long-range interactions, long-term memories, or multifractality

(Zunino et al., 2008). To describe these characters, two general-

ized forms of entropy were proposed: Renyi entropy (Renyi, 1970)

and Tsallis entropy (q-entropy) (Tsallis et al., 1998). For exam-

ple Tsallis entropy has a parameter q for non-extensity. If q > 1,

the entropy is more sensitive to events that occur often, whereas

if 0 < q < 1 it is more sensitive to the events that occur seldom

(Maszczyk and Duch, 2008). In the limit q → 1, it coincides with

Shannon entropy. These generalized entropies can provide addi-

tional informational about the importance of specific events, such

as outliers or rare events. The two classes of entropies and their

combinations with current signal processing methods have been

already applied in EEG analysis (Bezerianos et al., 2003; Tong

et al., 2003; Inuso et al., 2007) and often been proved advan-

tageous than the Shannon version (Zunino et al., 2008; Arefian

et al., 2009). To make the research more instructive, we believe it

useful to investigate these non-extensive entropy measures along

with those extensive Shannon entropies in DoA monitoring. In
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this study, we involved the Tsallis wavelet entropy (TWE) and

Renyi wavelet entropy (RWE) proposed by Rosso et al. (2003,

2006), as well as the Tsallis permutation entropy (TPE) pro-

posed by Zunino et al. (2008) and a new Renyi permutation

entropy (RPE).

For illustrative purpose, we divide the entropies into two

families:

(1) Entropies in the time-frequency domain: RE, SE, SWE, TWE,

RWE, and HHSE;

(2) Entropies in the time domain: ApEn, SampEn, FuzzyEn, SPE,

TPE, and RPE.

In this work, their performance for monitoring DoA were com-

pared. Using data sets obtained during sevoflurane and isoflurane

anesthesia, we quantified for each index the responsiveness to

loss of consciousness, computation complexity and the ability to

detect BSP. Pharmacokinetic/pharmacodynamic (PK/PD) mod-

eling and prediction probability statistics were applied to evaluate

the efficiency of each index for tracking anesthetic concentra-

tion. Additionally, in order to prove the efficiency of the entropy

approaches, two non-linear dynamic methods: DFA (Jospin et al.,

2007) and multifractal DFA (MDFA) (Kantelhardt et al., 2002)

are compared.

ENTROPY INDICES
The computation of each entropy index is briefly described as

follows.

SPECTRAL ENTROPY (RE AND SE)

Spectral Entropy quantifies the probability density function

(PDF) of the signal power spectrum in the frequency domain.

The detail of the Spectral Entropy algorithm can be seen in Inouye

et al. (1991) and Rezek and Roberts (1998). Spectral Entropy con-

sists of the RE and the SE. RE is computed over a frequency range

from 0.8 to 47 Hz while SE is computed over the frequency range

from 0.8 to 32 Hz. The normalization step for RE and SE are

defined as follows:

RE =
Hsp0.8−47

log (N0.8−47)
(1)

SE =
Hsp0.8−32

log (N0.8−47)
(2)

where Hsp0.8−47 and Hsp0.8−32 means the sum of spectral power

between 0.8 and 47 Hz, and 0.8 to 32 Hz, respectively. And N0.8−47

equals the total number of frequency components in the range

0.8–47 Hz. Spectral Entropy describes the degree of skewness in

the frequency distribution. For example, in the normalized case,

the Spectral Entropy of a pure sine wave with a single spectral

peak is 0, while that of white noise is 1.

WAVELET ENTROPY (SWE, TWE, AND RWE)

WE differentiates specific brain states under spontaneous or

stimulus-related conditions and recognizes the time localiza-

tions of a dynamic process. To calculate Wavelet Entropy, wavelet

energy Ej of a signal is determined at each scale j as follows:

Ej =
∑Lj

k = 1
d(k)2 (3)

where k and Lj are the summation index and the number of coef-

ficients at each scale j with in a given epoch, respectively. The total

energy over all scales is obtained by:

Etotal =
∑

j

Ej =
∑

j

∑Lj

k = 1
dj(k)2 (4)

Then wavelet energy is divided by total energy to obtain the

relative wavelet energy at each scale j:

pj =
Ej

Etotal
=

Ej
∑

j Ej
=

∑Lj

k = 1 d(k)2

∑

j

∑Lj

k = 1dj(k)2
(5)

SWE is calculated from Shannon entropy of pj distribution

between scales as follows:

S(s) = −
∑

j
pj log pj (6)

The detail of the algorithm used in this study can be seen in

Särkelä et al. (2007).

And the TWE is defined as,

S(T)
q =

1

q − 1

∑

j

[

pj −
(

pj

)q]
(7)

where q is a non-extensity parameter.

Based on the definition of Renyi entropy (Renyi, 1970), the

RWE is defined as Rosso et al. (2006):

S(R)
a =

1

1 − a
log

[

∑

j

(

pj

)a
]

(8)

For S
(S)
q , the normalized SWE is

SWE = S(s)/ log NJ (9)

where NJ is the number of wavelet resolution levels.

And S
(T)
q is normalized by dividing

[

1 − N
1 − q
J

]

/(q − 1),

defined by Rosso et al. (2003):

TWE =
S

(T)
q

[

1 − N
1 − q
J

]

/(q − 1)
(10)

Further, the normalized S
(R)
a is defined as Maszczyk and Duch

(2008):

RWE =
S

(R)
a

log NJ
(11)

The values of three WE measures depend on the wavelet basis

function, the number of decomposed layers (n) and the data
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length (N). Furthermore, the TWE and RWE are related to the

parameters q and a respectively. Among these parameters, the

wavelet basis function is most important. Because of the lack of a

fixed criterion, it is very difficult to select an appropriate wavelet

basis function in practical applications and many studies choose

it based on experiments. The details of the selection process in

this study can be found in Supplement Material 1.

HILBERT-HUANG SPECTRAL ENTROPY (HHSE)

HHSE is based on the Hilbert-Huang transform, which applies

the Shannon entropy concept to the Hilbert-Huang spectrum.

The detail of the algorithm is seen in Li et al. (2008b). For

a given non-stationary signal x(t), the EMD method decom-

poses the signal into a series of intrinsic mode functions (IMFs),

Cn (1, 2, . . . , M), where M is the number of IMFs. The signal x(t)

can be written by:

x (t) =
∑n − 1

i = 1
imf (t)i + rn (t) (12)

Apply the Hilbert transform to the IMF components,

Z (t) = imf (t) + iH
[

imf (t)
]

= a (t) ei
∫

ω(t)dt (13)

in which a (t) =

√

imf 2 (t) + H2
[

imf (t)
]

, ω (t) =

d
dt

[

arctan (H
[

imf (t)
]

/imf (t))
]

, where ω (t) and a(t) are

the instantaneous frequency and amplitude, respectively, of the

IMFs.

The Hilbert-Huang marginal spectrum is defined by:

h (ω) =

∫

H (ω, t) dt (14)

To simplify the representation, the Hilbert-Huang spectrum is

denoted as a function of frequency (f ) instead of angular fre-

quency (ω). The marginal spectrum is normalized by:

ĥ
(

f
)

= h(f )/
∑

h(f ) (15)

Next, the Shannon entropy concept is applied to the Hilbert-

Huang spectrum, and Hilbert-Huang spectral entropy is obtained

by:

HHSE = −
∑

f
ĥ

(

f
)

log
(

ĥ
(

f
)

)

(16)

The HHSE values are mainly affected by the frequency resolution

and data length (N). For accurate computation, the frequency res-

olution is chosen as 0.1 Hz. N directly influences the EMD. In

general, the boundary effect may be induced if N is too large or

too small, which can contaminate the data and distort the power

spectrum. The selection of N in this study is given in Supplement

Material 1.

APPROXIMATE ENTROPY (ApEn)

ApEn is derived from Kolmogorov entropy. It was introduced by

Pincus (1991). It can be used to analyze a finite length signal

and describe its unpredictability or randomness. Its computation

involves embedding the signal into the phase space and estimat-

ing the rate of increment in the number of phase space patterns

within a predefined value r, when the embedding dimension of

phase space increases from m to m + 1.

For a time series x (i), 1 ≤ i ≤ N of finite length N, reconsti-

tute the N − m + 1 vectors Xm(i) following the form:

Xm (i) = {x (i) , x (i + 1) , . . . , x(i + m − 1)} ,

i = 1, 2, . . . , N − m + 1 (17)

where m is the embedding dimension.

Let Cm
i (r) be the probability that any vector Xm(j) is within

distance r of Xm (i), defined as:

Cm
i (r) =

1

N − m + 1

∑N−m+1

j = 1
�

(

dm
ij − r

)

;

i, j = 1, 2, . . . , N − m + 1 (18)

where d is the distance between the vectors Xm(i) and Xm

(

j
)

,

defined as:

dm
ij = d

[

Xm
i , Xm

j

]

= max
(∣

∣x (i + k) − x(j − k)
∣

∣

)

,

k = 0, 1, . . . , m (19)

and � is the Heaviside function.

After that, define a parameter �m(r):

�m (r) = (N − m + 1)−1
∑N − m + 1

i = 1
ln Cm

i (r) (20)

Next, when the dimension changes to m + 1, the above process is

repeated.

�m + 1 (r) = (N − m)−1
∑N − m

i = 1
ln Cm + 1

i (r) (21)

Finally, the approximate entropy is defined by:

ApEn (m, r, N) = �m (r) − �m + 1(r) (22)

The detailed algorithm is seen in Bruhn et al. (2000). The ApEn

index is influenced by data length (N), tolerance (r) and embed-

ding dimension (m). According to Pincus (1991) and Bruhn et al.

(2000), N is recommended to be 1000, r 0.1∼0.25 of the stan-

dard deviation of the signal and m 2∼3. The selection of these

parameters is described in Supplement Material 1.

SAMPLE ENTROPY (SampEn)

The SampEn proposed by Richman and Moorman (2000) is

based on ApEn but differs from it in three ways to remove bias:

(1) SampEn eliminates self-matches;

(2) To avoid ln 0 caused by removing self-matches, SampEn

computes the additional operation of the total number of

template well-matches prior to the logarithmic operation.

Frontiers in Computational Neuroscience www.frontiersin.org February 2015 | Volume 9 | Article 16 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Liang et al. EEG entropy measures in anesthesia

(3) In order to have an equal number of patterns for both embed-

ding dimension m and m + 1, the time series reconstitution

in SampEn have N − m rows instead of N − m + 1 in ApEn

in embedding dimension m.

The first step of calculating SampEn is the same as ApEn. When

the embedding dimension is m, the total number of template

matches is:

Bm(r) = (N − m)−1
∑N − m

i = 1
Cm

i (r) (23)

Similarly, when the embedding dimension is m + 1, the total

number of template matches is:

Am(r) = (N − m)−1
∑N − m

i = 1
Cm + 1

i (r) (24)

Finally, the SampEn of the time series is estimated by:

SampEn (r, m, N) = − ln
Am(r)

Bm(r)
(25)

SampEn is based on ApEn, so its parameter selection procedure is

similar to that of ApEn (see Supplement Material 1).

FUZZY ENTROPY (FuzzyEn)

Zadeh introduced the concept of “fuzzy set” (Zadeh, 1965). Fuzzy

set provides a mechanism for measuring the degree to which a

pattern belongs to a given class, by introducing the concept of

“membership degree” having a fuzzy function uc(x). The nearer

the value uc(x) is to unity, the higher the membership grade of x in

the set C will be. Inspired by this, Chen et al. (2007) developed the

FuzzyEn based on SampEn. FuzzyEn uses the fuzzy membership

function u(dm
ij , r) to obtain the similarity between Xm

i and Xm
j

instead of the Heaviside function.

FuzzyEn is based on SampEn, so its parameter selection is

similar to that of SampEn (see Supplement Material 1).

PERMUTATION ENTROPY (SPE, TPE, AND RPE)

There are three types of PE measures involved in this study. PE is

an ordinal analysis method, in which a given time series is divided

into a series of ordinal patterns for describing the order relations

between the present and a fixed number of equidistant past val-

ues (Bandt, 2005). The advantage of this method is its simplicity,

robustness and low computational complexity (Li et al., 2007).

For an N-point normalized time series {x(i) : 1 ≤ i ≤ N},

firstly the time series is reconstructed:

Xi = {x(i), x(i + τ ), . . . , x(i + (m − 1)τ )},

i = 1, 2, . . . , N − (m − 1)τ (26)

where τ is the time delay, m is the embedding dimension.

Then, rearrange Xi in an increasing order:

{

x
(

i +
(

j1 − 1
)

τ
)

≤ x
(

i +
(

j2 − 1
)

τ
))

≤ · · ·

≤ x
(

i +
(

jm − 1
)

τ
}

(27)

There are m! permutations for m dimensions. Each vector Xi can

be mapped to one of the m! permutations.

Next, the probability of the jth permutation occurring pj can

be defined as:

pj =
nj

∑m!
j = 1 nj

(28)

where nj is the number of times the jth permutation occurs.

Based on the probability of the jth permutation pj, we define

SPE, TPE and RPE as follows.

SPE is just the Shannon entropy associated with the probability

distribution pj:

S
(s)
1 = −

∑m!

j = 1
pjlog pj (29)

And the normalized SPE is:

SPEn =
S
(S)
1

S
(s)
1,max

=

∑m!
j = 1 pjlog pj

log (m!)
(30)

Based on the definition of Tsallis entropy, Zunino et al., proposed

the normalized TPE and defined it as Zunino et al. (2008):

TPE =

∑m!
j = 1

(

pj − p
q
j

)

1 − (m!)1 − q
(31)

Furthermore, the normalized RPE measure based on the Renyi

entropy and permutation probability distribution pj is:

RPEn =
log

∑m!
j = 1 pa

j

(1 − a) ln m!
(32)

In Li et al. (2008a, 2010, 2012), SPE was used to evaluate the

effect of sevoflurane and isoflurane anesthesia on the brain. In

this study, the parameters of m = 6 and τ = 1 are selected for

sevoflurane anesthesia as proposed in Li et al. (2008a). The SPE’s

parameters for isoflurane anesthesia are the same as those pro-

posed by Li et al. (2012). TPE and RPE are first used in DoA

measure, therefore selection of the appropriate parameters of TPE

and RPE should be based on the experiments. The details of the

selection process is shown in Supplement Material 1.

MATERIALS AND STATISTICAL METHODS
SUBJECTS AND EEG RECORDINGS

EEG data set during sevoflurane-induced anesthesia

In this study, the first data set we used was from a previous

study (McKay et al., 2006), in which 19 patients aged 18–63 years

were recruited from Waikato Hospital, Hamilton, New Zealand.

The subjects were scheduled for elective gynecologic, general, or

orthopedic surgery. All patients fasted for at least 6 h before anes-

thesia and received no premedication. Patients were American

Society of Anesthesiologists physical status I or II and signed writ-

ten informed consent following approval by the Waikato Hospital

ethics committee.
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Before application of Ag/AgCl electrodes, the skin was carefully

cleaned with an alcohol swab to ensure electrode-skin impedance

of less than 7.5 k�. A composite electrode, the Entropy™ Sensor,

composed of a self-adhering flexible band holding three elec-

trodes were used to record the EEG signals between the forehead

and temple (active = FpZ, earth = Fp1, and reference = F8).

RE and SE were measured every 5 s with a plug-in M-Entropy

S/5 Module (Datex-Ohmeda). The sevoflurane concentration was

measured at the mouth at 100/s (McKay et al., 2006). All data

were recorded and stored on a laptop computer. Off-line analysis

was performed using the MATLAB (version 8, MathWorks Inc.)

software.

EEG data set during isoflurane-induced anesthesia

The second data set contains 29 patients (9 men and 20 women,

age 33–77 year) receiving elective abdominal surgery during

combined isoflurane general anesthesia and epidural anesthe-

sia (Hagihira et al., 2002). These patients had no neurologic

or psychiatric disorders and didn’t receive medication with any

drugs known to influence anesthesia. The data recordings were

approved by the Osaka Prefectural Habikino Hospital and all

patients gave written informed consent.

Each patient was injected intramuscularly with 0.5 mg

atropine before entering the operating room. Initially, an epidu-

ral catheter was placed at the appropriate spinal location. Then,

after confirming the effect of epidural analgesia, 3 mg/kg thiopen-

tal was used to induce anesthesia. Anesthesia was subsequently

maintained with isoflurane, oxygen, and nitrogen after tra-

cheal intubation. Vecuronium was given as required. Lidocaine

1% (80–110 mg/h; initial dose, 90–100 mg) was administered

epidurally. Patients received controlled ventilation to maintain

adequate oxygenation and normocapnia. To keep mean blood

pressure at 60 mmHg, dopamines were administered as required

at a dose of 2–5 µg/(kg·min).

Before induction of anesthesia, five EEG electrodes (A1, A2,

FP1, FP2, and FPz) were attached to the patients according to

the International 10–20 System. FPz was used as the ground

electrode. The EEG signal used was recorded from a unipo-

lar lead (FP1-A1) through a 514 X-2 EEG telemetry system

(GE Marquette, Tokyo, Japan) with sample frequency of 512 Hz

(another Fp2-A2 channel was not analyzed). Isoflurane was ini-

tially increased to 1.5% and then stepped down to 0.7%. The

end-tidal concentration of isoflurane was purposely maintained

at set levels (1.5, 1.3, 1.1, 0.9, and 0.7%) for 30 min at each level.

The EEG recordings at 0.3 and 0.5% isoflurane were collected

immediately after the operation. The concentration of isoflurane

was continuously monitored and recorded by Canomac (Datex,

Helsinki, Finland). The BSP was evident in six of the 29 EEG

recordings.

The two data sets used can be obtained by asking the authors

of corresponding original papers.

EEG PREPROCESSING

All the EEG recordings were preprocessed by following the steps

outlined in Li et al. (2010) before further analysis. Firstly, data

points whose amplitude values exceeded a threshold determined

by mean and standard deviation (SD) statistics were removed as

outliers. Then, the filter function filter.m was used to remove the

frequency components higher than 60 Hz. This FIR filter ensures

that phase information is not distorted. Thirdly the stationary

wavelet transform was used to reduce electro-oculogram (EOG)

artifact. Finally, an inverse filter was used to detect and remove

EMG and other high-amplitude transient artifacts.

PHARMACOKINETIC/PHARMACODYNAMIC MODELING

To derive the relationship between effect-site anesthetic drug

concentration and the measured EEG index, PK/PD modeling

was used. These methods have been successfully used to eval-

uate the proposed EEG indices (Li et al., 2008a; Olofsen et al.,

2008). It describes the relationship between drug dose and its

effect through two successive physiological processes (McKay

et al., 2006). The pharmacokinetic (PK) side of the model

describes the changes in blood concentration of the drug over

time, while the pharmacodynamic (PD) aspect shows the relation

between the concentration of drug at its effect site and its mea-

sured effect. The simplest effect site model is a first order model,

defined as:

dCeff/dt = keo(Cet − Ceff) (33)

where Ceff denotes the effect-site concentration, keo is the first-

order rate constant for efflux from the effect compartment and

Cet is the end-tidal concentration.

In addition, a non-linear inhibitory sigmoid Emax model was

used to describe the relationship between the estimated Ceff and

the measured EEG indices.

Effect = Emax − (Emax − Emin) ×
C

γ

eff

EC
γ
50 + C

γ

eff

(34)

where Effect is the processed EEG measure, Emax and Emin respec-

tively are the maximum and minimum Effect for each individual,

EC
γ
50 is the drug concentration that causes 50% of the maxi-

mum Effect and γ is the slope of the concentration–response

relationship.

The coefficient of determination R2 is calculated by:

R2 = 1 −

∑n
i = 1

(

yi − ŷi

)2

∑n
i = 1

(

yi − y
)2

(35)

where yi is the measured Effect for a given time and ŷi is corre-

sponding modeled Effect.

Ceff is estimated by iteratively running the above model with a

series of keo values, with the optimal keo yielding the greatest R2

for each patient.

MDFA EXPONENT

Kantelhardt et al., proposed the MDFA method to describe the

non-stationary time series, which is based on a generalization

DFA method (Kantelhardt et al., 2002). Nguyen-Ky et al., used

the moving-average DFA method to monitoring the DoA and

the results showed that DFA could accurately estimate a patient’s

hypnotic state (Nguyen-Ky et al., 2010a).
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For a time series x(t) of length N, the main computation

procedure of MDFA consists of three steps.

Step 1. Construct the profile as the equation showed below,

y
(

j
)

=
∑j

i=
[x (i) − 〈x〉] (36)

where 〈x〉 represents the average value of x(t).

Step 2. Divide the new profile
{

y
(

j
)}

into Ns = N/s non-

overlapping segments of equal length s. Since the record length N

may not be a multiple of the considered time scale s, a short part

at the end of the profile will remain in most cases. In order not to

disregard this part of record, the same procedure is repeated start-

ing from the other end of the profile
{

y
(

j
)}

. Thus, 2Ns segments

are obtained altogether.

Step 3. Calculate the local trend for each segment by a least-

square fit of the data and calculate the variance F2 (s, v). Thus,

the qth order fluctuation function is calculated as follows:

Fq (s) =

{

1

2Ns

∑2N

v = 1

[

F2 (s, v)
q/2

}1/q

(37)

If q = 0, then

F0 (s) = exp

{

1

4Ns

∑2Ns

v = 1
ln

[

F2(s, v)
]

}

(38)

It is obvious that when q = 2, we have the standard DFA proce-

dure.

MFDFA characterizes the evolution of Fq (s) is a function of

the segment length s. Modeling fluctuations that present a power-

law behavior between Fq (s) and s, Fq(s) ∝ sh(q), where the h(q) is

generalized Hurst exponent.

For the multifractal time series, the scaling behavior is sensitive

with the parameter q. For positive q, h(q) describes the scaling

behavior of the segments with large fluctuations. On the contrary,

for negative q, h(q) is sensitive to small fluctuations. For more

detail of the MDFA method, see in Kantelhardt et al. (2002).

In this study, we only considered the influence of q with

the MDFA measure. The selection of parameter is described in

Supplement Material 1.

STATISTICAL ANALYSIS

To further evaluate the correlation between the measured EEG

index and underlying anesthetic drug effect, prediction probabil-

ity (Pk) statistics were applied, as described in Smith et al. (1996).

Given two random data points with different Ceff, Pk describes

the probability that the measured EEG index correctly predicts

the Ceff of the two points. Its definition is:

Pk =
Pc + Ptx/2

Pc + Pd + Ptx
(39)

where Pc, Pd and Ptx separate the probability that two data points

drawn at random, independently and with replacement from the

population are a concordance, a discordance or an x-only tie. A

value of 1 means that the EEG index is perfectly concordant with

Ceff; whereas a value of 0.5 means the EEG index is obtained by

chance. When the monotonic relation between the drug concen-

tration and the EEG index is negative, the resultant Pk value is

replaced by 1 − Pk.

In addition, The Kolmogorov–Smirnov test was used to deter-

mine whether the data sets were normally distributed. To assess

the index stability during the awake state and the sensitivity to

the induction process, the relative coefficient of variation (CV)

(Li et al., 2008a) was used. Kruskal-Wallis test was used to deter-

mine the significant difference of the index values between awake,

induction, anesthesia and recovery states.

RESULTS
First we used these entropy measures on EEG data from sevoflu-

rane anesthesia. Figure 1A shows a preprocessed EEG recording

and the derivative from the EEG signal during the whole sevoflu-

rane induction process, from awake to induction, then to deep

anesthesia, and finally to recovery. With deepening anesthesia,

the mean amplitude of the EEG gradually increased and then the

amplitude decreased in the state of recovery. The concurrent end-

tidal sevoflurane concentration is represented by the black line

given in Figure 1B. It can be regarded as the drug concentration in

blood, derived from the recorded sevoflurane concentration at the

mouth (represented by gray line). The changes in RE, SE, SWE,

TWE, RWE, HHSE, ApEn, SampEn, FuzzyEn, SPE, TPE, RPE,

and MDFA corresponding to the EEG recording are successively

given in Figures 1C–K. As can be seen, all the entropy indices

generally followed the changes in EEG pattern as the drug con-

centration increased and decreased. And MDFA had the opposite

trend with entropy indices.

Then we analyzed the EEG recording during isoflurane anes-

thesia using the same entropy algorithms and MDFA methods.

Figures 2A,B are the EEG recording and isoflurane end-tidal

concentration respectively. It can be seen that the drug concentra-

tion increased and then decreased. Figures 2C–K shows the same

entropy and MDFA indices as Figures 1C–K, and demonstrate

equivalent trends, in line with changes in drug concentration.

Loss of consciousness (LOC) is the most important clinical

time point during anesthesia. We investigated the ability of these

entropies in tracking LOC. Figure 3 demonstrates the changes

in each index around LOC, from LOC−30 s to LOC+30 s for

all subjects during sevoflurane anesthesia. For these plots, index

values were normalized to between 0 and 1. It can be seen in

Figures 3A–N that MDFA(−8) decreased most rapidly, followed

by SWE. Thus, the MDFA with q = −8 appeared to be the most

sensitive to LOC. To verify this, we calculated the absolute slope

values (mean ± SD) of the linear-fitted polynomials vs. time for

these indices, as shown in Figure 3O. As can be seen, the absolute

slope value for MDFA(−8) (0.44 ± 0.22) is largest, followed by

SWE (0.43 ± 0.23).

To further compare the ability of the indices to distinguish

different anesthesia states, the sevoflurane anesthesia procedure

was divided into four states, i.e., awake, induction, deep anesthe-

sia, and recovery. For each index, a box plot is given in Figure 4.

The data was not normally distributed, so the statistics of the

19 patients undergoing sevoflurane anesthesia were expressed as

median (min—max), as shown in Table 1. All the entropy indices

monotonically decreased as anesthesia deepened, then increased
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FIGURE 1 | An EEG recording from a patient undergoing sevoflurane

anesthesia and corresponding entropy indices vs. time. (A) Preprocessed

EEG recording. (B) Sevoflurane concentration recorded at the mouth (gray

line) and the derived end-tidal sevoflurane concentration (black line). (C–J)

The time course of the studied EEG derivative. The indices are calculated

over a window of 10 s with an overlap of 75%. (K) The time course of MDFA

at q = 2 [MDFA(2)] and q = −8 [MDFA(−8)]. The window and overlap

selection are similar with entropy measures.

FIGURE 2 | An EEG recording from a patient in isoflurane anesthesia

and calculated indices. (A) Preprocessed EEG recording, re-sampled at

128 Hz. (B) Recording of the isoflurane end-tidal concentration. (C–J)

Time course of entropy indices, with a time interval of 10 s and 5 s

overlap. (K) Time course of MDFA measures with a time interval of 10

and 5 s overlap.
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FIGURE 3 | Entropy and MDFA analysis around the time of LOC for

subject undergoing sevoflurane anesthesia (n = 19). (A–N) The

normalized indices around LOC (from LOC − 30 s to LOC + 30 s) for

all subjects. The red plus sign denotes the point of LOC. (O)

Statistical analysis of the absolute slope of the linear-fitted polynomials

vs. time for studied indices. Bar height indicates the mean value, and

the lower and upper line are the 95% confidence interval of each

index.

FIGURE 4 | Box plots of RE, SE, SWE, TWE, RWE, HHEn, ApEn, SampEn, FuzzyEn, SPE, TPE, RPE, MDFA(2) and MDFA(-8) (A–N) at awake (I), induction

(II), deep anesthesia (III) and recovery (IV) states.

during recovery. The MDFA indices have an opposite trend with

the entropy measures. These are consistent with the results in

Figure 1. The overlap of three types of PE (SPE, TPE, and RPE)

values between the awake and deep anesthesia states were smaller

than the other indices. This means the PE has a better ability

to separate these states and a greater robustness for individual

differences.

To estimate the baseline variability and the sensitivity to the

induction process of each index, the CV value of all the indices

for the sevoflurane data set are computed and the results are given

in Table 2. During the awake state, the CV value of SampEn was

0.095, which was the highest; The CV value of TPE was 0.003, sig-

nificantly lower than MDFA(2) (0.240) and MDFA(−8) (0.125)

and the other indices. The CV values of SPE and RPE were lower
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Table 1 | The statistics of the studied indices at different anesthetic states [median (min-max)].

Awake Induction Deep anesthesia RoC

RE 0.87 (0.65–0.90) 0.58 (0.35–0.89) 0.59 (0.37–0.68) 0.66 (0.34–0.79)

SE 0.77 (0.65–0.79) 0.61 (0.37–0.79) 0.63 (0.39–0.73) 0.71 (0.37–0.79)

SWE 0.86 (0.37–0.96) 0.40 (0.10–0.83) 0.36 (0.07–0.66) 0.68 (0.32–0.83)

TWE 0.93 (0.71–0.98) 0.61 (0.37–0.91) 0.57 (0.32–0.71) 0.76 (0.55–0.85)

RWE 0.88 (0.52–0.96) 0.46 (0.16–0.83) 0.43 (0.12–0.62) 0.71 (0.39–0.82)

HHSE 5.63 (4.43–6.26) 4.43 (2.93–6.01) 4.40 (3.02–5.02) 4.81 (3.76–6.03)

ApEn 1.44 (0.63–1.59) 0.95 (0.54–1.35) 1.08 (0.47–1.50) 1.26 (0.63–1.60)

SampEn 1.88 (0.52–2.65) 1.08 (0.15–2.37) 0.97 (0.01–1.63) 1.44 (0.13–2.16)

FuzzyEn 3.28 (1.49–4.33) 1.80 (0.81–4.14) 1.70 (1.01–3.72) 2.22 (1.13–3.44)

SPE 0.81 (0.79–0.83) 0.64 (0.49–0.82) 0.58 (0.46–0.82) 0.65 (0.56–0.75)

TPE 0.91 (0.87–0.92) 0.74 (0.49–0.91) 0.57 (0.44–0.69) 0.62 (0.53–0.80)

RPE 0.91 (0.87–0.92) 0.67 (0.33–0.91) 0.46 (0.29–0.62) 0.60 (0.47–0.79)

MDFA (2) 0.62 (0.23–1.26) 1.67 (0.56–2.25) 1.67 (1.35–2.36) 1.00 (0.72–1.68)

MDFA (−8) 0.54 (0.38–1.32) 1.79 (0.35–2.47) 2.05 (1.54–2.68) 1.43 (0.84–2.06)

RE, response entropy in the M-entropy module; SE, state entropy; SWE, Shannon wavelet entropy; TWE, Tsallis wavelet entropy; RWE, Renyi wavelet entropy;

HHSE, Hilbert-Huang spectral entropy; ApEn, approximate entropy; SampEn, sample entropy; FuzzyEn, fuzzy entropy; SPE, Shannon permutation entropy; TPE,

Tsallis permutation entropy; RPE, Renyi permutation entropy; MDFA(2), Multifractal detrended fluctuation analysis with q = 2; MDFA(-8), Multifractal detrended

fluctuation analysis with q = −8.

Table 2 | The CV of the studied indices at different anesthetic states.

Awake Induction Deep RoC

RE 0.025 0.149 0.047 0.052

SE 0.016 0.122 0.047 0.050

SWE 0.080 0.338 0.177 0.077

TWE 0.024 0.161 0.063 0.038

RWE 0.043 0.276 0.127 0.057

HHSE 0.029 0.089 0.027 0.024

ApEn 0.040 0.193 0.064 0.043

SampEn 0.095 0.259 0.087 0.094

FuzzyEn 0.089 0.193 0.088 0.073

SPE 0.006 0.115 0.028 0.025

TPE 0.003 0.138 0.030 0.028

RPE 0.004 0.219 0.043 0.041

MDFA(2) 0.240 0.176 0.046 0.100

MDFA(-8) 0.125 0.256 0.047 0.097

than other indices as well. The lower CV value of PE illustrates

that PE measures were less sensitive to noise, while MDFA meth-

ods were least robust against noise. During induction, the CV of

SWE (0.338) was the highest. This demonstrates that SWE had a

faster response speed compared to the other indices.

In order to verify the performance of all the indices for moni-

toring DoA and detecting the burst suppression state, we analyzed

the isoflurane anesthesia data set, in which some subjects entered

into the burst suppression state during deep anesthesia. The

results are given in histogram form and shown in Figure 5. All the

indices except SE and MDFA decreased with increasing isoflurane

concentration. During burst suppression, only ApEn and SampEn

continued to decrease. This means that the ApEn and SampEn

algorithms could be used to evaluate DoA including detection of

the burst suppression state, without the need for Supplementary

Methods. The tabulated results for each index at the different

isoflurane concentrations and BSP are presented in Table 3. The

CV of the indices show that PE (0.033) outperformed the others

in awake state (0% concentration) (see Table 4). And the CV of

two MDFA measures were relative higher in awake state. It indi-

cate that MDFA algorithms were no better than some entropy

measures in anti-noise performance.

To further compare the performance of the studied indices,

PK/PD modeling was performed to describe the relationship

between the index values and the estimated sevoflurane and

isoflurane effect-site concentration. Tables 5, 6 give these param-

eters for isoflurane and sevoflurane anesthesia respectively, in

which the maximum coefficient of determination (R2) gives the

correlation between the index values and the anesthetic effect site

concentration. Figures 6A,B show the R2 values of the indices for

the two data sets. Figure 6A shows the R2 values for sevoflurane.

It can be seen that R2 for TPE (0.95, 95% confidence interval

0.92–0.98) was significantly higher than the other entropy indices.

Figure 6B shows R2 values for isoflurane. Again, R2 for SPE (0.81)

was higher than the other entropy indices. Although R2 of MDFA

with q = 8 was relative higher in sevoflurane anesthesia, the value

in isoflurane anesthesia was lower. The statistical analysis also

shows that for the same entropy algorithm, the mean R2 value

for sevoflurane was significantly higher than for isoflurane.

To assess the performance of the indices to correctly predict

drug effect-site concentrations, we evaluated the prediction prob-

ability Pk of all the indices from the PK/PD modeling for all the

subjects, as shown in Figures 7A,B. And the statistical results are

shown in Table 7. Overall, most Pk values of indices for sevoflu-

rane were higher than for isoflurane. For sevoflurane, Pk of RPE

and MDFA were equal (0.87, 95% confidence interval is 0.83–

0.90 and 0.83–0.92 respectively), slightly higher than RWE (0.85)

and TWE 0.81 (95% confidence interval 0.79–0.84). Also, Pk of
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FIGURE 5 | Histograms of entropy (A–L) and MDFA (M,N) indices for patients induced with different isoflurane concentrations, including 0, 7, 9, 11,

13, 15% and the concentration at which burst suppression occurred. The burst suppression state is highlighted by the red bar.

Table 3 | The statistics of the studied indices at different isoflurane concentrations [median (min-max)].

Concentrations and BSP

0% 7% 9% 11% 13% 15% BSP

RE 0.70 (0.42–0.91) 0.70 (0.46–0.80) 0.68 (0.49–0.79) 0.67 (0.50–0.77) 0.65 (0.43–0.73) 0.65 (0.55–0.72) 0.65 (0.37–0.82)

SE 0.73 (0.45–0.83) 0.75 (0.49–0.85) 0.73 (0.52–0.85) 0.71 (0.54–0.83) 0.70 (0.46–0.78) 0.69 (0.59–0.77) 0.69 (0.39–0.83)

SWE 0.73 (0.03–0.95) 0.70 (0.02–0.87) 0.67 (0.30–0.87) 0.63 (0.34–0.81) 0.61 (0.30–0.80) 0.60 (0.41–0.74) 0.62 (0–0.94)

TWE 0.82 (0.24–0.97) 0.76 (0.22–0.91) 0.74 (0.56–0.88) 0.71 (0.14–0.85) 0.70 (0.52–0.86) 0.67 (0.55–0.80) 0.72 (0.12–0.97)

RWE 0.89 (0.36–0.98) 0.85 (0.33–0.95) 0.83 (0.69–0.93) 0.81 (0.24–0.91) 0.80 (0.66–0.91) 0.78 (0.68–0.87) 0.82 (0.19–0.98)

HHSE 5.06 (3.53–5.95) 4.82 (3.57–5.48) 4.71 (3.93–5.33) 4.64 (3.62–5.24) 4.58 (3.66–5.07) 4.53 (4.02–4.95) 4.70 (3.38–5.33)

ApEn 1.45 (0.07–1.60) 1.17 (0.06–1.55) 1.14 (0.82–1.48) 1.06 (0.01–1.42) 0.98 (0.63–1.34) 0.95 (0.73–1.29) 0.90 (0.07–1.51)

SampEn 1.75 (0.03–2.58) 1.31 (0.02–2.18) 1.22 (0.78–1.90) 1.10 (0.01–1.78) 0.99 (0.40–1.49) 0.95 (0.38–1.42) 0.78 (0.02–1.88)

FuzzyEn 2.37 (0.56–3.93) 2.00 (0.33–3.29) 1.86 (1.23–2.89) 1.86 (0.61–3.04) 1.87 (1.13–3.17) 1.81 (1.29–2.65) 2.45 (0.32–3.47)

SPE 0.92 (0.66–0.94) 0.90 (0.39–0.94) 0.89 (0.76–0.94) 0.87 (0.41–0.94) 0.84 (0.69–0.92) 0.82 (0.69–0.92) 0.88 (0.47–0.92)

TPE 0.88 (0.73–0.92) 0.79 (0.65–0.92) 0.78 (0.61–0.91) 0.76 (0.59–0.89) 0.72 (0.59–0.88) 0.69 (0.58–0.85) 0.82 (0.67–0.89)

RPE 0.85 (0.59–0.91) 0.76 (0.60–0.90) 0.74 (0.55–0.90) 0.70 (0.36–0.87) 0.66 (0.47–0.85) 0.63 (0.48–0.81) 0.75 (0.55–0.86)

MDFA (2) 0.96 (0.41–1.61) 1.07 (0.81–1.42) 1.23 (0.56–1.56) 1.20 (0.69–1.66) 1.31 (0.92–1.81) 1.37 (1.01–1.74) 1.27 (0.77–1.95)

MDFA (-8) 1.21 (0.55–2.13) 1.58 (1.19–2.22) 1.69 (1.04–2.32) 1.62 (0.98–2.36) 1.71 (1.09–2.36) 1.88 (1.32–2.59) 1.42 (0.32–2.89)

RPE was higher than that of TPE and SPE. Similarly, Pk of RWE

was highest in three WE methods. It means that Renyi entropy

had a better performance in predicting drug effect-site concentra-

tions comparing with Shannon entropy and Tsallis entropy. The

differences between RPE and the other indices were statistically

significant (all p < 0.05, paired t-test), except for MDFA(-8). And

the difference between RPE and TPE, SPE were statistically signif-

icant (p = 0.03 and 0.01 respectively, paired t-test), which means

that RPE had a stronger ability to track the sevoflurane effect-site

concentration during anesthesia. In order to get a more intuitive

comparison, the best curve fits of all indices against the effect-site

concentration are demonstrated for both sevoflurane (Figure 8)

and isoflurane (Figure 9).

To compare the timeliness performance of each index in track-

ing DoA, we recorded the computing time of each index for the

same subject. 20 EEG recordings from the two data sets were

selected. The calculate epoch length (N) of each algorithm is

equal to 10 s, and the overlap select 5.0 s. The computing time for

1 min of EEG data compared for each index is given in Table 8.

The fastest index was WE (0.025 ± 0.001 s). The RE/SE and PE

computation times were 0.096 ± 0.008 s and 0.545 ± 0.016 s

respectively. The MDFA (16.338 ± 0.280 s) was the slowest.
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The desktop computer used for this test had the following con-

figuration: Intel Core i3 CPU, 4 cores at 2.93 GHz, with 2 GB of

RAM, running Windows XP professional operating system.

DISCUSSION AND CONCLUSION
In this study, we investigated the performance of 12 entropy algo-

rithms to assess the effect of GABAergic anesthetic agents on

EEG activity, including RE, SE, SWE, TWE, RWE, HHSE, ApEn,

SampEn, FuzzyEn, SPE, TPE, and RPE. Two data sets includ-

ing sevoflurane and isoflurane anesthesia were employed as the

test samples for evaluating the entropy algorithms. We compared

their performance in estimating the DoA and detecting the burst

suppression pattern. PK/PD modeling and prediction probability

Table 4 | The CV of indices for different isoflurane concentrations.

Concentrations and BSP

0% 7% 9% 11% 13% 15% BSP

RE 0.118 0.070 0.057 0.046 0.056 0.045 0.097

SE 0.089 0.070 0.057 0.046 0.055 0.044 0.093

SWE 0.237 0.125 0.114 0.111 0.118 0.090 0.328

TWE 0.130 0.070 0.064 0.065 0.071 0.060 0.187

RWE 0.087 0.047 0.042 0.045 0.048 0.040 0.143

HHSE 0.077 0.048 0.041 0.037 0.040 0.035 0.060

ApEn 0.216 0.108 0.106 0.114 0.103 0.119 0.308

SampEn 0.368 0.172 0.156 0.178 0.147 0.154 0.466

FuzzyEn 0.196 0.156 0.131 0.141 0.152 0.122 0.249

SPE 0.033 0.028 0.033 0.038 0.046 0.053 0.064

TPE 0.052 0.073 0.069 0.074 0.078 0.085 0.050

RPE 0.079 0.083 0.086 0.086 0.095 0.101 0.090

MDFA(2) 0.24 0.08 0.19 0.19 0.13 0.09 0.13

MDFA(−8) 0.21 0.09 0.17 0.16 0.12 0.11 0.15

statistics were applied to assess their effectiveness. In addition, we

compared the MDFA measure with all entropy indices to test the

efficiency of entropy approach.

The twelve entropy measures could be divided into two classes:

time-domain-based and time-frequency-domain-based analyses.

On one hand, ApEn, SampEn, FuzzyEn, and PE are time domain

analysis methods. All these entropy algorithms are based on non-

linear theories, and the first three are phase space analytical

methods (Chen et al., 2009). PE is based on ordinal pattern analy-

sis of the time series (Bandt, 2005). Considering that the EEG has

non-linear characteristics, these four methods have their advan-

tages. For example, FuzzyEn and PE are less sensitive to the signal

quality and calculation length (Pincus, 1991; Li et al., 2008a).

Relative to ApEn and SampEn, FuzzyEn can resolve more detail

in the time series and has more accurate definition in theory

(Chen et al., 2009). On the other hand, RE, SE, WE, and HHSE

indices are based on the time-frequency domain. The start point

of RE and SE is the spectral entropy, which has the particular

advantage that the contributions to entropy from any particular

frequency range are explicitly separated. In order to achieve opti-

mal response time, RE and SE adopt a variable time window for

each particular frequency-called time-frequency balanced spec-

tral entropy (Viertiö-Oja et al., 2004). Compared to the variable

time windows of RE and SE, the window function of WE is vari-

able in both time and frequency domains. The HHSE algorithm

is based on the EMD and Hilbert transform (Li et al., 2008b).

The advantage of this method is that it can estimate the instan-

taneous amplitude and phase/frequency. Also it can break down

a complicated signal without a basis function (such as sine or

wavelet functions) into several oscillatory modes that are embed-

ded in this complicated signal. The marginal spectrum gives a

more accurate and nearly continuous distribution of EEG energy,

which is completely different from the Fourier spectrum (Li et al.,

2008b).

Table 5 | The PK/PD modeling parameters for sevoflurane.

t1/2keo(min) γ Emax Emin EC50 R2

RE 0.04 ± 0.03 8.25 ± 7.62 0.46 ± 0.09 0.13 ± 0.06 1.19 ± 0.60 0.80 ± 0.14

SE 0.06 ± 0.06 5.22 ± 2.32 0.35 ± 0.09 0.14 ± 0.05 1.71 ± 0.93 0.72 ± 0.16

SWE 0.07 ± 0.02 4.01 ± 3.12 1.01 ± 0.16 0.15 ± 0.07 1.42 ± 0.51 0.79 ± 0.12

TWE 0.03 ± 0.01 3.81 ± 1.86 0.50 ± 0.10 0.05 ± 0.16 1.54 ± 0.63 0.86 ± 0.06

RWE 0.04 ± 0.02 5.95 ± 3.98 0.58 ± 0.10 0.12 ± 0.07 1.68 ± 0.60 0.85 ± 0.06

HHSE 0.05 ± 0.02 4.15 ± 3.43 1.99 ± 0.41 0.62 ± 0.34 1.56 ± 1.15 0.80 ± 0.06

ApEn 0.05 ± 0.02 8.22 ± 6.62 0.82 ± 0.17 0.22 ± 0.11 1.84 ± 0.52 0.78 ± 0.11

SampEn 0.05 ± 0.02 5.68 ± 4.45 1.46 ± 0.38 0.40 ± 0.22 1.64 ± 0.62 0.75 ± 0.12

FuzzyEn 0.06 ± 0.04 2.75 ± 1.54 2.14 ± 0.40 0.58 ± 0.32 1.05 ± 0.38 0.69 ± 0.17

SPE 0.70 ± 0.32 4.65 ± 1.57 0.32 ± 0.05 0.08 ± 0.03 1.30 ± 0.33 0.94 ± 0.04

TPE 0.18 ± 0.01 6.98 ± 3.19 0.39 ± 0.04 0.02 ± 0.12 1.33 ± 0.37 0.96 ± 0.02

RPE 0.02 ± 0.01 4.67 ± 3.25 0.50 ± 0.14 0.10 ± 0.16 1.40 ± 0.48 0.95 ± 0.03

MDFA(2) 0.07 ± 0.03 4.92 ± 3.10 0.27 ± 0.15 1.37 ± 0.32 1.52 ± 0.49 0.88 ± 0.06

MDFA(-8) 0.05 ± 0.02 4.54 ± 2.57 0.03 ± 0.27 1.67 ± 0.14 1.33 ± 0.40 0.94 ± 0.03

t1/2keo , blood effect-site equilibration constant; γ , slope parameter of the concentration-response relation; Emax , EEG parameter value corresponding to the maxi-

mum drug effect; Emin, EEG parameter value corresponding to the minimum drug effect; EC50, concentration that causes 50% of the maximum effect; R2, maximum

coefficients of determination.
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Table 6 | Parameters of PK/PD models for isoflurane.

t1/2keo(min) γ Emax Emin EC50 R2

RE 0.04 ± 0.04 28.88 ± 61.28 0.20 ± 0.04 2.91 ± 0.81 0.91 ± 0.20 0.64 ± 0.07

SE 0.05 ± 0.05 33.32 ± 70.92 0.21 ± 0.04 −1.27 ± 0.50 0.74 ± 0.19 0.65 ± 0.08

SWE 0.05 ± 0.07 19.44 ± 47.62 0.40 ± 0.09 0.14 ± 0.19 1.01 ± 0.20 0.72 ± 0.09

TWE 0.03 ± 0.03 4.80 ± 7.32 0.32 ± 0.11 0.07 ± 0.19 1.00 ± 0.31 0.74 ± 0.09

RWE 0.02 ± 0.01 3.87 ± 6.82 0.23 ± 0.05 0.05 ± 0.15 0.98 ± 0.33 0.75 ± 0.09

HHSE 0.02 ± 0.01 16.70 ± 27.10 1.29 ± 0.58 −5.03 ± 14.83 5.00 ± 10.90 0.72 ± 0.08

ApEn 0.06 ± 0.06 6.46 ± 6.48 0.74 ± 0.27 0.25 ± 0.32 0.75 ± 0.21 0.69 ± 0.17

SampEn 0.03 ± 0.02 5.32 ± 6.73 12.95 ± 13.50 6.79 ± 0.81 0.87 ± 0.28 0.72 ± 0.10

FuzzyEn 0.02 ± 0.01 7.82 ± 15.16 9.21 ± 32.21 0.52 ± 0.42 0.72 ± 0.37 0.61 ± 0.14

SPE 0.06 ± 0.2 3.32 ± 7.35 0.13 ± 0.12 −0.01 ± 0.21 1.30 ± 1.41 0.81 ± 0.07

RPE 0.02 ± 0.01 1.94 ± 5.51 0.42 ± 0.44 0.04 ± 0.34 0.77 ± 0.22 0.78 ± 0.09

TPE 0.01 ± 0.01 5.55 ± 6.64 0.90 ± 2.37 0.08 ± 0.09 0.68 ± 0.24 0.76 ± 0.07

MDFA(2) 0.01 ± 0.02 4.54 ± 10.73 0.17 ± 0.24 0.33 ± 0.45 0.41 ± 0.50 0.78 ± 0.09

MDFA(−8) 0.02 ± 0.01 11.54 ± 20.60 0.02 ± 1.52 1.07 ± 0.51 0.68 ± 0.23 0.69 ± 0.11

FIGURE 6 | Statistical analysis of the sevoflurane and isoflurane

anesthesia datasets for each of the entropy and MDFA indices. (A)

Maximum coefficient of determination values for sevoflurane anesthesia

(n = 19). For comparison, the R2 values for each index are expressed by a

different sign and color. (B) The R2 value of the same entropy indices for

isoflurane anesthesia (n = 20).

FIGURE 7 | Statistical analysis of prediction probability (Pk ) values for sevoflurane and isoflurane anesthesia. (A) The Pk values for each entropy and

MDFA index under sevoflurane anesthesia (n = 19). (B) The Pk values for each index during isoflurane anesthesia (n = 20).

Although each entropy algorithm has theoretical advantages

with respect to the characterization of EEG recordings dur-

ing GABAergic anesthesia, we still need to assess the practical

performance from several perspectives. In qualitative terms, all

the indices are effective at tracking the changes of drug con-

centration through the EEG analysis. As demonstrated in the

presented figures and tables, all the entropies decreased with

deepening anesthesia. However, there are quantitative differences

between indices for different anesthesia states. This is because

the principles underlying each algorithm are entirely different.

Entropies based on the time domain, ApEn for example, measure

the predictability of future amplitude values of the electroen-

cephalogram based on the knowledge of one or two previous

amplitude values. With increasing GABAergic anesthetic drug
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concentration, the EEG signals become more regular, which leads

to a reduction in the ApEn value. Entropies based on the time-

frequency domain, such as RE and SE, also decrease with increas-

ing DoA because the EEG shifts to a simpler frequency pattern as

the anesthetic dose increases (Rampil, 1998).

In all 12 entropy measures, the TWE, RWE, TPE, and RPE are

based on the Tsallis entropy and Renyi entropy theory respec-

tively. Tsallis entropy and Renyi entropy theory are considered

Table 7 | The Pk statistics for sevoflurane and isoflurane anesthesia

for each entropy and MDFA index.

Entropy index Pk sevoflurane Pk isoflurane

RE 0.74 ± 0.06 0.78 ± 0.06

SE 0.73 ± 0.06 0.77 ± 0.07

SWE 0.83 ± 0.04 0.78 ± 0.07

TWE 0.84 ± 0.05 0.77 ± 0.10

RWE 0.85 ± 0.05 0.78 ± 0.07

HHSE 0.81 ± 0.04 0.80 ± 0.06

ApEn 0.80 ± 0.04 0.77 ± 0.07

SampEn 0.81 ± 0.03 0.81 ± 0.06

FuzzyEn 0.80 ± 0.03 0.71 ± 0.09

SPE 0.83 ± 0.05 0.82 ± 0.05

TPE 0.83 ± 0.06 0.80 ± 0.05

RPE 0.87 ± 0.03 0.83 ± 0.06

MDFA(2) 0.83 ± 0.05 0.83 ± 0.04

MDFA(−8) 0.87 ± 0.03 0.76 ± 0.11

generalized concept of entropy compared to Shannon entropy.

Similar to Renyi entropy, the Tsallis entropy uses the non-

extensive parameter q to measure the information of specific

events. The results showed that TPE and RPE were better than SPE

in assessing the effect of anesthesia. Similar results can also be seen

in TWE, RWE, and SWE. There are no studies using TPE or RPE

in DoA monitoring before. The excellent performance indicates

their potential usefulness in anesthesia analysis.

Furthermore, the coefficient of determination and prediction

probability statistics were used to assess the correlation of each

index with the anesthetic drug effect site concentration. Three PE

measures had a higher Pk and R2 compared with the other indices.

Also, MDFA at q = 2 had a relative higher Pk and R2 in all indices.

Comparing anesthetic drugs, the R2 values for sevoflurane anes-

thesia were higher than for isoflurane anesthesia, while the Pk

values were similar (see Figures 5, 6 and Table 3). This means that

the entropy measures were better able to track sevoflurane than

isoflurane effect site concentration.

Four additional measures were considered for evaluation of

each entropy index. First, the CV was used to evaluate the sen-

sitivity of each index to artifacts during the awake state (Li et al.,

2008b, 2010). The results showed that PE outperformed the other

indices on this level. In all entropy measures, SWE had the high-

est CV during anesthesia induction, indicating that this index was

superior at discriminating between the awake and anesthetized

states. Secondly, the performance for estimating the point of LOC

was considered. Although all the entropy measures could dis-

tinguish between awake and anesthetized states (see Figure 4),

the speed of transition (slope) between the two states was fastest

FIGURE 8 | Dose-response curves between the RE(A), SE(B), SWE(C),

TWE(D), RWE(E), HHSE(F), ApEn(G), SampEn(H), FuzzyEn(I), SPE(J),

TPE(K), RPE (L), MDFA(2) (M), MDFA(-8) (N) and the sevoflurane Ceff for

the best fit, with the greatest value of R2 show above the figures. The

dots denote the measured EEG indices values. The solid lines denote the

PK/PD modeled EEG index values.
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FIGURE 9 | The similar description as Figure 8 with the dose-response curves between entropy indices and isoflurane effect-site concentration.

Table 8 | The computing time for different entropy and MDFA indices

for 1 min data length.

Entropy index Calculation time(s)

RE/SE 0.096 ± 0.008

SWE/RWE/TWE 0.025 ± 0.001

HHSE 14.718 ± 1.563

ApEn 2.490 ± 0.098

SampEn 2.541 ± 0.073

FuzzyEn 4.785 ± 0.119

SPE/RPE/TPE 0.545 ± 0.016

MDFA 16.338 ± 0.280

for SWE, while SE had the slowest transition. Thirdly, the per-

formance for discriminating different drug concentrations was

considered, especially the ability to distinguish the burst suppres-

sion state. The mean ± SD value of the indices showed that all

the entropy measures can distinguish different drug concentra-

tions, while only ApEn and SampEn have the ability to distinguish

burst suppression from the other states. This means that, if using

PE as a DoA index, an additional method for detecting the burst

suppression pattern would need to be incorporated, such as Non-

linear Energy Operator (NLEO) (Särkelä et al., 2002). The results

are in accordance with the findings during desflurane anesthesia

for ApEn (Bruhn et al., 2000) and sevoflurane anesthesia for PE

and HHSE (Li et al., 2008b, 2010). Finally, the computing time

was used to assess algorithm complexity. The results showed that

the WE index is the fastest algorithm of all the entropy indices

tested. HHSE was the slowest: its computing time for the same

data length was about 580 times longer that for WE. In order

to improve the computational efficiency, the parallelized method

based on the graphics processing unit has been proposed (Chen

et al., 2010).

The efficiency of these entropy measures were compared with

other two non-linear dynamic measures, the MDFA with q = 2

and −8, where MDFA with q = 2 is a standard DFA measure. The

results and statistics show that MDFA were better in some aspects

compared to some of entropy measures, such as sharper slope

in LOC, higher Pk and R2 for sevoflurane (almost equal to RPE)

measure. However, there are several shortcomings in MDFA mea-

sures. First, CVs of MDFA in awake state were higher compared

to those of entropy indices. Second, MDFA could not distinguish

the burst suppression state from other states. Most importantly,

the computing time of MDFA is the longest in all algorithms,

even longer than HHSE, which means that MDFA algorithms are

not suitable for real time DoA monitoring. Therefore, entropy

approaches are capable for monitoring the EEG changes in anes-

thesia, and are often advantageous in computation efficiency.

Although this study covers a number of entropy methods

and two types of anesthesia, the research has its limitations.

For instance, errors caused by individual variability, e.g., age,

physical wellness, intraoperative tolerance are hard to control

because of the difficulty in data collection in clinical practice.

Besides, Interactions between EEG activities and drug concentra-

tions could be studied using finer-grained paradigm, for instance

by increasing the drug concentration in a stepwise pattern.

Additionally, optimal parameters for each entropy measure may

not have been achieved and need further investigation.

This study doesn’t provide an absolute measure of “depth”

of clinical anesthesia, nor of consciousness for the prevention

of intra-operative recall; but rather focuses on understanding

the inner workings of each entropy index, and explores whether

these indices correlate with GABAergic drug effect. Having a good
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understanding of the strengths and weaknesses of each measure is

necessary before possibly applying them within a clinical context.

In conclusion, each entropy measure has its advantages, and

several indices show promise as a simple open-source method

for quantifying the brain effects of GABAergic drugs. In partic-

ular, the PE indices perform better than other entropy indices

as an EEG derivative in several aspects, especially for RPE mea-

sure. However, further work is required to accurately quantify the

burst suppression pattern. Also, to be useful as a clinical measure,

each algorithm still needs additional parameter and computation

efficiency optimizations.
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